Alignment between Chemistry Certificate of Secondary Education Examinations and the Ordinary Level Chemistry Curriculum in Tanzania

Gladness Kirei¹ and Wadrine Maro² University of Dar es Salaam, School of Education Department of Educational Psychology and Curriculum Studies Dar es Salaam, Tanzania E-mail: ¹gladness.kirei@yahoo.com ²marowadrine2016@gmail.com

Abstract

This paper presents the findings of a study conducted to investigate the alignment between Chemistry Certificate of Secondary Education Examination (CSEE) and the ordinary level (O'level) chemistry curriculum in Tanzania. The study employed mixed methods research approach to collect data from 25 chemistry teachers, eight Chemistry CSEE past papers for the period from 2010 to 2013 and 2007chemistry curriculum. The findings revealed that the Chemistry CSEE was aligned to the chemistry curriculum in terms of content coverage. Most of the examination questions and the instructional objectives in the Chemistry CSEE and the Chemistry curriculum were at lower levels of the Bloom's cognitive domain. The study recommends revision of specific objectives in the Chemistry curriculum to facilitate assessment of higher levels of the Bloom's cognitive domain.

Keywords: alignment, chemistry curriculum, Certificate of Secondary Education Examination, chemistry examination, competencebased education

Introduction

The concept of alignment is not new in the field of educational assessment because it has been recognised by several educators including Tyler (2013) and Bloom, Mandaus and Hastings (1981) as an evidence of the assessment's validity (Case, Jorgensen & Zucker, 2008). It is used in

educational context to describe the degree to which curriculum, instruction and assessment are in agreement in order to achieve the educational goals (Ananda, 2003; Nasstrom, 2008; Webb, 2002). Alignment is also used to describe the degree to which learning objectives in a curriculum and assessment are in agreement and serve in conjunction with one another to guide the educational system towards enabling students learning the planned contents (Webb, 2002). It further describes the degree of match between curriculum contents for specific subject and the assessment used to measure achievement of the instructional objectives in the curriculum (Bhola, Buckendalh, & Impara, 2003). Therefore, in this study, the term *alignment* is used to describe the degree of match or correspondence between the Chemistry CSEE and the chemistry curriculum for ordinary secondary education in terms of content coverage and cognitive complexity.

Alignment is closely related to test validity especially content validity and consequential validity (Sireci & Shuhong, 2005; Webb, 1997, 2002). However, distinction can be drawn between the two concepts. Fonthal (2004) and Rothman, Slattery & Vranek (2002) argue that, although alignment and content validity share common analysis methods, alignment is not a 'yes' or 'no' question, rather, it involves a number of alignment criteria that collectively tell the degree of association between curriculum and assessment. In addition, alignment analysis relies on the trained, experienced and knowledgeable educators (subject matter specialists) who apply their experience and knowledge in the analysis process (Rothman et al., 2002).

Importance of alignment in education

Alignment between assessment and curriculum influences the teaching and learning practices in classroom, and students' performance in the

Kirei and Maro

assessment as well (Biggs, 2003; Kellaghan & Greaney, 2003). This is due to the fact that the degree of alignment between a public examination like the Chemistry CSEE and its respective curriculum guides teachers and students on what to teach and learn respectively (Kellaghan & Greaney, 2003). It is argued that some teachers tend to pay attention to the past examinations to identify the content and skills covered in the examinations, thereafter teach students the identified skills and content (Kellaghan & Greaney, 2003). This means that quality of instructional activities in classroom including exposure to the teaching and learning materials and coverage of the curriculum content depend on the nature of the examinations contents (Biggs, 2003). When the degree of alignment between assessment and curriculum is high the implication is that most of the topics in the curriculum were assessed. Thus, teachers may be influenced to teach all the topics in the curriculum (Nasstrom & Hendricksson, 2008). This suggests that students' performance and achievement of the instructional objectives in curriculum can improve only when assessment and curriculum are aligned (Johnson, 2005; Manyooe, 2002).

The nature of examination also has effects on students' approaches to their work (Scouller, 1998). Additionally, when students find out that there are topics in the curriculum that do not appear in the examinations frequently they may not be motivated to study them (Doriye, 2008). This implies that students' performance in a particular examination can improve when the examination is aligned to curriculum because an opportunity to learn is a significant predictor for students' performance on the examinations (Stephen, 1997).

Alignment between curriculum and assessment is an important issue to education reform because it acts as a lever in the reform effort. This is because public examinations such as Chemistry CSEE send some information to teachers on what and how to teach (Kellaghan & Greaney, 2003). For example, although competence - based curriculum has been operational in China for many years, teachers continued to adopt traditional teacher-centred instructional methods in classroom because examinations were not aligned to their respective curricula (Hoingjia, Gavin, Fulmer, Laiang, Xintu & Yuan, 2013). Therefore, the high-stakes nature of the consequences associated with students' performance on examination has led educators to focus their attention on improving students' learning and eventually improve performance in examinations.

Curriculum reform was conducted in Tanzania in 2005 for the purpose of improving students' learning. The process resulted in a change from content-based curriculum which promoted teacher-centred teaching methodology to competence-based curriculum (CBE) (MoEVT, 2005). However, the studies conducted to investigate the implementation of CBE in various subjects including Chemistry revealed that teaching and learning approaches in classroom continued to be teacher-centred (Banda, 2011; Kagisi, 2009; Masyole, 2011; Shemwelekwa, 2008; Stuart, 2012; Timothy, 2011).

Furthermore, literature has shown that the degree of alignment between assessment and curriculum has impact on students' performance (Jacques, 2011, Johnson, 2005; Manyooe, 2004; Nasstrom, 2008), methods of teaching and learning in classroom (Alphonce, 2011; Boud & Falchikov, 2006; Kellaghan & Greaney, 2003), and coverage of curriculum contents (Edwards, 2010; Kellaghan & Greaney, 2003; Webb, 2005).

Despite the importance of alignment between assessment and curriculum in education, literature (Alphonce, 2011; Chonjo & Welford, 2001; Doriye, 2008; HakiElimu, 2012; Kirei, 2009) have shown that there are limited empirical studies on the alignment between Chemistry CSEE and the chemistry curriculum in terms of content coverage and cognitive complexity in Tanzania. In particular, several issues remain unknown regarding the degree of alignment between Chemistry CSEE and chemistry curriculum that can influence teaching and learning practices in classroom as well as the students' performance in Chemistry CSEE.

Conceptual framework of the study

The conceptual framework for this study consists of concepts which represent the Webb's alignment criteria. Figure 1 presents the conceptual framework for alignment between curriculum and assessment in terms of content coverage and cognitive complexity as used in this study.

204 Papers in Education and Development No.38 (2), 2020

Figure 1: Conceptual framework for alignment between curriculum and assessment in terms of content coverage

Source: Adapted from Webb (1997) alignment model

The study employed four of five alignment criteria of the Webb's alignment model namely: categorical concurrence, range of knowledge correspondence, balance of representation, and depth of knowledge consistency.

Categorical concurrence was used to judge whether both curriculum and assessment addressed the same content or not. The minimum acceptable level for this criterion was six hits per topic as suggested by Webb (1997). This means that a topic was considered as aligned to the examination when six questions in the Chemistry CSEE were set to measure attainment of the instructional objectives in the topic.

Range of knowledge correspondence was used to judge whether span of knowledge in the curriculum was the same and corresponded to the span of knowledge in the assessment item or not. The minimum acceptable level for this criterion in this study was set at 50 percent. This means that a topic in the curriculum was considered to be aligned to the examination when at least 50% of its objectives had at least one related assessment item in the Chemistry CSEE.

Balance of representation was used to measure distribution of the examination items among the objectives in a topic. The minimum acceptable level for this criterion in this study was 0.6 (60%). The index value of 1(100%) was obtained when all of the items assigned to a topic were evenly distributed among the objectives in the topic.

Depth of knowledge consistency was used to measure the degree of alignment between assessment items and the instructional objectives in the curriculum in terms of cognitive demand based on the levels of the Bloom's cognitive domain. The acceptable level for this criterion is at least 50 % (Webb, 1997). This means a topic was considered as aligned to the examination when at least 50% of the examination items were **at**, or **above** the cognitive level of the instructional objectives in the curriculum (Webb, 1997).

Purpose of the study

The purpose of this study was to investigate the alignment between Chemistry CSEE and the ordinary level Chemistry curriculum in terms of content and cognitive complexity. Specifically, the objectives of the study were to:

- analyse the extent to which the Chemistry CSEE assessed the Chemistry curriculum in terms of content and Bloom's cognitive levels.
- ii) explore teachers' views on the alignment between Chemistry CSEE and Chemistry curriculum in terms of content coverage.

Research Methodology

This study employed the mixed methods research approach. This approach involves both qualitative and quantitative research approaches

to offset the weaknesses inherent in one research approach in order to enhance the validity of the data collected (Creswell, 2003; Creswell & Plano-Clark, 2007). It also applied the embedded mixed methods case study design. This deign fitted well in this study because it enabled the researchers to collect and analyse both qualitative and quantitative data to provide answers to the research questions.

Sampling procedures

The researchers employed purposive and random sampling techniques. Simple random sampling technique was used to select schools in Kilimanjaro region from which the chemistry teachers were obtained. Simple random sampling technique was used in order to minimize the potential bias in the selection of participants. It also enhanced generalisability of the findings. On the other hand, purposive sampling technique was used to select the Chemistry CSEE papers, curriculum, the NECTA examination officer; and the four Chemistry teachers who reviewed the Chemistry CSEE document and the Chemistry curriculum.

Data collection procedures

Qualitative data were obtained through content analysis of the curriculum and the Chemistry CSEE papers. According to Council of Chief State School Officers [CCSSO] (2002), an alignment analysis which employs the Webb's alignment model involved qualitative experts' judgment in data collection followed by quantified coding and analysis of the data from curriculum and assessment. Therefore, in this study, data on alignment between curriculum and the Chemistry CSEE were collected qualitatively by reviewers using checklists and analysis forms. Then, they were quantified in the coding and analysis process. The process involved three

stages namely: selection of subject matter experts, training of reviewers, and assemblage of qualitative data through content analysis. In order to ensure reliability of coding, the reviewers were asked to code a sample of 5-10 items from the examinations and then they went through the items together to make sure that every reviewer understood the coding process before the analysis process. This step was followed by collection of data through systematic analysis of the Chemistry CSEE papers and the respective curriculum. The process involved: reviewing, interpretation and assigning depth of knowledge to the specific objectives in Chemistry curriculum and the Chemistry CSEE items with reference to levels of the Blooms' cognitive domain. The descriptions which were obtained in this step helped to clarify how well the different levels of the Bloom's cognitive domain were represented in the specific objectives and the examination items. They were also used in the analysis of the alignment between the examination and the curriculum in terms of cognitive complexity. Furthermore, the reviewers investigated the alignment between the examinations and curriculum in terms of their content coverage. Collection of quantitative data involved administration of Likert type questionnaires to the Chemistry teachers to get their views about the alignment between the examinations and the curriculum. A total of 21 Chemistry teachers from government and private schools filled in the questionnaires willingly and returned them to the researchers. The questionnaire had three commitments namely: examined, I am not sure and not examined. Therefore, teachers were requested to indicate the extent of their agreement or disagreement with the expressions. However, the commitment for I am not sure did not receive any comment from any of the respondents so it was not considered in the analysis process.

Data analysis

Qualitative data were coded into the Web Alignment Tool (WAT). This step was followed by computation of categorical concurrence, depth of knowledge consistency, range of knowledge correspondence and balance of representation from the data collected by the reviewers. For example, the following formula was used to compute the balance of representation.

The Webb's balance index =1 - $\left(\sum_{k=1}^{o} \left| \frac{1}{(o)} - \frac{I(k)}{(H)} \right| \right)/2$

Where O =Total number of objectives hit for the standard

I (k) = Number of items hit corresponding to objective k

H =Total number of items hits for a standard

An index value of 1(100%) signifies perfect balance. It was obtained when the hits (items) corresponding to a topic were equally distributed among the objectives in the topic.

Quantitative data collected by questionnaires were organized and sorted. Thereafter, they were coded into the Statistical Packages for the Social Sciences (SPSS) software version 20 for computation of Chi-square values. The choice of Chi-square statistical test in this research was due to the fact that the research sample size was small and the data were categorical in nature.

Research Findings

Alignment in terms of content coverage and cognitive complexity

Tables 1, 2 and 3 present the WAT analysis findings from documentary review on alignment in terms of content coverage and cognitive complexity. While Table 1 presents the findings of the alignment in terms of content coverage, Table 2 presents alignment in terms of cognitive complexity and Table 3 provides a summary of attainment of the Webb's

acceptable levels in the alignment in terms of content and cognitive complexity.

		Categorio	cal Concu	irrence	Rang Co	e of Knowle rrespondenc	dge ;e	Balance o	f Repres	entation
S/	Topics in the 2007 chemistry	No. of	Hits (Mea	n %)	Range of	Objectives (n	nean %)	Balance Ind	dex Value	(Mean %)
N	curriculum		YEARS			YEARS			YEARS	
		2011	2012	2013	2 011	2012	2013	2011	2012	2013
1	Introduction to chemistry	0	0.8	0	0	20	0	0	0.8	0
2	Laboratory technique and safety	1.83	1.2	1	8	11	9	0.83	1	1
3	Heat sources and flames	1	4	2	25	30	25	1	0.9	1
4	Scientific procedure	0	0	0	0	0	0	0	0	0
5	Matter	1.83	4.2	4.8	10	22	9	1	1	0.76
6	Air, combustion, rusting and fire fighting	1.5	4.8	1	11	21	7	0.83	0.8	1
7	Oxygen	0.17	1	0.2	3	20	4	0.17	1	0.2
8	Hydrogen	1	1.8	2	25	40	25	1	1	1
9	Water	1.33	2	0.8	8	20	8	0.83	1	0.8
10	Fuel and energy	0	1.8	3.2	0	16	9	0	1	1
11	Atomic structure	3	2	8.2	33	22	60	1	1	0.84
12	Periodic classification	1	3	5.8	25	50	75	1	0.8	0.78

Table 1: Alignment between Chemist	ry CSEE and Chemistry Curriculum	in Terms of Content Coverage
------------------------------------	----------------------------------	------------------------------

		Categorio	al Concu	irrence	Rang Co	je of Knowle rrespondenc	dge :e	Balance o	f Repres	entation
S/	Topics in the 2007 chemistry	No. of	Hits (Mea	n %)	Range of	Objectives (n	nean %)	Balance Ind	dex Value ((Mean %)
N	curriculum	,	YEARS			YEARS			YEARS	
		2011	2012	2013	2 011	2012	2013	2011	2012	2013
13	Formula, bonding and nomenclature nomenclature	7.5	5.2	6.4	58	42	42	0.92	0.9	0.83

S/ N	Topics in the 2007 chemistry curriculum	Catego	rical Conc	urrence	Rang Co	e of Knowle rrespondenc	dge ce	Balance of Representation			
		No. d	of Hits (Mea	an %)	Range of	Objectives (r	nean %)	Balance Ir	ndex Value	e (Mean %)	
			YEARS			YEARS			YEARS		
		2011	2011 2012 2013			2012	2013	2011	2012	2013	
14	Chemical equation	5.33	5.33 6.4 11			40	60	0.88	0.7	0.53	
15	Hardness of water	1.17	1.2	1.2	14	17	17	1	1	1	
16	Acid, bases and salts	12.83	9	2.6	53	40	18	0.77	0.8	0.97	
17	The mole and related calculations	3.83	5.4	2.2	48	46	29	0.92	0.8	0.97	
18	Volumetric analysis	0.5 6.2 11.2			48	40	44	0.82	0.8	0.8	
19	lonic theory and electrolysis	4.83	0.5 6.2 11.2 4.83 3 2.4 3			27	22	0.73	1	1	

20	Chemical kinetics, equilibrium and energetic	5.67	6.6	11.6	24	29	60	0.68	0.8	0.8
21	Extraction of Metals	2	3.2	5	18	29	25	1	1	0.7
22	Compounds of metals	1.17	6.2	2.6	6	24	10	1	0.9	0.9
23	Non metals and their compounds	1.83	7.8	9.6	7	22	26	1	0.8	0.8
24	Organic Chemistry	3	4.2	11.6	8	13	25	0.83	0.9	0.8
25	Soil chemistry	1.83	1.2	5.2	5	4	21	1	0.8	0.8
26	Pollution	4	4.4	2.8	14	15	13	1	0.9	1
27	Qualitative Analysis	1.33	2	2.4	14	14	20	1	1	1
	Total	79.5	98.6	116.6	19	25	24	0.78	0.9	0.78

Table 2: Alignment between Chemistry CSEE and Chemistry Curriculum in Terms of Cognitive Complexity

							Depth of	Knowle	edge Con	sistency	(Mean 9	%)
			YEARS		201	1		20	12		20	13
S/N	Topics in	n the		%Under	%At	%Abo	%Unde	%At	%Abo	%Und	%At	%Abo
	2007chemistrycur	riculum				ve	r		ve	er		ve
1												
1	Introduction to Cr	nemistry		0	0	0	0	0	100	0	0	0

Kirei and Maro

			De					Depth of Knowledge Consistency (Mean %)					
			YEARS		201	1		20	12		20	13	
S/N	Topics in	the		%Under	%At	%Abo	%Unde	%At	%Abo	%Und	%At	%Abo	
	2007chemistrycurric	ulum				ve	r		ve	er		ve	
	safety												
3	Heat sources and fl	ames		50	50	0	14	12	74	0	0	100	
4	Scientific procedure	9		0	0	0	0	0	0	0	0	0	
5	Matter			82	18	0	62	14	24	29	71	0	
6	Air, combustion, rus	sting and		0	0	100	12	21	37	0	0	100	
	fire fighting			0	0	100	42	21	57	0	U	100	
7	Oxygen			0	0	100	80	20	0	0	0	100	
8	Hydrogen			100	0	0	58	42	0	10	80	10	
9	Water			23	57	20	50	50	0	0	100	0	
10	Fuel and energy			0	0	0	44	45	11	0	0	100	
11	Atomic structure			28	72	0	60	40	0	39	61	0	
12	Periodic classification	on		0	100	0	60	33	7	34	45	21	
13	Formula, bonding a	Ind		0	29	71	5	50	45	27	39	34	

					Depth of Knowledge Consistency (Mean %)					%)		
		_	YEARS		201	1		20	12		20	13
S/N	Topics in th	ne		%Under	%At	%Abo	%Unde	%At	%Abo	%Und	%At	%Abo
	2007chemistrycurriculum					ve	r		ve	er		ve
	nomenclature											
14	Chemical equations			38	3	59	6	29	65	5	22	73
15	Hardness of water			0	50	50	83	0	17	0	67	33
16	Acid, Bases and salts			92	8	0	44	29	27	88	6	6
17	The mole and related			22	60	0	0	100	0	53	47	0
	calculations			22	09	9	0	100	0	55	47	0
18	Volumetric analysis			6	76	18	16	45	39	42	33	25
19	Ionic theory and electrolysis			0	76	24	40	7	53	50	8	42
20	Chemical kinetic, equilibrium			30	11	27	18	15	67	26	13	31
	and energetics			52	41	21	10	15	07	20	45	51
21	Extraction and properties of			0	50	50	31	31	38	4	28	68
	metals			0	50	50	51	31	30	4	20	00
22	Compounds of metals			43	57	0	67	26	7	7	30	63

Kirei and Maro

								Depth of	Knowle	edge Con	sistency	(Mean 9	%)
				YEARS		201	1		20	12		20	13
S/N	Topics	in	the		%Under	%At	%Abo	%Unde	%At	%Abo	%Und	%At	%Abo
	2007chemistry	curriculum					ve	r		ve	er		ve
23	Non metals an	nd their			Q1	٩	0	46	8	46	7	60	33
	compounds				51	0	Ū	-10	U	40	,	00	00
24	Organic chemi	istry			33	67	0	54	38	8	18	52	30
25	Soil chemistry				100	0	0	0	92	8	58	34	8
26	Pollution				0	0	100	26	35	39	29	7	64
27	Qualitative and	alysis			0	11	89	100	0	0	0	0	100
	Total				30	40	30	42	30	28	28	39	33

Key: %Under = cognitive level of the examination item was under the cognitive level of the instructional objectives

%At = cognitive level of the examination item was at the cognitive level at the cognitive level of the instructional objectives %Above= cognitive level of the examination item was above the cognitive level of the instructional objectives

Table 3: Summary of Attainment of Webb's Acceptable Levels in the Alignment in Terms of Content and CognitiveComplexity

		Categorical		Depth of		of Range of knowledge			Balance		of			
			Con	currenc	е	knowle	dge		Corres	pondence		Represe	entation	
							Consist	ency						
S/	Topics in the								Range	of objectiv	es mean	Balance	Index Val	ue
Ν	2007		No. of	Hits		Mean (%)		(% of tota	al)		(mean)		
	Curriculum		YEARS 2011 2012 2013											
		YEARS	EARS 2011 2012 2013			2011	2012	2013	2011	2012	2013	2011		2013
													2012	
	Chemistry													
	curriculum													
1	Introduction to		NO	NO	NO	NO	YES	NO	NO	NO	NO	NO	YES	NO
	Chemistry													
2	Laboratory		NO	NO	NO	YES	YES	NO	NO	NO	NO	YES	YES	YES
	technique													
	and safety													

Papers in Education and Development No.38 (2), 2020

Kirei and Maro

			Cate	gorical		Dep	th	of	Range	of knowl	edge	Balance	•	of
			Con	currenc	е	knowle	edge		Corres	spondence	e	Represe	entation	
							Consist	ency						
S/	Topics in the								Range	e of objecti	ves mean	Balance	Index Val	ue
Ν	2007		No. of	Hits		Mean (%)		(% of tot	al)		(mean)		
	Curriculum													
		YEARS	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011		2013
													2012	
3	Heat sources an		NO	NO	NO	YES	YES	YES	NO	NO	NO	YES	YES	YES
	nes													
4	Scientific		NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
	procedure													
5	Matter		NO	NO	NO	NO	NO	WEA	NO	NO	NO	YES	YES	YES
6	Air,													
	combustion,		NO	NO	NO	YES	NO	YES	NO	NO	NO	YES	YES	YES
	rusting and fire													
	fighting													
7	Oxygen		NO	NO	NO	YES	NO	YES	NO	NO	NO	NO	YES	YES

			Cate	gorical		Dep	th	of	Range	of knowle	dge	Balance	;	of
			Con	currenc	е	knowle	edge		Corres	pondence		Represe	entation	
							Consist	ency						
S/	Topics in the								Range	of objectiv	es mean	Balance	Index Val	ue
Ν	2007		No. of	Hits		Mean (%)		(% of tota	al)		(mean)		
	Curriculum		EARS 2011 2012 2013											
		YEARS	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011		2013
													2012	
8	Hydrogen		NO	NO	NO	NO	WEA	NO	NO	WEAK	NO	YES	YES	NO
9	Water		NO	NO	NO	YES	YES	NO	NO	NO	NO	YES	YES	NO
10	Fuel and		NO	NO	NO	NO	YES	YES	NO	NO	NO	NO	YES	NO
	energy													
11	Atomic		NO	NO	YES	YES	WEA	YES	NO	NO	YES	YES	YES	YES
	structure													
12	Periodic		NO	NO	NO	YES	NO	YES	NO	YES	YES	YES	YES	YES
	classification													
13	Formula,		YES	NO	YES	YES	YES	YES	YES	WEAK	WEAK	YES	YES	YES
	bonding and													

Kirei and Maro

			Cate	gorical		Dep	th	of	Range	of knowle	dge	Balance	•	of
			Con	currenc	е	knowle	edge		Corres	pondence		Represe	entation	
							Consist	ency						
S/	Topics in the								Range	of objectiv	es mean	Balance	Index Val	he
Ν	2007		No. of	Hits		Mean (%)		(% of tota	al)		(mean)		
	Curriculum													
		YEARS	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011		2013
													2012	
	Nomenclature													
14	Chemical		NO	YES	YES	YES	YES	YES	NO	WEAK	YES	YES	YES	NO
	equation													
15	Hardness of		NO	NO	NO	YES	NO	YES	NO	NO	NO	YES	YES	WEAK
	water													
16	Acid, bases		YES	YES	NO	NO	WEA	NO	YES	WEAK	NO	YES	YES	YES
	and salts													
17	The mole and		NO	NO	NO	YES	YES	YES	WEAK	WEAK	NO	YES	YES	YES
	related													
	Calculations													
18	Volumetric		YES	YES	YES	YES	YES	YES	WEAK	WEAK	WEAK	YES	YES	YES

			Cate	egorical		Dep	th	of	Range	of knowle	dge	Balance	ļ	of
			Con	currenc	е	knowle	edge		Corres	pondence		Represe	entation	
							Consist	ency						
S/	Topics in the								Range	of objectiv	es mean	Balance	Index Val	ue
Ν	2007		No. of	Hits		Mean (%)		(% of tota	al)		(mean)		
	Curriculum													
		YEARS	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011		2013
													2012	
	analysis													
19	lonic theory and		NO	NO	NO	YES	YES	YES	NO	NO	NO	YES	YES	YES
	ctrolysis													
20	Chemical		NO	YES	YES	YES	YES	YES	NO	NO	YES	WEAK	YES	YES
	kinetic,													
	equilibrium													
	and energetic													
21	Extraction and		NO	NO	NO	YES	YES	YES	NO	NO	NO	YES	YES	YES
	properties of													
	metals													
22	Compounds of		NO	YES	NO	YES	NO	YES	NO	NO	NO	YES	YES	YES

Kirei and Maro

			Cate	gorical		Dept	th	of	Range	of knowle	dge	Balance	•	of
			Con	currenc	e	knowle	dge		Corres	pondence		Represe	entation	
							Consist	ency						
S/	Topics in the								Range	of objectiv	es mean	Balance	Index Val	he
Ν	2007		No. of	Hits		Mean (9	%)		(% of tota	al)		(mean)		
	Curriculum													
		YEARS	2011	2012	2013	2011	2012	2013	2011	2012	2013	2011		2013
													2012	
	metals													
23	Non metals and		NO	YES	YES	NO	WEA	YES	NO	NO	NO	YES	YES	YES
	their													
	Compounds													
24	Organic		NO	NO	YES	YES	WEA	YES	NO	NO	NO	YES	YES	YES
	chemistry													
25	Soil chemistry		NO	NO	NO	NO	YES	NO	NO	NO	NO	YES	YES	YES
26	Pollution		NO	NO	NO	YES	YES	YES	NO	NO	NO	YES	YES	YES
27	Qualitative		NO	NO	NO	YES	NO	YES	NO	NO	NO	YES	YES	YES
	analysis													

- **Note:** The acceptable level for categorical concurrence = 6 hits The acceptable level for range of knowledge correspondence = 0.5 (50%) and above The acceptable level for balance of presentation = 0.6 (60%) and above The acceptable level for depth of knowledge consistency = 0.5 (50%) and above
- Key: YES means the Webb's acceptable level was reached NO means the Webb's acceptable level was not reached

Alignment in terms of content coverage

The findings in Table1 and Table 3 revealed that 22 (81.5%), 26 (96.3%), and 23 (85.2%) of 27 topics in 2007 curriculum which were examined in the 2011, 2012, and 2013 Chemistry CSEE respectively had items which were well distributed among the objectives in the topics. This means that the Chemistry CSEE was strongly aligned with the Chemistry curriculum in terms of balance of representation.

However, the Webb's acceptable level for categorical concurrent and range of knowledge correspondence were not reached in most of the topics in the curriculum. The findings show that only 3 (10%), 6 (22.2%) and 7(25.9%) of the 27 topics in the curriculum which were examined in the 2011, 2012 and 2013 Chemistry CSEE respectively reached the Webb's acceptable level for categorical concurrence. Similarly, the findings showed that 2 (7.4%), 1 (3.7%) and 4 (14.8%) of the 27 topics in the 2007 curriculum which were examined in the 2011, 2012 and 2013 Chemistry CSEE respectively reached the acceptable level for range of knowledge correspondence; and 2 (7.4%), 6 (22.2%) and 2 (7.4%) of the topics in the curriculum which were examined in the 2013 Chemistry CSEE respectively were weakly accepted. Moreover, it was revealed that one of the examinations questions in the 2013 Chemistry CSEE on *extraction of metal* was out of the objectives in the curriculum.

Alignment in terms of cognitive complexity

The findings in Table 2 and Table 3 show that 19 (70.4%), 17 (63%) and 22 (81.1%) of the 27 topics in the curriculum examined in 2011, 2012 and 2013 Chemistry CSEE respectively reached the Webb's acceptable level for depth of knowledge consistency. Additionally, depth of knowledge of instructional objectives and the examinations items were identified and

classified by the reviewers into Lower Order Cognitive Skills (LOCS) and the Higher Order Cognitive Skills (HOCS) based on the levels of the Bloom's cognitive domain. The LOCS include knowledge and comprehension levels and the HOCS include application, analysis, synthesis and evaluation levels (Fredrick, 2012). The findings showed that 56.3% of the instructional objectives in the 2007 chemistry curriculum were set in LOCS and 43.8% in HOCS. It was also found out that 54.3%, 50.9% and 52.1% of the 2011, 2012 and 2013 Chemistry CSEE items were set in LOCS respectively. These findings indicate that the examinations were strongly aligned with the curriculum in terms of cognitive demand. However, larger percent of the examination questions in the Chemistry CSEE and the instructional objectives in curriculum are found in lower levels of the Bloom's cognitive domain.

Teachers' views on the alignment between Chemistry CSEE and Chemistry curriculum in terms of content coverage

Table 4 presents the findings of the Chi-square test for teachers' views on the alignment between the Chemistry CSEE and the chemistry curriculum in terms of content coverage.

						Te	eachers' vie	ws (in %) c	on conten	t coverage	
		2007	7 curriculu	m conten	ts		Examir	nation Year	,		
							2011		2012		2013
S/N	Topic		Sub	topics			Not		Not		Not
						Examine	Examine		Examin		Examin
						d	d	Examin	ed	Examin	ed
								ed		ed	
1	Introduction		Concept o	f chemistr	у	0.0	100.0	14.3	85.7	0.0	100.0
	chemistry										
2	Laboratory		Rules	and	safety		100.0	0.0	100.0	42.9	57.1
	technique	and	precaution	IS		0.0					

Table 4: Chi-square Test Analysis Results for Teacher's Views on Coverage of the Curriculum by the 2011-2013

 Chemistry CSEE Items

				Т	eachers' vie	ws (in %) c	on conten	t coverage	
	200	7 curriculum coi	ntents		Exami	nation Year	,		
					2011		2012	2	2013
S/N	Topic	Sub topics			Not		Not		Not
				Examine	Examine		Examin		Examin
				d	d	Examin	ed	Examin	ed
						ed		ed	
		First aid kit and	First aid kit		0.0	0.0	100.0	57.1	42.9
				100.0					
		Chemical	laboratory		4.8	100.0	0.0	81.0	19.0
		apparatus		95.2					
3	Heat sources and	Heat sources ar	d frame		0.0	81.0	19.0	85.7	14.3
	flames			100.0					
4	Scientific	Scientific proced	lure		100.0	0.0	100.0	0.0	100.0
	procedure			0.0					
5	Matter	Concept of matt	er	0.0	100.0	28.6	71.4	0.0	100.0

			Т	eachers' vie	ews (in %) o	on conten	t coverage)
	200	7 curriculum contents		Exami	nation Year	•		
				2011		2012		2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
		States of matter		28.6	19.0	81.0	0.0	100.0
			71.4					
		Physical and chemical		4.8	0.0	100.0	0.0	100.0
		changes	95.2					
		Element and symbols		4.8	76.2	23.8	66.7	
			95.2					33.3
		Compound and mixtures	81.0	19.0	38.1	61.9	85.7	14.3
		Separation of mixtures	100.0	0.0	76.2	23.8	100.0	0.0
	Air, combustion	Composition of air	0.0	100.0	0.0	100.0	71.4	28.6
6	and fire fighting	Combustion	4.8	95.2	9.5	90.5	0.0	100.0

			Т	eachers' vie	ws (in %) c	on content	t coverage	
	2	2007 curriculum contents		Exami	nation Year	,		
				2011		2012		2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
		Fire fighting	0.0	100.0	0.0	100.0	0.0	100.0
		Rusting	14.3	85.7	4.8	95.2	0.0	100.0
	Oxygen	Preparation and properties	0.0	100.0	14.3	85.7	100.0	0.0
7		of oxygen						
		Uses of oxygen	100.0	0.0	61.9	38.1	0.0	100.0
	Hydrogen	Preparation and properties	100.0	0.0	33.3	66.7	81.0	19.0
8		of hydrogen						
		Uses of hydrogen	10 0.0	0.0	0.0	100.0	0.0	100.0
9	Water	The nature and properties	85.7	14.3	90.5	9.5	85.7	14.3
_		of water						

			Т	eachers' vie	ws (in %) o	n content	coverage	
	200	7 curriculum contents		Examir	nation Year			
				2011		2012	2	2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
		Water treatment and	100.0	0.0	100.0	0.0	81.0	81.0
		purification						
4.0		Fuel	0.0	100.0	42.9	57.1	0.0	100.0
10	Fuel and energy	Conservation of energy	0.0	100.0	0.0	100.0	42.9	57.1
		Sub atomic particles	95.2	4.8	57.1	42.9	100.0	0.0
11	Atomic structure	Atomic number, mass	100.0	0.0	76.2	23.8	81.0	19.0
		number and isotopy						
12	Periodic	General periodic trend	100.0	0.0	90.5	9.5	100.0	0.0
	classification							
13	Formula bonding	Valence and Chemical	85.7	14.3	81.0	19.0	42.9	57.1

			Т	eachers' vie	ews (in %) o	on conten	t coverage	
	200	7 curriculum contents		Exami	nation Year			
				2011		2012		2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
	and nomenclature	formulae						
		Oxidation states	9.5	90.5	47.6	52.4	19.0	81.0
		Radicals	9.5	90.5	9.5	90.5	61.9	
								38.1
		Covalent bonding	0.0	100.0	19.0	81.0	9.5	90.5
		Electrovalent bonding	100.0	0.0	42.9	57.1	0.0	100.0
14	Chemical	Molecular equations	100.0	0.0	57.1	42.9	100.0	0.0
	equations	Ionic equations	85.7	14.3	0.0	100.0	100.0	
								0.0
15	Hardness of	Hardness of water	76.2	23.8	9.5	90.5	100.0	0.0

						Т	eachers' vie	ews (in %) c	on conter	nt coverage	
	200	7 curriculur	n co	ntents			Exami	nation Year			
							2011		2012		2013
S/N	Topic	Sub t	opic	6			Not		Not		Not
						Examine	Examine		Examin		Examin
						d	d	Examin	ed	Examin	ed
								ed		ed	
	water										
16	acids, bases and	Acids and b	base	S		100.0	0.0	81.0	19.0	100.0	0.0
	salts	Salt				82.4	17.6	71.4	28.6	85.7	14.3
17	Mole and related	Mole as	а	unit	of	77.1	22.9	28.6	71.4	19.0	81.0
	Calculations	measureme	ent								

			Те	eachers' vie	ws (in %) c	on conten	t coverage	
	20	07 curriculum contents		Examir	nation Year			
				2011		2012	2	2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
		Application of the mole	90.5	9.5	81.0	19.0	95.2	4.8
		concept						
		Standard volumetric	95.2	4.8	19.0	81.0	81.0	19.0
18	Volumetric	apparatus						
	analysis	Standard solutions	100.0	0.0	100.0	0.0	100.0	0.0
		Volumetric calculation	100.0	0.0	100.0	0.0	100.0	0.0
		Application of volumetric	95.2	4.8	38.1	61.9	71.4	28.6
		analysis						
		Ionic theory	71.4	28.6	28.6	71.4	19.0	81.0
19	lonic theory and	The Mechanism of	85.7	14.3	100.0	0.0	76.2	23.8

			Т	eachers' vie	ews (in %) o	on conten	t coverage	
	200	7 curriculum contents		Exami	nation Year			
				2011		2012		2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
	electrolysis	electrolysis						
		Laws of electrolysis	76.2	23.8	19.0	81.0	81.0	19.0
		Application of electrolysis	95.2	4.8	14.3	85.7	76.2	23.8
20	Chemical kinetics	Rate of chemical reactions	100.0	0.0	52.4	47.6	57.1	42.9
	and	Factors affecting rate of	91.0	9.0	90.5	9.5	76.2	23.8
	equilibrium	reactions						
		Reversible reactions	100.0	0.0	0.0	100.0		0.0
							100.0	
		Equilibrium reactions	100.0	0.0	0.0	100.0	100.0	0.0
		Endothermic and	100.0	0.0	0.0	100.0	61.9	38.1

			Teachers' views (in %) on content coverage						
	200	Examination Year							
		-				2012		2013	
S/N	Topic	Sub topics		Not		Not		Not	
			Examine	Examine		Examin		Examin	
			d	d	Examin	ed	Examin	ed	
					ed		ed		
		exothermic reactions							
21	Extraction of	Occurrence and location of	0.0	100.0	9.5	90.5	0.0	100.0	
	Metals	metals in Tanzania							
		Chemical properties of	95.2	4 .8	85.7	14.3	81.0	19.0	
		metals							
22	Compounds of	Extraction of metals	100.0	0.0	100.0	0.0	100.0	0.0	

			Teachers' views (in %) on content coverage									
	200	2007 curriculum contents			Examination Year							
				2011		2012		2013				
S/N	Topic	Sub topics		Not		Not		Not				
			Examine	Examine		Examin		Examin				
			d	d	Examin	ed	Examin	ed				
					ed		ed					
		Oxides	95.2	4.8	85.7	14.3	100.0	0.0				
		Hydroxides	76.7	13.3	85.7	14.3	85.71	14.3				
		Carbonates and hydrogen	81.0	19.0	4.8	95.2	90.5	9.5				
		Carbonates										
		Nitrates	90.5	9.5	76.2	23.8	90.5	9.5				
		Chlorides	100.0	0.0	9.5	90.5	81.0	19.0				
	Non metals and	Sulphates	14.3	85.7	15.3	100.0	90.5	9.5				

			Teachers' views (in %) on content coverage						
		2007 curriculum contents	Examination Year						
				2011		2012		2013	
S/N	Topic	Sub topics		Not		Not		Not	
			Examine	Examine		Examin		Examin	
			d	d	Examin	ed	Examin	ed	
					ed		ed		
		General chemical properties	95.2	4.8	28.6	71.4	38.1	61.9	
		of non metals							
		Chlorine	0.0	100.0	100.0	0.0	100.0	0.0	
		Hydrogen chloride	4.8	95.2	95.2	4.8	85.7	14.3	
		Sulphur	100.0	0.0	100.0	0.0	100.0	0.0	
		Sulphuric acid	100.0	0.0	100.0	0.0	14.3	85.7	
		Sulphur dioxide	100.0	0.0	95.2	4.8	66.7	33.3	
		Nitrogen	100.0	0.0	100.0	0.0	100.0	0.0	
		Ammonia	100.0	0.0	71.4	28.6	4.8	95.2	
		Carbon	100.0	0.0	100.0	0.0	100.0	0.0	

			Teachers' views (in %) on content coverage						
	200	Examination Year							
				2011		2012	2	2013	
S/N	Topic	Sub topics		Not		Not		Not	
			Examine	Examine		Examin		Examin	
			d	d	Examin	ed	Examin	ed	
					ed		ed		
23	Organic chemistry	Carbon dioxide	86.7	13.3	95.2	4.8	85.7	14.3	
		Introduction to organic	77.1	22.9	81.0	19.0	85.7	14.3	
		chemistry							
		Families of hydrocarbons	100.0	0.0	85.7	14.3	81.0	19.0	
		Properties of hydrocarbons	61.9	38.1	28.6	71.4	81.0	19.0	
		Alcohol	100.0	0.0	0.0	100.0	66.7	33.3	
		Carboxylic acids	23.8	76.2	100.0	0.0	85.7	14.3	
24	Soil chemistry	Soil reaction	47.6	52.4	0.0	100.0	81.0	19.0	

			Teachers' views (in %) on content coverage					
	200	Examination Year						
				2011		2012		2013
S/N	Topic	Sub topics		Not		Not		Not
			Examine	Examine		Examin		Examin
			d	d	Examin	ed	Examin	ed
					ed		ed	
25	Pollution	Plant nutrients in the soil	96.2	3.8	0.0	100.0	28.6	71.4
		Manures and fertilizers	66.7	33.3	71.4	28.6	9.5	90.5
		Terrestrial pollution	0.0	100.0	0.0	100.0	19.0	81.0
		Water pollution	90.5	9.5	76.2	23.8	52.4	47.6
		Air pollution	0.0	100.0	66.7	33.3	66.7	33.3
26	Qualitative analysis	Concept of qualitative	0.0	100.0	0.0	100.0	0.0	100.0
		analysis						
		Qualitative analysis	100.0	0.0	100.0	0.0	100.0	0.0
		procedure						

Key: Examined= the topic was examined (question(s) were set to assess attainment of instructional

Not Examined= the topic was not examined (no question was set to assess attainment of instructional objectives)

Papers in Education and Development No.38 (2), 2020

The findings in Table 4 indicate that 24 (88.9%), 26 (96.3%) and 25 (92.6%) of the 27 topics in the curriculum were examined in the 2011, 2012 and 2013 Chemistry CSEE respectively. This means most of the topics in the curriculum were examined in the CSEEs. The findings also revealed that all topics and subtopics in the Chemistry curriculum were examined at least once in the years studied except for one topic on *scientific procedure*; and 2 subtopics which are *fire fighting* and *conservation energy*. The topic on *scientific procedure* is usually examined in the Continuous Assessment (CA) project work (NECTA, 2003).

Discussion of Findings

This section presents the discussion of findings of the study in accordance with the respective objectives.

Alignment in terms of cognitive complexity

The findings revealed that most of the examinations were strongly aligned with the curriculum in terms of cognitive demand. However, the findings indicated that larger percentage of the instructional objectives in the curriculum and the examination questions were set at lower levels of the Bloom's cognitive domain. Therefore, since the aim of introducing CBE in Tanzania was to produce graduates who are able to apply the knowledge and skills in real-life situation (MoEVT, 2005), then both the examination questions and the instructional objectives should put emphasis on Higher Order Cognitive Skills (HOCS). This is important because it has been acknowledged that it is assessment rather than teaching that influences students' learning and it has powerful effect on students' approaches on their

work (Bound & Falkchikov, 2006). For example, when examinations consist of knowledge questions while the instructions emphasized on problem solving skills, students tend to memorize information and ignore much of the instructions in order to pass the examinations (Kellaghan & Greaney, 2003).

The concern that most of the items in the CSEE measured achievement of the instructional objectives in curricula in Lower Order Cognitive Skills (LOCS) had also been reported in earlier studies. Caldwell and Pate (2013) in a study which investigated the effects of question format on students' performance found out that 70% of the examination questions were set at LOCS. Similarly, HakiElimu (2012) found out that 73% and 57% of the items in the Biology CSEE and Geography CSEE respectively were set at LOCS. Similar findings were obtained by Alphonce (2011) in a study that investigated the extent to which the national examinations including Biology CSEE and FTSEE were used as a tool for promoting development of higher order cognitive skills among students in Tanzania. The findings of the study revealed that 55%, 69% and 70% of the examination questions in the 2008, 2009 and 2010 Biology CSEE respectively were set at LOCS.

Alignment in terms of content coverage

The findings show that the Chemistry CSEE was strongly aligned with the Chemistry curriculum in terms of balance of representation. However, most of the topics examined in the curriculum did not reach the Webb's acceptable levels for categorical concurrence and range of knowledge correspondence. This could be attributed to the nature of the examinations and the curriculum studied because categorical concurrence and range of knowledge correspondence correspondence are influenced by the length of the examination and

curriculum. The curriculum consists of 27 topics with 306 objectives which are studied from Form One to Form Four secondary education. In addition, the questions per examination were limited to 57, 59 and 71 in the Chemistry CSEE in 2011, 2012 and 2013 respectively. As such, it could not be possible to reach the Webb's acceptable levels for categorical concurrence and range of knowledge for every topic in the curriculum.

Although the Webb's acceptable level for categorical concurrence was not met for most of the topics in the curriculum due to the reasons stated earlier, the findings in Tables 1 and 4 on the alignment in terms of content coverage revealed that most of the topics in the curriculum were examined. However, the findings show that one examination question on *extraction of aluminium metal* in the 2013 Chemistry CSEE was set out of the objectives in the curriculum. This might have imposed some effect on students' performance because classroom instructions are based on the curriculum content.

Similar findings were obtained in a related study conducted by HakiElimu (2012) on Biology CSEE. The study found that, one of the questions in the 2008 Biology CSEE on '*Risk behaviour*' and another question in the 2009 biology CSEE on '*Soil*' topic had no corresponding objectives in the Biology curriculum. According to the National Council for Accreditation of Teacher Education [NCATE] (2001), the examinations whose items were lacked corresponding objectives in the curriculum were not fair to the candidates because a fair examination ought to be constructed from the contents that candidates were guided by the curriculum to learn and practice.

The findings also indicated that some of the topics in the curriculum were overrepresented in the examinations while others were examined with few questions. Also, some of the topics were not examined at all. According to Biggs (2003), it is important for the examinations to include all the topics in the curriculum because quality of instructional activities in classroom including exposure to the teaching and learning materials and coverage of the curriculum content are determined by the nature of the examination content. This is due to the fact that some teachers tend to study the content of the examination and teach the students the contents covered in the examination (Kellaghan & Greaney, 2003). Thus, if they found out that there are topics which do not appear in the examination frequently they would not teach the topics as required. In the same vein, when students found out that there are topics in the curriculum that do not appear in the examinations frequently they are generally not motivated to study those topics (Doriye, 2008). This implies that students' performance in an examination can improve when the examination items cover all the topics in the curriculum because an opportunity to learn is a significant predictor of students' performance in the examinations (Stephen, 1997).

Other empirical studies in the same variables showed similar findings. For example, Smith (2012) conducted a study to determine the extent to which assessments in the Victorian middle years' science programme in Australia aligned with their respective curricula. The findings revealed that most of the assessment tasks studied were strongly aligned with the curricula materials. However, some of the assessment tasks did not reach the Webb's acceptable level for categorical concurrence. A related study was conducted by Webb (2002) that involved three States in USA namely: State E which included

Grades 4, 7, and 9; State F which included Grades 5 and 8; and State G which included Grades 4, 8, and 11. The findings showed that assessment of State E was strongly aligned with the standards because the acceptable level for categorical concurrence was met in all grade 7 standards; and in one of the grade 9 standard. This means that some of the assessments including those of States F and G were not aligned with their respective curriculum.

HakiElimu (2012) conducted a similar study to investigate the relationship between CSEE and curriculum objectives in Geography, Mathematics, English language and Biology for 2008, 2009, 2010, and 2011 in Tanzania. The findings showed that examinations reflected the contents of the curriculum and more than 60% of the examination questions were based on the respective subject curriculum.

Conclusion and Recommendations

The findings revealed that the Chemistry CSEEs were aligned with the chemistry curriculum in terms of content coverage. However, the items which were lacking corresponding objectives in the curriculum might have affected students' performance in the respective examination. This is because classroom instruction is guided by the curriculum. Therefore, the study recommends that setting examination questions should reflect on the curriculum in terms of content and cognitive demand. This can be achieved through appropriate use of table of specification which matches the examination items and the instructional objectives. This will ensure that each examination question corresponds to at least one of the objectives in the curriculum.

The study also recommends for improvements that involve revision of the specific objectives in the curriculum to ensure that most of the expected outcomes are set in higher levels of the Bloom's cognitive domain. This would fit well with one of the goals of introducing CBE that aimed to help learners demonstrate abilities including application of the knowledge in real- life situations (MoEVT, 2005).

References

Alphonce, R. (2011). National examinations as a tool for promoting development of higher order cognitive skills among students in Tanzania. Unpublished Master of Education in Science Education thesis, University of Dar es Salaam, Dar es Salaam, Tanzania.

Ananda, S. (2003). Achieving alignment. *Leadership*, 33(1), 18-21.

- Banda, S. (2011). Application of constructivist approach in the competencebased curriculum in secondary schools in Tanzania: a case of Chemistry subject in Songea. Unpublished Master of Education in Science Education thesis, University of Dar es Salaam, Dar es Salaam, Tanzania.
- Biggs, J. (2003). Aligning teaching and assessment to curriculum objectives. Loughborough, England: LTSN Generic centre.
- Bhola, D. S., Impara, J. C., & Buckendalh, C. W. (2003). Aligning test with content standards: Methods and issues. *Educational Measurement, Issues and Practice,* 22, 21-29.

- Boud, D., & Falchikov, N. (2006). Aligning assessment with long-term learning. Assessment and Evaluation in Higher Education, 31(4), 399 – 413.
- Bowen, G. A. (2009). Document analysis as qualitative research method. *Qualitative Research Journal, 9*(2) 27-40.
- Caldwell, D, J., & Pate, A. N. (2013). Effects of questions formant on students and items performance. *Journal of Pharmaceutical Education*, 77(4) 177-194.
- Case, J., Jorgensen, M. A., & Zucker, S. (2008). *Alignment in educational assessment*. San Antonio, TX: Pearson Education.
- Council of Chief State School Officers (2002). *Models for alignment analysis and assistance to states.* Washington, DC: Author.
- Creswell, J. W., & Plano-Clark, V. (2011). *Designing and conducting mixed methods research.* Thousand Oaks, CA: SAGE Publications.
- Doriye, M. U. (2008). An evaluation of the English language form two secondary education examination. Unpublished Master of Arts in Education dissertation, University of Dar es Salaam, Dar es Salaam, Tanzania.
- Edwards, N. (2010). An analysis of the alignment of grade 12 physical sciences examination and core curriculum in South Africa. *South African Journal of Education*, *30*, 571-590.

- Fonthal, G. (2004). Alignment of state assessments and higher education expectations: Definitions and utilization of alignment index. Laguna Hills, CA: INTEDCO.
- Fraenkel, J. R., & Wallen, N. E. (2000). *How to design evaluative research in education.* Boston, MA: McGraw Hill.
- Fredrick, J. (2012). Assessment: Designing your classes for meaningful learning. Retrieved from: https://prezi.com/vawk_poa0fw9/hocs-andlocs/
- Gall, D. M., & Borg, R.W. (2015). *Educational research: An introduction*. New York, NY: Longman.
- HakiElimu. (2012). School children and national examination who fail who? A research report on the relationship between examination practice and curriculum objectives in Tanzania. Dar es Salaam, Tanzania: Author.
- Hoingjia, M., Gavin, W., Fulmer, L., Laiang, X., Xintu, L., & Yuan, L. (2013). An alignment analysis of junior high school chemistry curriculum standards and city wide exit examination in China. New York, NY: Springer science + Business Media.
- Jacques, J. (2011). *The fundamental fair practice: Government reform 101*. Bloomington, IN: Author House.
- Kagisi, P. (2009). The use of constructivist approach in chemistry teaching and learning in O' level secondary schools: A case of selected schools in Dar es Salaam. Unpublished Master of Education in Science Education, University of Dar es Salam, Dar es Salaam, Tanzania.

- Kaira, L. T. (2010). Using item mapping to evaluate alignment between curriculum and assessment. Unpublished Doctor of Education dissertation, University of Massachusetts Amherst, Massachusetts.
- Kellaghan, T., & Greaney, V. (2003). *Monitoring performance, assessment* and evaluation in Africa. Paris, France: ADE.
- Kirei, G. T. (2009). An evaluation of the quality of continuous assessment tests: A case of selected form three terminal tests of May and November, 2007 and 2008 from Tanzanian secondary schools Unpublished Master of Education in Science Education, University of Dar es Salam, Dar es Salaam, Tanzania.
- Manyooe, L. N. (2002). On shifting strands: Exploring curriculum and assessment dichotomy. Retrieved September, 9, 2014 from www.itd.org/journal/jul04/article 01.htm
- Masyole G.P. 2011. A study on the implementation of competence based education in teaching and learning the English language in Tanzania secondary schools; a case of Dar es Salaam region. Unpublished Master of Arts in Education, University of Dar es Salam, Dar es Salaam,
- Ministry of Education and Vocational Training. (2005). Secondary education *curriculum for Tanzania Mainland*. Dar es Salaam, Tanzania: Ministry of Education and Vocational Training.
- Ministry of Education and Vocational Training. (2007). Chemistry syllabus for ordinary secondary education form I- IV. Dar es Salaam, Tanzania: Ministry of Education and Vocational Training.

- Nasstrom, G. (2008). *Measuring between standards and assessment*. Unpublished Doctoral thesis, Umea University, Umea, Sweden.
- Nasstrom, G., & Hendricksson, W. (2008). Alignment of standards and assessment: Theoretical and imperical study of methods of alignments. *Journal of Research in Educational Psychology*, 163, 667-690.
- National Council for Accreditation of Teacher Education. (2001). Aligning assessments with standards: A synthesis of guidelines from current practice adapted for use in teacher education and NCATE Accreditation. Ohio, OH: Merrill Education.
- National Examinations Council of Tanzania. (2003). *The history of NECTA.* Retrieved October, 14, 2014 from http://www.necta.go.tz/ history.htm.
- Pallant, J. (2005). SPSS survival manual: A step by step guide to data analysis using SPSS windows (12), Crown Nest, Australia: Allen and Unwin.
- Rothman, R., Slattery, J., & Vranek, J., (2002). *Benchmarking and alignment* of standard and testing. CSE Technical report 566. Loss Angeles, CA: CRESST/UCLA.
- Shemwelekwa, R. J. (2008). The effectiveness of adoption competence based education for teaching and learning mathematics in secondary schools in Tanzania. Unpublished master of Education in Science Education, University of Dar es Salaam, Dar es Salaam, Tanzania.

- Smith, R. J. (2012). Alignment of intended learning outcomes, curriculum and assessment in a middle school science program. Retrieved December, 16, 2015 from http://ro.ecu.edu.au/theses/489.
- Sireci, S. G., & Shuhong, L. (2005). Evaluating fit between test content, instruction and curriculum framework: A review of methods for evaluating test alignment. Amherst, MA: Centre for Educational Assessment.
- Stephen, F. (1997). *Emotion and management learning*. Retrieved March, 11, 2016 from journal.sagepub.com/doi/10.1177/1350507697281002.
- Stuart, A. (2012). Implementation of competence based curriculum in primary schools and its challenges in the teaching and learning process in Muheza District. Unpublished Master's thesis.University of Dar es Salaam, Dar es Salaam, Tanzania.
- Timothy, V. A. (2011). An assessment of competence-based curriculum implementation teaching and learning ordinary level physics. The case of Singida municipality. Master's thesis. University of Dar es Salaam, Dar es salaam, Tanzania.
- Tyler, R.W. (2013). *Basic Principles of Curriculum and Instruction*; USA: University of Chicago Press.
- Webb, N. L. (1997). Criteria for alignment of expectations and assessment in Mathematics and science. Washington, DC: National Institute for Science Education.
- Webb, N. L. (2002). An analysis of alignment between mathematics standards and assessment for the three states. A paper presented at

the American Educational research Association Annual meeting in New Orleans, Louisiana, April 1-5, 2002.

Webb, N. L. (2005). Issues related to judging the alignment of curriculum standards and assessments. A paper presented in an *annual meeting* of the American educational research association meeting, Montreal, April 11, 2005.