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Abstract 

 
A technique is described to use measured vibration data of a rotating machine and its foundation to identify 

unbalanced forces, stiffness and damping parameters of the mountings, and the parameters of the foundation. 

It is based on an idealisation treating the rotor, the machine structure and the foundation as rigid masses 

supported by springs and dampers. Operational vibration data of the machine and its foundation before and 

after the rotating unbalanced forces are perturbed by adding unbalanced mass to the rotor are used in the 

identification procedure. Once the parameters are identified, dynamic forces transmitted to the foundation 

can be estimated. The technique is demonstrated using simulated example for a machine with a two bearings 

rotor. 
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1.0 INTRODUCTION 

 

Rotating machines are liable to shaking as a 

result of excitations due to unbalanced dynamic 

forces and moments generated within the 

machines. These unbalanced excitations 

ultimately find their way to the foundations or 

supporting structures. With unfavourable 

combination of operating speed, stiffness and 

damping properties of the mounting system, 

amplification of the transmitted forces may 

occur. The transmissibility of large dynamic 

force to the foundation is always an issue of 

concern due to possible structural failure of the 

foundation or disturbing vibrations being 

transmitted to nearby structures or occupants. It 

is known, however, that balancing may not be 

perfect and in some cases it is not practical to 

balance the forces fully. Furthermore, isolation 

systems are usually designed on the assumption 

of a fixed foundation, whereas in reality a 

foundation may be flexible and its dynamic 

behaviour unknown. Apart from the need to 

design machinery to operate within acceptable 

limits, accurate dynamic modelling of machine 

systems is important. Dynamic models may be 

used to facilitate diagnosis of operational 

difficulties. The analysis of vibration behaviour 

of turbo-machinery, for example, is a topic of 

great importance in most process industries and 

particularly in power generation. A number of 

authors have addressed this problem (Lees 

(1988), Zanetta (1992), Odiara and Ewins 

(1992), Lees and Friswell (1996), Sinha et al 

(2002)) and the conclusion is that the 

supporting structure of a large turbine presents 

a significant problem, having a significant 

effect on the dynamic behaviour of the 

machine. The previous researchers have 

attempted to establish foundation’s dynamic 

properties by extracting information from the 

response of the foundation due to a known 

unbalance on the rotor. The key to the problem 

was the derivation of forces exerted on the 

foundations at the bearings. Lees and Friswell 

(1996), and Sinha et al (2002) use vibration 

measurements of the bearing pedestals to derive 

the forces transmitted to the foundation. Their 

methods assume the bearing stiffness is known 

and the foundation is modelled as a mass less 

spring. This paper presents an alternative 

technique which does not assume prior 

knowledge of the rotor unbalance or bearing 

stiffness and the foundation is modelled as a 

mass-spring-damper system. The vibration 

response of the machine and the foundation 

before and after the unbalanced forces are 

perturbed by adding unbalanced mass to the 

rotor are used in the identification. Unbalanced 

forces, stiffness and damping properties of the 
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machine mounting system as well as mass, 

stiffness and damping properties of the 

foundation are identified. The technique is 

demonstrated using numerical example on a 

machine with a two bearings rotor. 

 

2.0 THEORY 

 

2.1 MATHEMATICAL MODEL 

 

Consider a rotating machine with a 2 bearings 

rotor as shown in Fig. 1. The rotor, treated as 

rigid, is supported by two bearings of stiffness 

kb1 and kb2 and damping coefficients cb1 and cb2 

respectively. The rotor is of mass mr and mass 

moment of inertia Ir about the centre of gravity 

of the rotor and in the vertical plane shown. 

The machine structure is also treated as rigid 

and is mounted to the foundation through 

mounting stiffness ks1 and ks2 and damping 

coefficients cs1 and cs2. The machine structure 

is of mass m and mass moment of inertia I. 

about its centre of gravity. The foundation is 

modelled as a mass-spring-damper system with 

respective parameters mf, kf  and cf  being the 

same under both mountings. The system 

possesses 6 degrees-of-freedom (DOF) labelled 

as q1 to q6. 

 

 
Fig. 1: Model of a Rotating Machine with a Two Bearings Rotor 

 

Let the rotor unbalance be represented by 

unbalance force Fu(t) and moment Mu(t) at its 

centre of gravity. These unknown unbalanced 

loads result in bearing forces Fb1(t) and Fb2(t) 

being transmitted from the rotor to the machine 

structure through the two rotor bearings. Fig. 

2(a) shows the model of the rotor and the 

machine structure, with the rotor isolated from 

the machine, depicting the free body diagram. 

Fig. 2(b) is an equivalent model of the machine 

structure where the bearing loads are 

represented by an equivalent unbalanced force 

FB(t) and moment MB(t). Distances x1, x2 are 

horizontal distances to the bearings from the 

rotor centre of gravity whereas x3 and x4 are 

horizontal distances to the bearings from the 

centre of gravity of the machine structure. 

Distances x5 and x6 are horizontal distances of 

the machine mountings to the centre of gravity 

of the machine. 
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Fig. 2: (a) Free Body Diagrams (b) Equivalent loading on Machine Structure 

 

Applying Newton’s equation of motion to the rotor in the translational degree-of-freedom results in 

the following: 

)()()()(
..

121 tqmtFtFtF rbbu =−−  

)()()()( 1

..

21 tqmtFtFtF rubb −=+          (1) 

 

Likewise, Newton’s equation of motion applied to the machine structure in the translational degree-

of-freedom results in: 
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Replacing )()( 21 tFtF bb +  in eq. (2) by eq. (1) and re-arranging results in: 
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Let the unbalanced force and moment be harmonic. The resulting vibrations will also be harmonic. 

Therefore 
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In general, Fu, Mu, qi and yi are complex quantities with the phase angles referred from an arbitrary 

datum. In view of the above, eq. (3) can be transformed into the frequency domain as: 

3
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1
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62225111 ))(())(( mqqmFqycjkqycjk russss ωωωω +=−−++−+     (4) 

 

Newton’s equation of motion applied to the foundation under the two supports results in the 

following two equations: 
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Transforming them into the frequency domain in terms of complex displacements, and re-arranging, 

result in: 
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and 
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Now consider moment equilibrium of the rotor in the plane shown and about the centre of gravity of 

the machine structure. 
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Re-arranging: 
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Similarly, consider moment equilibrium of the machine structure in the plane shown and about its 

centre of gravity:  
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Replacing )()( 2413 tFxtFx bb −  in eq. (8) by eq. (7) results in: 
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Since the unbalanced force and moment as well as the resulting vibrations are harmonic, eq. (9) can 

be expressed in terms of complex quantities and on re-arranging results in: 
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Now, eqs. (4) and (10) are the key translational and rotational equations of motion needed for the 

next stage of identification of unbalanced force, moment and mounting parameters. Eqs. (5) and (6) 

shall be used to identify foundation parameters once the mounting parameters are identified. 

 

2.2 IDENTIFICATION OF FORCES AND MOUNTING PARAMETERS 

 

Suppose we now perturb the unbalanced force by adding known unbalanced mass ∆m to the rotor 

and with this added mass, we measure new vibrations which we assign a subscript p to indicate 

measurement on the perturbed system. Let e denote the radial position vector to this added mass 

such that the increment in unbalanced force due to the added mass is em ×Δ2ω . Thus, for this 

perturbed case, eq. (4) becomes: 
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Let xe be the moment arm perpendicular distance of the line of action of the perturbing centrifugal 

force from the centre of gravity of the machine structure. The added mass will result in moment 

increment of eexm ×Δ2ω  Therefore, moment equation, eq. (10), becomes: 
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Equations (4), (10), (11) and (12) are combined into the following matrix equation: 
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We can perform more than one case of mass additions on the rotor and the corresponding vibrations 

used to build up [Q] and {b} matrices. For a rectangular [Q] matrix, the unknown parameters are 

obtained by pseudo-inverse solution of eq. (13). Thus, 
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2.3 IDENTIFICATION OF FOUNDATION PARAMETERS 

 

Adding unbalanced mass to the rotor employed in section 2.1 cannot help us to solve for the 

foundation parameters in eqs. (5) and (6). Instead, after establishing mounting parameters ks1, cs1, ks2 

and cs2 from eq. (14), the rotor is operated at a different speed, resulting in new vibrations. Let 

subscript x be added to denote frequency and displacements corresponding to the new speed.  At this 

new speed, eq. (5) becomes: 
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xxssxxffxfx qqycjkqqcjkqqm 5
2

51115
2

555
22

))(()( ωωωωωω −+=++−            (16) 

 

5
2

51115
2

555
22 ))(()( qqycjkqqcjkqqm xxsxsxfxfxfx ωωωωωω −+=++−            (17) 

 

Subtract eq. (16) from eq. (17) results in: 
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Eq. (18) is transformed into two separate equations by equating the real parts as well as imaginary 

parts. Thus: 
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Likewise, the other mounting support results in similar equations but based on vibrations q6 and q6x 

at rotor frequencies ω and ωx respectively, and corresponding vector 22 jBA + ,  i.e. 
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Equations (19) to (22) may be used to solve for kf and cf. However, before proceeding with the 

solution for kf and cf, lets first consider mf. Multiplying eqs. (5) and (15) by q5x and q5 respectively, 

result in:     
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and 
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Subtracting eq. (23) from eq. (24) results in: 
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Equating real parts and also imaginary parts of eq. (25) results in two equations as follows: 

 

155
22

55 )(Real)()(Imag)( Cqqmqqc xfxxfx =−+− ωωωω               (26) 

155
22

55 )(Imag)()(Real)( Dqqmqqc xfxxfx =−+−− ωωωω     (27) 

 

Similarly, the equation of motion for the second support side results in similar expressions but with 

vibrations q6 and y2 instead of q5 and y1, and C1 + jD1 replaced by a corresponding vector C2 + jD2. 

Thus: 
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Equations (19) – (22) are now combined with eqs. (26) - (29) to become a set of 8 simultaneous 

equations with three unknown parameters, i.e. kf, cf  and mf. These equations are reformulated into a 

matrix equation, and solve for the three unknown parameters by pseudo-inverse technique as shown 

in eq. (30), where R is an 8x3-coefficient matrix. Thus, 
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2.4   MEASURING ROTOR VIBRATIONS   

 

The identification of unbalanced forces and the 

parameters of the mountings and foundation 

from eq. (14) and eq. (30), require 

measurements of vibrations of the rotor and the 

machine structure. While measurements on the 

machine structure can be a straight forward 

business, measurements on the rotor needs 

further clarification. In some machines, the 

centre of gravity of the rotor may not be 

accessible for measurement while the machine 

is in operation because accessing the rotor may 

mean dismounting it. In this case, assuming the 

rotor is rigid, measurements of linear and 

rotational degrees-of-freedom at the rotor 

centre of gravity, q1(t) and q2(t) respectively, 

can be established by measurements on the 

rotor shaft at the bearings. 
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However, as the rotor is rotating, measurements 

yr1(t) and yr2(t) cannot be done using a 

contacting transducer. A non contacting 

transducer, eg. a proximity probe, have to be 

employed. For a rotor supported on rolling 

contact bearings, further simplification can be 

made by approximating vibrations of the rotor 

shaft at the bearings to those of the bearing 

housings. Thus: 
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Where yB1(t) and yB2(t) are vibrations of the 

bearing housings, typically measured by a 

contacting transducer. This simplification may 

not apply to rotors with journal bearing 

supports due to the possibility of ample 

movement of the rotor shaft within the 

bearings. 

 

3.0 NUMERICAL SIMULATION 

 

The theory presented in Section 2 for the 

identification of unbalanced forces, mounting 

parameters and foundation parameters of 

rotating machines was verified by a numerical 

example. 

EXAMPLE  

 

A rotor of mass 50 kg is supported by two 

bearings at a span of 600 mm. The machine 

structure, excluding the rotor, is of mass 200 

kg. The machine is supported by mountings 

also at a span of 600 mm. The foundation was 

simulated to be flexible, with an effective mass 

of 400 kg, effective stiffness of 4.0 MN/m and 

effective damping of 400 Ns/m. The machine 

system is shown in Fig. 2. Rotor unbalance 

equivalent to a centrifugal force of 1000 N and 

moment 500 Nm acting at rotor centre of 

gravity was assumed. The centre of gravity of 

the rotor is at mid-span between the bearings, 

while the centre of gravity of the machine 

structure is at the middle between the mounting 

locations. Complete data of the simulated 

system is shown in Table 1. The simulated data 

was used to compute simulated vibration 

responses of the machine and the foundation of 

a 6 DOF model like the one shown in Fig. 1, 

using MATLAB application package. 

 

Table 1: Simulated Data of Rotating Machine 

 Mass (kg) Moment of 
Inertia (kgm2) 

Stiffness (N/m) Damping  (Ns/m) Load (N) 

Rotor (n = 1500 rpm) 50 0.56 - - - 

Bearing 1 -  0.50x106 100 - 

Bearing 2 -  0.25x106 100 - 

Unbalanced Force -  - - 1000 

Unbalanced 
Moment 

-  - - 500 

Machine structure 200 24 - - - 

Support 1 -  2.0x106 200 - 

Support 2 -  2.5x106 300 - 

Foundation 400  4.0x106 400 - 

Distances (mm) x1 = x2 = x3 = x4 = x5 = x6 = 300 mm 
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(i) Identification of Unbalanced Forces and 

Mounting Parameters 

 

Vibration responses of the 6 DOF machine 

system excited by the centrifugal unbalanced 

force and unbalanced moment was computed. 

An unbalanced mass of Δm = 100g at a radial 

position of 200mm but 60
o
 ahead of the 

unbalanced force, was simulated to be attached 

to the rotor at an axial distance x = 0.5 m from 

the rotor centre of gravity away from bearing 1. 

The unbalanced mass contributed to 

unbalanced force and equivalent unbalanced 

moment at the rotor centre of gravity, given by 

emFu ×Δ=Δ 2ω  and xemM u ×Δ=Δ 2ω , 

where e  is the radial position vector of the 

unbalanced mass. Vibration responses due to 

the combined presence of this unbalanced mass 

and the original unbalanced force and moment 

were computed. The unbalanced mass was then 

moved to a different angular position of 240
o
 

and new vibration responses computed. Table 2 

shows the simulated vibration responses for the 

translational DOF of the system before and 

after adding unbalanced masses to the rotor. 

 

Table 2:  Simulated Vibration Responses Before and After Adding Mass to the Rotor 

 

Degree-of-freedom Response in mm 
(Δm = 0) 

Response in mm 
(Δm = 200g at 60o) 

Response in mm 
(Δm = 200g at 240o) 

q1 -1.394+j2.4388 -0.257+j1.1652 -2.0662+j1.2561 

q3 0.5673-j3.2189 -1.5075-j2.8047 1.8030-j2.1822 

q5 -1.3897+j5.8794 2.3305+j5.009 -3.5595+j3.8348 

q6 1.0046-j3.6899 -1.2435-j2.9575 2.3337-j2.3501 

4531 qxqy +=  2.2314-j11.4761 -4.8945-j9.5055 6.5853-j7.6908 

4632 qxqy −=  -1.0968+j5.0383 1.8796+j3.8961 -2.9794+j3.3264 

 

The simulated response data in Table 2 and the system data in Table 1 were used to identify 

unbalanced force, moment and mounting parameters using eq. (14) and resulted in the following: 
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Hence 

   ks1 = 2.0x10
6
 N/m,  ks2 = 2.5x10

6
 N/m 

   cs1 = 200 Ns/m,  cs2 = 300 Ns/m 

   Fu = 1000 N,   Mu = 500 N 

 

Unbalanced force, moment and machine mounting parameters are exactly identified. 

 

(ii) Identification of Foundation Parameters 

 

The system was then simulated at a different rotor speed of 2500 rpm. Unbalanced force and 

moment are proportional to the square of the speed. Therefore, simulated unbalanced force and 

moment were proportionately adjusted to the new speed. Vibration responses due to the unbalances 

at the new speed were evaluated as shown in Table 3. 
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Table 3:  Simulated Vibration Responses at New Rotor Speed (n = 2500 rpm) 

 

The new and original vibrations, together with identified 

mounting parameters ks1, ks2, cs1 and cs2 were used to 

identify foundation parameters using eq. (30) and resulted 

in: 
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Therefore, the foundation parameters have been exactly identified. With the identified parameters, 

forces transmitted to the foundation may now be estimated as follows:  

 

Force transmitted through mounting 1: ))(( 15 yqcjkF ffT −+= ω      

Force transmitted through mounting 2: ))(( 26 yqcjkF ffT −+= ω  

Forces transmitted to the foundation at the two speeds are shown in Table 4. 

 

Table 4: Force Transmitted to The Foundation 

 

Speed Location Transmitted Force (N) Force Amplitude (N) 

1500 Through mounting 1 -9,688+j27,684 29,331 

Through mounting 2 -612+j1,673 1,782 

2500 Through mounting 1 852-j59 854 

Through mounting 2 -279-j21 280 

 

4.0  CONCLUSIONS 

 

A technique has been presented to identify 

unbalanced forces and foundation parameters 

of rotating machines with rigid rotors, from 

vibration measurements. The technique uses 

vibrations measured on a rotating rotor, using 

non contacting transducers, or on rotor bearing 

housings using contacting transducers, 

vibrations measured on the machine structure 

and the vibrations measured on the foundation. 

The technique has been verified using 

simulated data for a two bearings rotor. The 

technique does not require prior knowledge of 

the unbalanced forces or bearing stiffness. 

While the technique has performed successfully 

with simulated data, further work is necessary 

in order to account for the real situation 

encountered in practical set-ups. Practical 

measurements are always contaminated with 

measurement errors, some of which are random 

but others may be systematic.  
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