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Abstract 

In Kenya, health provision faces challenges of high poverty levels, high HIV-AIDS, 

malaria prevalence and poor road infrastructure. Using data from 14 county referral 

hospitals for the period 2012-2016, this study decomposed the DEA output-oriented 

Multi-factor Productivity Index (MPI) to identify the causes of productivity growth in 

Kenya’s health sector. The findings show the mean MPI growth for the period was 

2.69%, which is driven by a technical change of 3.19%, but dampened by a decline in 

technical efficiency change of 0.18%, scale efficiency change of 0.07% and pure 

technological change of 0.15%; with the technical change being scale-augmenting. The 

study finds RTS to be greater than STC, with both being less than one. Thus, hospitals 

could enhance productivity by adjusting their scales towards technological optimal 

scale size (TOPS), and addressing management challenges that debilitate the synergy 

between technology and human resource capacity. 

Keywords: decomposition, output-oriented, Malmquist total factor productivity, 

hospitals, Kenya. 

 

 

1. Introduction 

Total factor productivity grew slowly over time across different regions of the world 

in the last two decades in contrast to the rapid technological growth experienced in 

the same period (Foster & Verspagan, 2017). Asia experienced a relatively higher 

total factor productivity growth compared to Europe, America and Sub-Saharan 

Africa (SSA) (ibid.). America and SSA have experienced a decline in total factor 

productivity over time, with a slight growth in the last decade (ibid.). In Kenya, 

total factor productivity growth has been low, rising immediately after 

independence, and peaking at around 1.7% per annum in the mid-seventies. It has, 

however, experienced a steady decline to less than 1% in 2000 (Onjala, 2002). The 

overall trend has been a slow growth of below 1% despite the rapid technology 

uptake as demonstrated by the Internet and mobile telephone penetrations. 

 

The concept of total factor productivity was formally introduced into economic 

analysis by the neoclassical economists in the writings of Solow (1956, 1957). Solow 

emphasized that residual growth was not captured by changes in factor inputs 

(labour and capital), but rather by the different intensity of the use of capital, which 

he referred to as total factor productivity (TFP), or multifactor productivity (MFP). 

Total factor productivity measures the ratio of total output to the aggregate 
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measure of all inputs used (Coelli et al., 2005). The term TFP and MFP have been 

used interchangeably in the literature, though TFP is a misnomer as it refers to all 

factors of production being combined as inputs simultaneously (ibid.). Such a state 

of production is rarely attained. TFP is, therefore, a function of: (i) production 

technology, (ii) efficiency of the production process (efficiency change), (iii) scale of 

operation, and (iv) managerial skill-set that maximizes the synergy between factor 

inputs (Sickles & Zelenyuk, 2018).   

 

Total factor productivity change (growth/regress) identifies the change in TFP over 

time due to the usage of factor inputs to produce certain levels of output. This change 

occurs through an evolutionary process, in which processes with poor performance are 

replaced with those with better performance (Hulton, 1986). These process 

improvements are achieved through organisational structural change, management 

system upgrades, technological changes, works management improvements, 

manufacturing technique upgrades, and changing competitive structures (ibid. 1986). 

 

This paper focused on the Lake Region Economic Block (LREB), which comprises 14 

counties around Lake Victoria, in Kenya. The region has a population of 13.7m 

people, with a mean hospital of 1.2 per 100,000; and an average healthcare worker 

of 1.5 per 100,000 persons. The region is characterized by poor access to healthcare 

services, with the average distance to healthcare facilities being greater than the 

recommended 5km from where a population resides. The road infrastructure and 

other transport logistics are poor, especially during the two rainy seasons (KDH, 

2014). This region has a high poverty index with over 65% of the population being 

classified as earning less than US$1 a day, with the majority mainly engaged in 

traditional subsistence farming, petty trading and animal husbandry. Landholdings 

average less than one acre per household. Households are largely female-headed due 

to proportionately high male mortality rates. The women are predominantly engaged 

in the low-paying informal sector and unpaid labour as caregivers.  There is a high 

prevalence of HIV-AIDS and malaria, hence a low labour force participation rate in 

income-generating activities (KDH, 2014). Also, the area is food-insecure due to 

climate change and variability that is caused by environmental degradation as 

settlements and light industrial activities proliferate around the Lake Region (World 

Bank, 2016). Thus, the resulting health challenges and vulnerability exert extra 

pressure on the few hospitals in the region. Without efficient and productive use of 

the available health resources, these health challenges could potentially overwhelm 

the health system in the region (World Bank, 2016). 

 

Thus, this study aims to identify the components of such changes in TFP to 

underscore their interactions and possible policy imperatives. This objective helps 

explain the incongruity between rapid technological progress, advancement in 

skills, and the slow growth in total factor productivity in Africa, and Kenya in 

particular. Such a decomposition is particularly of interest in the resource-scarce 

health sector in developing countries experiencing high poverty, unemployment 

and disease burdens, with low insurance uptakes. Under such a scenario, the 

disease burden rests heavily on public health providers (governments). 
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Therefore, the study has decomposed the total factor productivity changes and 

provided empirical evidence for areas of intervention to enhance the productive use 

of the scarce health resources, geared at enhancing the provision of health care. In 

addressing these issues, the paper contributes to the empirical evidence on how 

technology and productive use of scarce resources can improve the overall health 

provision in Kenya for better productivity and economic wellbeing. 

 

2. Theoretical Framework  

Among the earliest studies to analyse productivity growth was Solow (1957). 

Solow’s (1957) model is summarized as:  

𝑄𝑡 = 𝐴𝑡𝐹(𝐾𝑡 , 𝐿𝑡)                   (1) 

Where 𝐴𝑡= total factor productivity, which measures the shift in the production 

function at given levels of labour (L), capital (K) and technology set.  

 

This total factor productivity (𝐴𝑡) is measured using a non-parametric index 

number (Hulton, 1986). Thus, the approach does not impose a specific form on the 

production function.  Hence, equation (1) could be converted to a (logarithmic) 

differential of the production function as: 
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That is, the growth rate of real output can be factored out into the growth rate of 

capital and the growth rate of labour, weighted by their output elasticities and the 

growth rate of the Hicksian efficiency index (Hulton, 1986). The growth rates of 

capital and labour, weighted by their respective elasticities, represent movements 

along with the production function (movement towards technological optimal 

production scale); while the Hicksian efficiency index measures the shift of the 

production function (Hulton, 1986). 

 

By total differentiation of equation (2), Solow (1957) showed that the Hicksian 

efficiency index is a residual growth rate of output that is not accounted for by the 

growth in inputs (Hulton, 1986), which is given as: 
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Thus the Solow residual (ℜ𝑡) = the Hicksian index.  Solow concluded that, 

theoretically, this growth rate was equal to the growth rate of the Hicksian 

efficiency parameter (
𝐴𝑡

∗

𝐴𝑡
) (ibid.). 

 

Abramovitz (1956) referred to this residual as a measure of the degree of our 

‘ignorance.’  “This ignorance could be wanted (technical, scale and organizational 

innovation) or unwanted like (measurement errors, omitted variables, aggregation 

bias, and model misspecification)” (ibid: 10–11). In the hospital case, we assume 
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that the unwanted ignorance is minimal, and hence attribute the Solow residual to 

technical, scale and organizational innovation (Zofio, 2007). Therefore, this 

residual is captured by technical change (TC), technical efficiency change (TEC), 

pure technological change (PTC), and the scale change (SC) components in the 

decomposition of total factor productivity growth (Zofio, 2007).  The Solow model 

was criticized on grounds that it assumed constant returns to scale while 

production takes place under variable returns to scale (Hulton, 1986). Secondly, 

the residual is closely linked with the assumption of marginal cost pricing. Finally, 

the formulation is only valid if innovation improves the marginal productivity of 

all the inputs proportionally (Sickles & Zelenyuk, 2018). 

 

3. Technology and Distance Functions 

The study analyses the output-oriented Malmquist productivity index (MPI) for a 

panel of 14 hospitals over five years. In terms of technology and distance function, 

this can be summarized as a case of a panel of I =1… 14 DMUs analyzed for a time 

period t =1… 5 years. These DMUs transform input vector 𝑥𝑖
𝑡 = (𝑋𝑖

𝑡 , . . . , 𝑋𝑁𝑖
𝑡) ∈ ℜ+

𝑁 

into output vector𝑦𝑖
𝑡 = (𝑌𝑖

𝑡 , . . . , 𝑌𝑀𝑖
𝑡) ∈ ℜ+

𝑀. The feasible technology set may therefore 

be presented as a combination of feasible input-output, as: 𝑆𝑡 = {(𝑥𝑡 , 𝑦𝑡): 𝑥𝑡  can 

produce 𝑦𝑡} (Coelli et al., 2005). From this framework, a valid representation of the 

technology from the 𝑖𝑡ℎ DMU is given by the Shephard’s output distance function 

𝐷0
𝑡(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) = 𝐼𝑛𝑓𝜃{𝜃 > 0: (𝑥𝑖

𝑡 , 𝑦𝑖
𝑡/𝜃) ∈ 𝑆𝑡 , which is linearly homogeneous of degree +1 

in y, and non-increasing in x. If 𝐷0
𝑡(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) = 1, then the focal DMU is said to be 

efficient, belonging to the best practice technology frontier; otherwise inefficient 

and outside the best practice technology frontier (ibid.). 

 

This technology frontier is given by the subset: 

𝐼𝑠𝑜𝑞. 𝑆𝑡(𝑥, 𝑦) = {(𝑥, 𝑦): 𝐷0
𝑡(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) = 1}                    (4) 

 

If 𝐷0
𝑡(𝑥𝑖

𝑡 , 𝑦𝑖
𝑡) < 1, then a radial expansion of the output vector 𝑦𝑖

𝑡  is feasible within the 

production technology for the observed input level 𝑥𝑖
𝑡, and the evaluated firm is said 

to be inefficient (ibid.). If period t technology were to exhibit global returns to scale, 

then the technology 𝑆𝑡 implies a mapping 𝑥 → 𝑦 that is homogeneous of degree +1, 

i.e., (𝑥, 𝑦) ∈; and implies (𝜆𝑥, 𝜆𝑦) ∈ 𝑆𝑡  for all 𝜆 > 0: Such technology is represented by: 

�̆�𝑡 = {(𝜆𝑥𝑡 , 𝜆𝑦𝑡): (𝑥𝑡 , 𝑦𝑡) ∈ 𝑆𝑡, 𝜆 > 0                   (5) 

 

This implies that the output distance function is defined on a linearly homogeneous 

technology, and is homogeneous of degree -1 in input (Sickles & Zelenyuk, 2018). 

 

4. Decomposition of MPI 

Productivity growth results from improved utilization of factor inputs due to input-

specific, organization, environmental or market-related features. It could be the 

result of the synergy between parts, or all of these features, or their components. 

In this decomposition of productivity growth, the paper focused on a firm’s 

behaviour around the efficiency frontier, and what happens to this frontier over 
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time. This frontier could shift as a result of technology changes (TC). In this case, 

technology could be scale-augmenting or reduced. As a firm adjusts its scale of 

operation in response to both internal and external undercurrents, there is a need 

to adopt appropriate technology, which would then be a firm’s response to 

exogenous factors. This is possible when a firm is operating under variable returns 

to scale. A firm, in its interactive environment, would strive to catch up with those 

operating on the efficiency frontier, thus improving its productivity growth (TEC). 

This catch-up-caused growth would be compounded by the frontier shift due to 

technology growth. Firms on the efficiency frontier may not necessarily be 

operating at the technological optimal production scale (TOPS). As such, such firms 

would be adjusting their operations in response to competitive (peer) forces to 

operate at TOPS. This adjustment would result in scale adjustment (SEC), thereby 

generating further growth.  The role of management in the whole process is to 

maximize the synergy between these factor inputs. They could achieve this through 

their innovativeness (PTC). Thus, productivity growth is a product of all these 

forces, and may be expressed as: MPI = TC × TEC × SEC × PTC. 

The various decompositions discussed are, therefore, an attempt to capture these 

forces as far as possible in a manner that is close to the reality of a firms’ operating 

environment. Caves, Christensen and Diewert (1982) (CCD) introduced the 

Malmquist total factor productivity index (MPI) as a tool for efficiency analysis, 

where they compared the performance of a firm in period 2 using period 1 as the base 

under constant returns to scale. The index was therefore decomposed as: 

𝑚0
1(𝑥𝑖

1, 𝑦𝑖
1 , 𝑥1

2, 𝑦𝑖
2) =

𝑑0
1(𝑥𝑖

2, 𝑦𝑖
2)

𝑑0
1(𝑥𝑖

1, 𝑦𝑖
1)

= 𝑇𝐶0
1,2(𝑥𝑖
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2) × 𝑇𝐸𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1, 𝑥𝑖
2, 𝑦𝑖

2)                   (6) 

 

Where 𝑚𝑜
1 refers to the output-oriented Malmquist index for period 2 output to 

the base period,  while 𝑑0
1 is the output distance function for period 2 to base 

period technology (Coelli et al., 2005). 

 

This index decomposed productivity change into two components: technical change 

(TC), and technical efficiency change (TEC). Whereas 𝑑0
1(𝑥𝑖

2, 𝑦𝑖
2) represents a mixed 

period distance function that compares period 2 output to the base period 

technology (Coelli et al., 2005; Fare, et al., 1989), 𝑇𝐶0
1,2(𝑥𝑖

2, 𝑦𝑖
2) captures the shift in 

technology between the two periods concerning the actual best-practice frontier. 

The second part of the equation 𝑇𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) (technical efficiency change), 

measures the change in relative efficiency, i.e., how far actual observed production 

deviates from the maximum potential production (Fare et al., 1989). 

This conceptualization did not take into consideration the proportionality property of 

being homogeneous of degree -1 in inputs and +1 in output (equation 5); and also it 

ignored the effect of returns to scale (RTS) on productivity changes (Sickles & 

Zelenyuk, 2018). Hence, the Caves, Christensen and Diewert’s (1982) decomposition 

was criticized for giving an imprecise measure of productivity change as it ignored the 

scale factor and considered the actual best technology set (Sickles & Zelenyuk, 2018).     
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Fare et al. (1989) sought to address the weaknesses of the Caves, Christensen and 

Diewert’s (1982) decomposition by proposing a decomposition of MPI that took into 

account the benchmark technology as opposed to the actual best-practice 

technology set. By indirectly defining the MPI concerning constant returns to scale 

cone-technology, the index imposed a technology representation that allowed for a 

comparison of a firm’s productive performance to a technology optimal productive 

scale (Sickle & Zelenyuk, 2018). 

 

According to Forsund, Lovell and Schmidt (1980), the proportionality property was 

critical to determining whether an index qualified as MPI. This property stated 

that, if outputs were to be increased in the same proportion between periods 1 and 

2, while inputs remained constant in the same periods, then the productivity index 

ought to increase by the same proportion (Forsund et al., 1980). Conversely, a 

reduction in inputs in the same proportion—holding outputs constant—should lead 

to an equal increase in the productivity index. This property made it essential that 

the distance function be linearly homogeneous of degree +1 in output and -1 in 

input (equation 5) (Sickle & Zelenyuk, 2018). Thus, Fare, Grosskopf and Lindgren’s 

(1989) decomposition is given as: 

 

�̆�0
1(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) = 𝑃𝑇𝐶0

1,2(𝑥𝑖
2, 𝑦𝑖

2) × 𝑇𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

1, 𝑦𝑖
2)                    (7) 

 

The difference between Fare, Grosskopf and Lindergren’s (1989) decomposition 

and the Caves, Christensen and Diewert’s (1982) decomposition is that in the 

former, the technical change term produced potential productivity change between 

DMUs operating at the technology optimal productive scale-size (Ray & Desli, 

1997). Hence, 𝑃𝑇𝐶0
1,2(𝑥𝑡

2, 𝑦𝑡
2) measures technical change concerning the virtual 

supporting cone-technology, which implies that it can only measure technical 

change when constant returns to scale are assumed (Ray & Desli, 1997). The 

efficiency change 𝑇𝐸𝐶0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) term now measures how far a DMU is from 

the benchmark cone productivity, and therefore relates to both technical and scale 

change terms (Ray & Desli, 1997). 

 

In a later revision, Fare, Grosskopf and Lovell (1994) sought to incorporate the 

effect of returns to scale, 𝑅𝑇𝑆0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2). They asserted that productivity 

change is determined by scale changes that can be captured by returns to scale 

(Fare et al., 1994). Therefore, they redefined the MPI by using the virtual cone-

technology and scale component as: 

�̆�0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) = 𝑃𝑇𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1 , 𝑥𝑖
2, 𝑦𝑖

2) × 𝑇𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

1, 𝑦𝑖
2) 

× 𝑆𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)                   (8) 

 

However, this decomposition was criticized by Lovell (2003) on account that it 

ignored the shift in the best practice frontier. Hence, it could lead to exaggeration 

or underestimation of the scale efficiency value. 

         



 Samuel O. Oyieke & Innocent J. Karamagi 

Tanzanian Economic Review, Volume 12, Number 2, 2022 

108 

Ray and Desli (1997) criticized both the Caves, Christensen and Diewert’s (1982) 

and the Fare, Grosskopf and Lindgren’s (1989) decompositions on grounds that, in 

the case of scale efficiency change, a true production technology ought to exhibit 

variable returns to scale (VRS). Therefore, they proposed an alternative 

decomposition that had technical change measured relative to the VRS frontier, 

and a modified scale change component (return-to-scale) that was not exactly 

equivalent to the scale efficiency change of Fare, Grosskopf and Lindgren (1989). 

They did this by introducing a variant that measured how far a firm is from the 

benchmark cone productivity (Ray & Desli, 1997). This decomposition, therefore, 

comprised both technical and scale efficiency, such that: 

�̆�0
1,2(𝑥𝑖

1, 𝑦𝑖
1 , 𝑥𝑖

2, 𝑦𝑖
2) = 𝑇𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1, 𝑥𝑖
2, 𝑦𝑖

2) ×. 𝑇𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) 

×. 𝑅𝑇𝑆0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)                   (9) 

Fare, Grosskopf and Lovell (1994) had earlier argued that  𝑆𝐸𝐶0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) =

𝑅𝑇𝑆0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)/ 𝑆𝑇𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1 , 𝑥𝑖
2, 𝑦𝑖

2). Hence,  treating returns to scale change 

to represent the scale efficiency may lead to incorrect identification of the scale 

properties of the essential technology. Therefore, if one accepts a decomposition 

that includes the acceptable notion of effective technical change at a firms’ input 

scale, and not the potential productivity change at the optimal level, then one 

loses efficiency change term for a returns to scale component (Fare, Grosskopf & 

Lovell, 1994). 

      

Simar and Wilson (1998) offered an alternative decomposition of the Malmquist 

productivity index, in which they added the scale efficiency change term that 

considers a firms’ optimal scale (benchmark) technology as presented in Fare, 

Grosskopf and Lovell (1994). This addition requires a term in the index to reflect 

the scale-bias of the technical change 𝑆𝑇𝐶0
1.2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) (Simar & Wilson, 1998). 

They, therefore, proposed a recasting of the pure technical change as: 

𝑃𝑇𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1 , 𝑥𝑖

2, 𝑦𝑖
2) = 𝑇𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1, 𝑥𝑖
2, 𝑦𝑖

2) × 𝑆𝑇𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)                  (10) 

This decomposition took into account the effect of scale-bias in the pure technical 

change by indicating that it is a product of technical change, and the scale-bias of 

technical change. Thus, the MPI is presented as: 

�̆�0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) = 𝑇𝐶0

1,2 × 𝑇𝐸𝐶0
1,2 × 𝑆𝐸𝐶0

1,2 × 𝑆𝑇𝐶0
1,2        (11)      (Zofio, 2007). 

 

Thus, if the DMU experiences efficiency growth between the base and the focal 

period, then 𝑆𝐸𝐶0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) >1; while if the DMUs scale-bias technical change 

works against its inputs, then 𝑆𝑇𝐶0
1.2(𝑥𝑖

1, 𝑦𝑖
1 , 𝑥𝑖

2, 𝑦𝑖
2) >1 (Zofio, 2007). Such a situation 

only occurs if returns to scale make a positive contribution to productivity change, 

that is, 𝑅𝑇𝑆0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) >1; which is larger than the negative change in the 

scale-bias of the technical change (ibid.). Conversely, if a scale efficiency gain is 

accompanied by a favourable change of the scale-bias technical change 

𝑆𝑇𝐶0
1.2(𝑥𝑖

1, 𝑦𝑖
1 , 𝑥𝑖

2, 𝑦𝑖
2) <1, then the presence of increasing returns to scale 

𝑅𝑇𝑆0
1,2(𝑥𝑡

1, 𝑦𝑡
1, 𝑥𝑡

2, 𝑦𝑡
2) <1 dampens the effects of such efficiency gains (ibid.). 
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This decomposition is preferred in cases where scale is expected to play a role in 

explaining productivity growth (Sickles & Zelenyuk, 2018). This is because, this 

decomposition includes a scale-bias of technical change; thereby allowing a 

comprehensive analysis of the general framework of productivity change, efficiency 

change, and technological change: both from technical and scale perspectives 

(Sickles & Zelenyuk, 2018). It, therefore, affords a realistic coalescing structure for 

the classification of technical and efficiency changes (Sickles & Zelenyuk, 2018). 

 

Scale efficiency compares the highest productivity attained by a DMU at the actual 

scale to the highest productivity observed at the optimal scale (Sickles & Zelenyuk, 

2018). Thus, a scale efficiency change would compare scale efficiency in both the 

base and the comparison periods. Therefore, it is possible that in moving from the 

base to the comparison period, a DMU may improve its productivity by the use of 

returns to scale offered by the benchmark technology, or a scale change due to 

expansion of operations (Balk, 2001). The benchmark technology may also change 

from the base period to the comparison period during the same time to 

accommodate the expanded operations (Balk, 2001). 

 

Taking the period 2 technology to measure returns to scale, and the base period (1) 

to measure the scale-bias of the technical change, then: 𝑆𝐸𝐶0
1,2 =

 𝑅𝑇𝑆0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)/ 𝑆𝑇𝐶0

1,2(𝑥𝑖
1, 𝑦𝑖

1, 𝑥𝑖
2, 𝑦𝑖

2) (Zofio, 2007). Therefore, if 𝑅𝑇𝑆0
1,2 > 1, 

then the DMU’s performance improves on a scale concerning the base period 

productivity benchmark by exploiting increasing returns to scale, and getting 

closer to the maximum potential scale size (ibid.). On the contrary, if 𝑅𝑇𝑆0
1,2 <

1, then the DMUs move away from the optimal scale. If, however, 𝑅𝑇𝑆0
1,2 = 1, then 

the DMU performance change is scale-neutral (ibid.). 

 

However, these changes need to be considered alongside changes in the scale-bias 

of technical change (𝑆𝑇𝐶0
1,2). If 𝑆𝑇𝐶0

1,2 > 1, then the positive effect on productivity 

is only possible if 𝑅𝑇𝑆0
1,2 > 1 and significant, to counterbalance the negative effect 

exerted, 𝑆𝑇𝐶0
1,2 > 1 (ibid.).  On the contrary, if a scale gain is accompanied by a 

positive scale-bias-change of technical change (𝑆𝑇𝐶0
1,2 < 1), then the existence of 

increasing returns to scale dampens such scale gains (ibid.). 

 

If, however, 𝑅𝑇𝑆0
1,2 < 1, then scale gains are still possible so long as the positive 

scale-bias of technical change is not counterbalanced by those lowering returns to 

scale, i.e., 𝑅𝑇𝑆0
1,2 > 𝑆𝑇𝐶0

1,2; and both terms are less than one.  Hence, the issue is 

whether technical change is scale-augmenting or reducing, or whether it results in 

increasing returns to scale, or decreasing returns to scale (ibid.). 

 

In health, the role of technical change, technological innovation and scale changes 

are critical to delivering quality and affordable healthcare, since modern health 

services are technology-intensive, and the modes of health care delivery are ever-

changing as a result of technical changes and technological innovations. This 
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technological innovation would involve both products (namely, self-diagnostic kits 

and service delivery using modern technological platforms), and process 

innovations (namely, modern technology). Technological changes are endogenous, 

that is to say, they are a health sector’s response to healthcare challenges in a 

sector characterized by rapid technological changes (Sloan & Hsieh, 2017). Thus, 

given the same input resources, the performance difference would be a result of an 

innovative use of this resource. Healthcare providers, therefore, need to leverage 

technology to improve service provision. 

   

5. Empirical Literature on Productivity Change 

Table 1 selectively summarizes the empirical literature. These studies were 

purposively selected to incorporate only those that used the DEA Malmquist total 

factor productivity index. The reviewed empirical studies demonstrate that 

productivity growth has elicited considerable interest across the world, as shown 

by the spectrum of the studies. 

 

These studies are limited to the Caves, Christensen and Diewert’s (1982) (CCD) 

decomposition, thus failing to capture adequately the effects of returns to scale and 

the relationship between scale and technology changes. In Kenya, there has been 

only one documented study of this nature (Kirigia et al., 2007), although 

decomposition is critical for a resource-scarce economy such as that of Kenya, and 

particularly on the health sector. Issues of low factor productivity growth and rapid 

technological innovation have been particularly evident in the last decade, yet no 

study has been documented in Kenya with this focus. 

  

6. The Empirical Model 

The current study adopts the output-oriented Malmquist total factor productivity 

index since hospitals in Kenya have little control over inputs because they receive 

them from the government, based on the government’s allocation policy. The study 

adopted Simar and Wilson’s (1998) decomposition, with the modifications proposed 

by Zofio (2007) and Sickles and Zelanyuk (2018), which defined pure technical 

change as (STC × TC) to account for managerial discretion. This model would be 

more representative of the operations of the counties’ referral hospitals in Kenya 

during this transition phase (2012–2016). Thus, the model is presented as: 

�̆�0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) = 𝑇𝐶0

1,2 × 𝑇𝐸𝐶0
1,2 × 𝑆𝐸𝐶0

1,2 × 𝑆𝑇𝐶0
1,2

       (12)  (Zofio, 2007). 

 

Since the MTFP index measures change for either period 1 or period 2 technology, 

the Index is therefore the geometric mean of the change for the two periods’ 

technology. It is given as: 

 

𝑚0
1,2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2) = [{𝑚0

1(𝑥𝑖
1, 𝑦𝑖

1 , 𝑥𝑖
2, 𝑦𝑖

2)} × {𝑚0
2(𝑥𝑖

1, 𝑦𝑖
1, 𝑥𝑖

2, 𝑦𝑖
2)}]0.5     (13) (Zofio, 2007). 

 

The above Malmquist index requires the computation of four distance functions:  

𝑑0
2(𝑦𝑖

2, 𝑥𝑖
2), 𝑑0

1(𝑦𝑖
1, 𝑥𝑖

1), 𝑑0
1(𝑦𝑖

2, 𝑥𝑖
2), and 𝑑0

2(𝑦𝑖
1, 𝑥𝑖

1)               (Coelli et al., 2005). 
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Table 2: Variables Description and Data Sources 

Variable Description and Measurement Data Sources 

Medical staff Consists of doctors, nurses both 

registered and community health 

nurses, clinical officers medical officers 

of health and laboratory technicians.  

Individual hospitals’ 

published  reports 

Number of 

hospital beds 

Hospital beds and cots as at the end of 

every financial year.  

Individual hospitals’ 

published reports. 

Outpatient 

department visits 

All outpatient cases including repeat 

visits recorded for a given year. 

Individual hospitals’ 

published reports. 

Deliveries A total number of maternity cases in the 

hospitals per year. 

Individual hospitals’  

reports. 

Total inpatient 

admissions 

A total number of admissions in a given 

year. 

 Individual hospitals’ 

published reports. 

Bed occupancy 

rate 

(Inpatient days/ bed days)X100. Where 

inpatient days=admissions X ALOS, 

and bed days=number of beds X 365(6) 

Individual hospitals’ 

published reports  

The average 

length of stay 

ALOS=Discharge days for all 

services/total discharges + deaths  

Individual hospitals’  

published reports 

Teaching status This a dummy variable taking a value of 

1 if a teaching hospital and 0 if not 

 Individual hospitals’ 

published reports 

Catchment 

population 

The population of a given county KNBS (GOK). 

Health inefficiency (1 − 𝑉𝑅𝑆𝑇𝐸)1 DEA technical efficiency,  

estimated from research 

data. 

Source: Compilation by Authors 

 

7. Presentations and Discussion  

7.1 Descriptive Statistics 

Tables 3 and 4 provide the descriptive statistics of the data to show the distribution 

and dispersion around the central tendencies and measures of dispersion. Table 3 

shows how the efficiency variables are distributed within a defined range. It, 

therefore, intends to give the reader a birds’ eye view of the sample data. 

 
Table 3: Descriptive Statistics 

Descriptive Statistics 

  

 

 

N Min Max Mean Std. Dev Skew  Kurt  

Stat Stat Stat Stat Std. Error Stat Stat Std.  

Error 

Stat Std.  

Error 

Beds 70 124 365 218.37 9.257 77.448 .716 .287 -.746 .566 

Outpatients 70 9600 46375 17788.29 1096.545 9174.357 1.968 .287 2.883 .566 

Medical Staff 70 53 350 139.86 9.897 82.804 1.359 .287 0.399 .566 

Deliveries 70 1108 4068 2399.87 108.076 904.230 .191 .287 -0.405 .566 

Source: Authors’ Computations from the Research Data. 

 
1 The VRS_TE scores are derived from the DEA output oriented technical efficiency scores reported in the Thesis 

submitted to the University of Dar es Salaam titled “Technical Efficiency and Total Productivity of County Referral 

Hospitals in Kenya: 2012-2016” from where this paper is extracted. 
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Table 4 : Interquartile Distribution of the Vital Statistics 

Variable Min. 1st Qu. Median Mean 3rd Qu. Maximum 

BED 124 158 192 218.4 250 365 
OPD 9,600 12,533 14,530 16,559 18,222 35,640 

MSTAFF 58 86.25 102.50 142.20 172.25 350 
DELIVERIES 1,108 1,480 2,262 2,400 3,315 4,068 

 

Source: Authors’ computations from Research Data 

 

7.2 Estimations and Discussions 

The distance function takes a value less than—or equal to—one (1) if the output 

vector is an element of the feasible production set. Otherwise, the function takes a 

value greater than one (1) if the output vector is located outside the feasible 

production set. In this analysis, the average output distance function is less than 

one (1), implying that the output vector is an element of a feasible production set. 

 

Table 5 presents a summary of the geometric mean of the decomposition of MPI 

into its parts, showing how these parts have affected the MPI. 

 
Table 5: Geometric Means of the MPI and its Components  

per Referral Hospital (2012-2016): 

Hospital MPI TEC TC PTC STC SEC          RTS 

1 1.0561 1.0839 0.9796 0.8245 0.8417 1.0048 0.8457 
2 1.0255 1.0000 1.0255 1.0000 0.9751 1.0000 0.9751 
3 0.9589 1.0000 0.9596 1.0000 1.0421 1.0000 1.0421 
4 0.9797 0.9510 1.0317 0.9714 0.9416 0.9788 0.9216 
5 1.0728 0.9840 1.0897 1.0000 0.9177 0.9788 0.8982 
6 0.7503 0.9648 1.0515 0.9949 0.9462 0.9840 0.9311 
7 1.0094 0.9517 1.0676 0.9838 0.9215 1.0078 0.9287 
8 1.0614 0.9781 1.0859 1.0000 0.9210 0.9671 0.8907 
9 1.0458 1.0208 1.0226 1.0134 0.9910 0.9782 0.9694 
10 1.0839 1.0012 1.0825 1.0000 0.9238 1.0070 0.9303 
11 1.0048 1.0123 0.9965 0.9831 0.9866 1.0012 1.0156 
12 1.0069 1.0114 0.9980 0.9926 0.9946 1.0294 1.0241 
13 1.0167 1.0152 1.0063 1.0011 0.9948 1.0127 1.0074 
14 1.0463 1.0000 1.0463 1.0000 0.9558 1.0000 0.9558 

Note: 2012 is the base year. Hospitals have been assigned codes to conceal 
their identity as part of the ethical consideration. 

Source: Authors’ Computations from Research Data using R statistical 
software 

 

7.2.1 Productivity Changes (MPI) 

The study reports productivity gains for the period 2012–2016 for most of the 

county referral hospitals (78.6%). This productivity gain was driven by technical 

change and technical efficiency change. However, it was dampened by pure 

efficiency change and scale efficiency changes as discussed in the relevant sections. 

 

7.2.2 Technical Efficiency Change (TEC) 
There were six hospitals (42.86%) with efficiency change greater than one (1). This 

implies that there was a catching-up of these hospitals (ID 1, ID 9, ID 10, ID 11, ID 
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12, and ID 13) with their peers on the efficiency frontier. There were, however, 5 

hospitals (35.71%) with an efficiency change of less than one (1), implying that 

these hospitals (ID 4, ID 5, ID 6, ID 7 & ID 8) were moving away from the efficiency 

frontier. There was an efficiency decline from 1.0254 in 2013 to 1.0122 in 2016 

(1.32%), implying that the rate at which inefficient hospitals were catching up with 

their efficient peers declined throughout this period.  This decline was larger for 
this sample in 2013–2014 (8.76%).    

       

7.2.3 Technical Change (TC) 

In terms of individual hospitals, there were 10 hospitals (71.43%) (ID 2, ID 4, ID 5, 

ID 6, ID 7, ID 8, ID 9, ID 10, ID 13, and ID 14), where there was technical progress 

(outward shift in the frontier). There were, however, 4 hospitals (28.57%) where there 

was technical regress (inward shift in the frontier). This result shows that the main 

driver of productivity growth in this period was technical progress, following the 

implementation of the devolved system, which necessitated the upgrading of district 

hospitals to county referral hospitals, and considerable technology upgrades. The 

technical progress reported by the majority of the hospitals (71.43%) could have 

theoretically arisen from the application of modern technology, enhanced skill-set, 
improved hospital equipment, and infrastructure. The source of this technical 

progress was, however, not investigated in this study. 

 

7.2.4 Scale-bias Technical Change (STC) 

In 92.9% of the hospitals, the scale-biased technical change was less than one (1) 

(STC<1), implying that the scale-bias of the technical progress had a positive effect 

(the technical progress is input augmenting).  However, this positive effect was 

counterbalanced by the negative scale change effect resulting in six of the county 

referral hospitals (42.86%) experiencing a positive scale change effect. 

 

7.2.5 Pure Technical Efficiency Change (PTC) 

Many DMUs employ trained managers to create synergy in resource usage (surplus 
value). Managerial inefficiency was reported in 6 hospitals (42.9%) where pure 

technical efficiency change was negative. The role of the management was only 

input augmenting in 2 hospitals (14.3%). In the remaining six hospitals (42.9%), 

the management’s role was productivity neutral. There was an overall decline in 

the pure technical efficiency of 1.45% in the period 2013–2016. This meant that the 

contributions of management and operational practices to productivity declined. In 

2014, PTC regress was 0.9676, which means that management and operational 

practices contributed negatively to hospital productivity. The mean PTC for the 

period was 0.9985, with a maximum of 1.3227 and a minimum of 0.8334, which 

confirmed the management challenges facing the health sector as illustrated by the 

number of financial and human resource management challenges. 

 
7.2.6 Scale Efficiency Change (SEC) 

In 42.86% of the referral hospitals, scale efficiency was greater than one (1), which 

means that in these hospitals the scale of operations contributed positively to 

productivity growth, and these hospitals were moving towards the optimal scale 

size. In 21.43% of the county referral hospitals  (ID2, ID3 & ID14), the scale change 
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was one (1); that is to say, there was no scale change in these hospitals, thus no 

effect on productivity change and no movement towards or away from the optimal 

scale size. In 35.7% of the hospitals, scale contributed negatively to productivity 

growth, with these hospitals moving away from the optimal scale size since the 

negative RTS was smaller than the positive influence of the STC. 

 
7.2.7 Returns to Scale Changes (RTS) 

In 71.4% of the hospitals, RTS was less than one (1), implying that the performance 

of these hospitals declined on a scale concerning the base period; and the hospitals 

were moving away from the optimal scale size. This period witnessed scale 

inefficiency of hospitals partly explained by the euphoria of devolution 

characterized by the upgrading of the district level hospitals to county referral 

hospitals, resulting in improved access; while other filter facilities may have 

witnessed a reduced pressure. In 28.57% of the hospitals, the RTS >1, meaning 

that the performance of these hospitals improved the scale relative to the base 

period; and they moved towards the optimal scale size. 

 

Table 6 gives a summary of the geometric mean of the decomposition of annual 
total factor productivity growth for all the hospitals decomposed into the various 

components for the period 2012–2016, with 2012 as the base period. 

 
Table 6: Decomposition Of Annual Total Factor  

Productivity Change (Geometric Mean) 

Year MPI TEC TC PTC STC SEC RTS 

2013 1.0547 1.0254 1.0311 1.0172 0.9865 1.0071 0.9935 

2014 1.0454 0.9378 1.1164 0.9676 0.8667 0.9702 0.8409 

2015 1.0039 1.0172 0.9885 1.0067 1.0184 1.0101 1.0287 

2016 1.0038 1.0122 0.9918 1.0027 1.0199 1.0097 1.0298 

Mean 1.0269 0.9982 1.0319 0.9985 0.9729 0.9993 0.9732 

Source: Authors’ Computations from Research Data using R statistical 

software 

NB: 2012 is the base year. 

 
As summarized in Table 6, the study found an annual total factor productivity 

growth (MPI) of 2.69%. This growth is attributable to an average technical change of 

3.19%, which outweighed the marginal regress in technical efficiency change of 

0.18%; a 0.15% regress in pure technical change; and a 0.07% regress in scale 

efficiency change. Thus, this productivity gain is dampened by moving away from 

the optimal scale of the scale-inefficient hospitals. This is due to the healthcare 

pressure and the perceived better quality care in these referral hospitals, and a weak 

referral system. There have been managerial challenges, as witnessed by various 
industrial disputes, and the fact that the full transition period was shortened due to 

the pressure from county governments, thereby denying these governments the 

necessary preparedness to handle the fully devolved healthcare. There has also been 

the occasional pull-and-push at the county budgetary process, and the central 

governments’ delayed release of funds for the devolved functions. The confluence of 

these factors has compounded the healthcare delivery challenges. 
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The positive growth depicted in Table 6 is consistent with several of the reviewed 

studies, albeit with differing growth rates (Singh et al., 2015 (9.4%); Babola & 

Moodley, 2020 (4.8%); Cheng, Tao  et al., 2015 (7.8%); Mijasi & Kirigia, 2016 (4.9%); 

Mogha et al., 2015 (4.9%); Ganon, 2008 (2.8%) and Nghiem et al., 2011 (1.6%)).  In 

many of the studies, the growth was a result of technical change. Pure technical 

change played a minimal role in many of these studies, which points to the need 
for enhancing managerial skills in hospitals. Scale efficiency seems to be a general 

problem in many of these studies, as well as for Kenya. Some studies reported 

productivity regress, which was driven by efficiency decline or technical regress 

(Quellete & Viestraete, 2004 (-0.08%); Mastri & Asbu, 2018 (-3.8%); Kirigia et al. 

2012 (-5.3%); Ali et al., 2017 (-4%) and Tlotlego et al., 2010 (-1.5%)). 

Table 7 presents a summary statistical distribution of the components of the 

Malmquist productivity index showing their spread around the measures of central 

tendencies and dispersion. 

Table 7: Summary of Estimation Results 

Variable Min. 1st Qu Median Mean 3rdQu. Max 

MPI 0.8613 0.9959 1.0177 1.0269 1.0476 1.2992 

TEC 0.8241 0.9789 1.0000 0.9982 1.0105 1.3889 

TC 0.8613 0.9818 1.0193 1.0319 1.0710 1.2376 

PTC 0.8334 0.9882 1.0000 0.9985 1.0000 1.3227 

SEC 0.8445 0.9927 1.0000 0.9993 1.0083 1.0737 
Source: Authors’ computation from research data using the R program 

The results in Table 7 describe the distribution of the decomposition of productivity 

into TEC, TC, PTC and SEC. These variables show general skewness in their 

distribution. Technical efficiency change (TEC), pure technical change (PTC) and scale 

efficiency change (SEC) are negatively skewed, implying that the mean is influenced 

by a few low scores. The Malmquist productivity index (MPI) and the technical change 

are skewed to the right, implying that the mean is influenced by a few high scores. 

Figure 2 depicts the trends in the components of the MPI over the period 2012–

2016, with 2012 as the base period. 

 
 

 

Figure 2: Trends in Productivity Changes 
Source. Generated by the authors from the research data 
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Figure 2 shows that growths in MPI and technical changes were largest in 2012–

2013. These trends, however, declined over time before reaching their lowest in 

2015. Pure technical change (PTC) and scale changes had little variability, with 

PTC remaining below one (1), while the latter was around one (1). These long-term 

trends show that productivity growth was largely driven by technical change and, 

to a limited extent, efficiency change. 

 

8. Conclusions 

This study used secondary data for the period 2012–2016 from 14 county referral 

hospitals in Kenya to decompose the DEA output-oriented multi-factor productivity 

index (MPI) to identify the causes of productivity growth in Kenya’s health sector. 

The decomposition of the total factor productivity changes has provided empirical 

evidence for areas of intervention to enhance the productive use of the scarce health 

resources, geared at enhancing the provision of healthcare. 

 

The findings have shown that technical progress is the major driver of productivity 

growth. In addition, scale inefficiency is relatively high, which implies that the 

majority of the hospitals are operating at less than the technology optimally 

productive scale sizes (TOPS). The evidence shows that 60% of the hospitals recorded 

decreasing returns to scale, whereas only 30% recorded increasing returns to scale. 

These hospitals were operating beyond their capacity because access had been 

enhanced as the referral hospitals that upgraded their status increased from 2 to 14 

within the studied region. This upgraded status exerted pressure on the equipment, 

facilities and staff. However, due to technical progress and modernization of 

equipment, productivity grew—on average—at 2.69% for the period. 

 

Hospital managements faced more challenges as these facilities experienced an 

upsurge in the number of patients and resource constraints. This was reflected in the 

empirical results of minimal contributions to productivity growth of pure technical 

efficiency change. The growth in technical efficiency (catch-up effect) slowed down due 

to the majority of the hospitals becoming less efficient towards the end of this period. 

  

In general, the findings indicate that the productivity growth would have been 

further enhanced if hospital managements were adequately prepared to handle 

matters of the devolution of health services. This would have required facility and 

infrastructure upgrades, and a well-motivated and skilled staff to leverage 

technical progress (TC). 
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