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ABSTRACT

Unsteady flow of fluids in pipelines can adequately be epresented by a
system of partial differential equations, of first- or second-order depending
on the type of problem. Such systems may either be parabolic or hyperbolic.
Many numerical methods are available and have been used for the solution
of these equations. A new approach based on the Gamma Delta method
developed by Flatt, was used. The three basic partial differential equations
of flow were derived for unsteady quasi-one-dimensional flow of eal gases
through a non-rigid non-constant cross-section area pipe. The QUANT
software for thermodynamic and transport properties of real gases was -
used. The software is based on the virial equation of state and also contains
the coefficients required for the Gamma Delta method. A flow dependent
explicit equation was used to calculate the friction losses. Numerical
solution of the basic equations was effected using the method of
characteristics. A computer coding using the C programming language
was developed, for modelling of unsteady and transient flow followmg
lmebreak in high-pressure natural gas pipelines.

INTRODUCTION

This study was aimed at developing a computer model for analysis of
transient and unsteady flow following linebreak in high-pressure natural
gas pipelines. This type of flow requires a non-isothermal non-adiabatic
treatment because of the big temperature drops involved. There are many
- computer codes available for analysis of unsteady flow of fluids in pipelines.
However, only a few are known to be applicable to linebreak situations
. and their scope is limited. Discrepancies between diferent models which
s i i e e T O T
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have been developed have mainly centred cn the assumptions made in
developing the basic partial differential equations of flow, and subsequent
simplifications; the thermophysical model used; representation of various
terms in the equations such as the friction term; and the numerical method
used for solution of the basic equation.

The process of developing a computer model for transient analysis of gas

pipelines entails three main steps, namely formulation of the basic
governing equations, solution of the equations and finally validation of
the model with experimental data. Unsteady flow of compressible fluids
in pipelines is described by a set of three partial diferential equations,
derived from the principles of conservation of mass, conservation of
mementum and conservation of energy. The fluid properties are described
by an equation of state. These together with appropriate auxiliary
conditions, determine the mathematical state of the fluid. Many
assumptions and simplifications are involved in the process of formulating
~ and manipulating these equations. It is generally preferred to keep the
equations as simple as possible, without significantly reducing the accuracy
of results in a particular model, in order to economise on computational
labour and time and also to minimise the computer memory requirement.
Most cases of unsteady one-dimensional flow, where disturbance
propagation velocities do not vary significantly are characterised by
quasi-linear hyperbolic partial differential equations for continuity,
momentum and energy. '

Four important assumptions and simplifications with regard to flow
dimension, flow phase, Fluid Structure Interaction (FSI), and minor losses
including the limitations arising from them were discussed (1. In one-
dimensional flow, the components of the fluid velocity in the circumferential
and radial directions are ignored. Multi-phase flow in gereral is a very
complicated phenomenon. A gas-liquid mixture may be treated as a pséudo-
fluid, if the mixture and its motion may be treated as homogeneous. FSI
and effects arising from minor losses and changes in cross section were
also discussed {11, No further simplification was made on the basic
equations.

A new approach was used, in which the three basic partial diferential
equations of flow were derived using the Gamma Delta method, developed
by Flatt [2]. This method is briefly described in the section which follows
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and full derivation of the equations was made [ll. The QUANT software
for thermodynamic and transport properties of real gases was used. The
method of characteristics was used for solution of the basic equations of
flow.

THE BASIC EQUATIONS OF FLOW

The basic equations for unsteady quasi-one-dimensional flow of real gases
through non-rigid and variable cross-sectional area pipes are considered,
using the Gamma Delta method, developed by Flatti2l. These equations
are valid for three fluid forms: gas (perfect and real), homogeneous liquid/
vapour mixture and liquid. These equations simplify considerably problems
where several of the three fluid forms appear simultaneously Formulation
of the energy equation for unsteady flow of fluid in pipes has commonly
contained either specific internal energy or specific enthalpy. Each of the
above mentioned dependent variables is related to the other dependent
variables e.g. pressure (p), density (p), and temperature (T) by a caloric
equation of state which is often a complicated non-linear empirical
correlation in integral form. This procedure sometimes involves as many
as 20 or more fluid dependent coefficients. With the help of the two non-
dimensional coefficients Y and §, the specific internal energy and specific
enthalpy have been eliminated from the energy equation, resulting in
considerable computing economy. The three basic equations of
conservation for unsteady flow were derived from first principles [!],
assuming that the cross-sectional area of the pipe varies with time (t) as
well as with axial position (x). The resulting continuity equation is as
follows:

dp dp . du_ o

Bl )
where £ is the term representing the variation in cross-sectional area of the

pipe due to its geometry and elasticity of the pipe material. In equation
form, & is defined as follows:
1dA udAl.
=] = —— 2
¢ p[A or Aax] 4
For rigid and cylindrical pipes§ =0. The momentum equation was derived,
obtaining the following equation:

s s S S - S i
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du 14 d
= 4 —p+u—u=———L——gsin6

o 7:)_ dx dx  pAcosy (3)

For a uniform diameter pipe, Cosy = 1. The resulting energy equation is
as follows:
dp  udp 2 dp  udp

% % e o

):(é‘s —1)71-(Q+—wu—)

cos¥V

4)

The continuity equation (1) contains the partial derivative ofp with respect
to t, while the momentum equation (3) contains the partial derivative oi u
with respect to t. For convenience of numerical solution of the three
equations, the energy equation was rewritten such that the term containing
partial derivative with respect to t, was that of p only This condition was
achieved by substituting the continuity equation (1) into equation (4). The
resulting equation, which was used in the numerical solution is as follows:
dp dp o du_ 1 u 2

az“‘ax'“’ pax-(és I)A(Q«i-cosw]ﬂz s (5)
Equation (5) is simpler and more convenient than equation (4). The former
equation was therefore used in the solution of the three simultaneous
equations of conservation. However, in deriving the characteristic and
compatibility equations for the numerical method of characteristics,
equation (4) was used instead of equation (5) because the latter equation
failed to produce a unique solution for the gradient of the characteristic
equations.

The thrée basic equations of conservation [equations (1), (3) & (5)] were
written in such a way that the solution of pressure, velocity density and
temperature could be obtained. This was done by using the equations of
state and some other thermodynamic relationships the model used to
represent the transient event. Over five dozen equations of state are known
t0 uxist, which represent the liquid, vapour and liquid-vapour regions. The
two general approaches used to develop the equation of state: the theoretical
approach gives a higher accuracy; while the empirical approach does not.
The criteria for selection of equation of state for a particular flow situation
were also discussed (1],

ﬂ
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QUANT, a commercial computer programme for thermodynamic and
transport properties of real gases and their mixtures was used. The
programme is based on the virial equation of state and contains coeficients
required for the Gamma Delta method. The programme delivers properties
of elements, compounds and any of their mixtures; but is restricted to the
gaseous phase so far.

Modelling of frictional effects may be done either by numerically evaluating
Darcy’s frictional factor, fp, in equation (6) using known flow field data or
by using experimental correlations. The friction term in the basic equations
is denoted by ® and is defined as the friction force per unit length of the
pipe opposing the flow. After assuming that the minor losses are negligible,
the frictional force per unit length is expressed by the empirical relationship;

w=20"" ©
At least one and a half dozen friction factor expressions have been identified
[11. For laminar flow (Re<2100), the Hagen-Poiseiulle equation is used.
For fully developed turbulence, the rough pipe law which assumes that the
friction factor is solely dependent on the pipe roughness and size is used.
For partially developed turbulence either the smooth pipe law or the Blasius
form of the smooth pipe law are used. Here the friction factor is assumed
to be only dependent on the fluid properties and pipe size. For the transition
zone between partially and fully developed turbulence a combination of
both the rough and smooth pipe laws is used. The Colebrooke equation
has been universally adopted for this regime. However there are numerous
other equations which could be solved explicitly and with almost the same
accuracy as the Colebrooke equation. The key factor in applying a flow-
dependent friction factor is the determination of which flow regime is to
represent the flow at a particular point and time. This situation is exacerbated
by the fact that, in many practical flow situation many flow regimes exist
and thus different equations have to be used. At least two expressions for
friction factor, including that by Chen[3], are known which cover the whole
range of Reynolds numbers and pipe roughness and which produce results
which are nearly the same as those produced by the Colebrooke equation.
The Chen equation was used. The friction factor was calculated for each
grid point as a function of Reynolds number A frequency-dependent

M
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friction factor was not used because there has not yet been any satisfactory
results to justify its application. A two-phase friction factor was not used
in this model. Since it was decided earlier, not to include the effects of FSI
- in this model, its effects on friction factor were also neglected. A second-
order approximation was used to calculate the friction force.

HEAT TRANSFER

The heat transfer term, Q, is defined as the heat flow into, or from the pipe
wall per unit length of pipe. Although this term is considerably smaller in
magnitude than the friction term, its effect is considerable especially when
considering long distance pipelines. Inisothermal flow the energy equation
becomes redundant except during the calculation of the value of the heat
transfer, Q. In adiabatic flow, it is assumed that there is no net flow of heat
through the pipe, even though some heat transfer will take place between
the fluid and its surroundings. Isothermal flow relates to slow dynamic
changes. When a pipe is long and the change is relatively gradual, the
fluid will tend to come to thermal equilibrium with the pipe. Adiabatic
flow relates to fast dynamic changes in the fluid, where it is assumed that
the pressure changes occur instantaneously allowing no time for heat
transfer to take place between the pipe and the surroundings. For accuracy
a non-isothermal non-adiabatic heat transfer model was used.

Two different approaches to calculation of heat transfer for the gas were
considered. In the first approach, one of the relationships between the
dimensionless numbers, namely Reynolds number (Re), Prandtl number
(Pr), Nusset number (Nu) and Stanton number (St) was used to calculate
the convective heat transfer coefficient across the boundary layer In the
second approach the adiabatic wall temperature and recovery factor were
used to calculate the heat transfer This method was derived from first
principles {1]. The difference between the two approaches is the way in
which the heat transfer between the fluid and the inner wall of the pipe are
calculated. For the rest of the system, the analysis is the same for both
approaches.

NUMERICAL METHODS OF SOLUTION

The most commonly used numerical methods for fluid flow analysis are
the methods of characteristics, finite-difference, finite-element,

#
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flux-difference splitting schemes, the method of lines and the wave-plan
method. The basis of finite-difference formulations is the differentials of
the dependent variables appearing in the partial differential equations,
expressed in approximate expressions so that a digital computer which
performs only standard arithmetic and logical operations can be employed
to obtain a solution. The finite-difference approximations are used to
replace the derivatives that appear in the partial differential equations.
-Finite-difference methods are therefore categorised in the two types,
namely, explicit and implicit formulations. Solution of explicit equations
is simpler than the implicit equations. However, implicit formulations are
more stable than explicit formulations. The method of characteristics,
flux-difference splitting schemes, method of lines and wave-plan method
are based on finite-difference formulation. Many different finite-difference
methods, ranging from single-step first-order accurate to four-step
fourth-order accurate schemes, have been developed for the fluid transient
equations.

The method of characteristics is commonly used as a numerical method
for quasi-linear hyperbolic systems in two independent variables. By an
appropriate choice of coordinates, paths can be defined in the x-t plane,
called characteristic lines, along which the system of partial diferential
equations is converted into a system of ordinary differential equations that
may be solved by standard single step finite-difference methods for ordinary
differential equations. The basic rationale underlying the use of
characteristics is that by an appropriate choice of coordinates, the original
system of hyperbolic equations can be replaced by a system whose
coordinates are the characteristics (natural method of characteristics). “The
use of this method becomes particularly simple when applled to two
equations in two dependent variables.

One of the major drawbacks of the method of characteristics appears when
the dependent variables are required at fixed time intervals and a two-
dimensional interpolation in the characteristic net is required. This
drawback has been overcome by the hybrid or mesh method of
characteristics, also called the method of specified time intervals, which
solves the characteristic equations on values for the dependent variables at
specified time-distance coordinates. With the mesh points defined in
advance, and the interpolation taking place as computation advances, it
becomes a one-dimensional interpolation. Although the method of

m
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characteristics is most ideal for the solution of quasi-linear hyperbolic
equations with two dependent variables on characteristics, which is the
natural coordinate system, a great deal of effort has been made to extend
the method to other more complicated cases. The above effort includes
the extension for calculating three dependent variables encountered in
transient non-isothermal gas flow. Finite-element methods have not been
used widely for fluid transient analysis. The most recent finite-element

method for fluid transients is the method of Bisgaard -Sgrensen

-Spangenberg [4].

The focus of this study was to model a linebreak in high-pressure gas
pipeline. However, with appropriate specification of the boundary
conditions the model should be able to analyse any other flow situation.
This method was therefore chosen to accurately represents shock waves
and accommodate the varying speeds of the waves without smearing the
details or overshooting. The method of characteristics represents many
pipe flow situations more accurately and it is the most popular method of
solution for pipe flow problems.

THE BASIC EQUATIONS BY THE HYBRID METHOD

The theory of the method of characteristic has been described by among
others Courant and Friedrichs (5], Lister [6] and Ames [7]. Two common
hybrid methods are those by Courant, Isaacson and Rees(8] which treats
first-order problems and Hartreee [9] which treats second-order systems.
According to Ames [7] the Hartree method is more accurate than the
Courant-Isaacson-Rees method. Ames (7] also stated that the former method
could be applied to second-order systems with only minor changes.
Referring to Fig.1, the hybrid method starts by assuming that the solution
is known at the mesh points on time level t. The intersections of the
characteristic lines with the time level t line i.e. points Q, R and S are
unknown. These together with the values of the dependent variables at
point P are determined using the characteristic and compatibility equations.
Interpolation for the values of the dependent variables and the positions of
points Q, R and S is necessary at each step.

The first step in the method of characteristics solution is to convert the
basic partial differential equations of flow into ordinary differential
equations. Two most common methods of achieving this are the matrix

ﬁ
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transformation method, such as the one used by Tiley [10] and that of
multiplying the basic equations by an unknown parameter and summing
them. The latter method was used by Listeri6l, Wylie and Streeter [11] for
isothermal flow (only two equations) and by Zucrow and Hofman {12} for
non-isothermal flow (three equations). The method used by Zucrow and
Hoffman was adapted for this study because of its simplicity mathematical
rigour and also because the equations used in this study are very similar to
those used by Zucrow and Hoffman {12, The common practice in the
methiod of characteristics solution is to use first-order and linear
approximations to calculate values at the next time level. Values obtained
in the first-order calculation are used as initial estimates for the iterative
solution in the second-order approximation. In the case of hybrid methods,
the first step is to find the positions of the intersections of the characteristic
curves with the distance axis at time t, points Q, R, and S. This also could
be done using either first- or second-order approximation.

For the first-order method, points Q, R and S were calculated using the
characteristic equations and the values of u and a at point M initially, and

the averages between the values at M and those estimates at P in subsequent
iterations. The fluid properties at Q, R and S were calculated using linear
interpolation between those at the respective surrounding grid points. A

first-order approximation was used to calculate the properties at the next
time step i.e. point P. Taylor’s theorem was used to derive equations for.
quadratic interpolation so that new values of the fluid properties could be
calculated at the bases of the characteristics. The results were used as

variables in the characteristic and compatibility equations. Values calculated

using the first-order approximation were used in the first iteration of the
second-order approximation.
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'Fig. 1 Hybrid Method of Characteristics Solution Grid
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The basic equations for unsteady flow equations (1), (3) and (5) were further
simplified to the following equations:

Continuity equation

ap ap ou _
L | ™

Momentum equation

ou 1dp au__ W ‘
3t+p8x+ E» oA gsin@ (8)

Energy equation

J, d du 1

3’;’4- ai a*p 2= (8, ~ 1)@+ 9)
The characteristic and compatibility equations corresponding to equations
(7), (8) and (9) were derived by multiplying equations (7), (8) and (9) by
unknown parameters 8;, &, and 83 respectively, summing the products and
equating it to zero. For the sake of convenience of mathematical
manipulation the energy equation used is that given by equation (4), but
after making the same simplifications as those made to equation (5). The
use of equation (5) lead to a coefficient matrix in which the elements of
~ one row were all zeros. This resulted in a situation whereby there was no
solution for the gradient of the characteristic equations,A. The derivation
of the characteristic and compatibility equations was covered fully(il,

2=(2] =
dx ), u (10)
2=(2) = |
dc/, u+a (11)
dt 1

Equations (10), (11) and (12) are the three characteristic lines namely the
path line characteristic C, and the right- and left-running Mach lines C.,
and C. respectively. | |

W
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. ] [2 [ ( 3s)+p]] p+[-—-—-—d +a)((1 o)+ )]du
["'u(l_53)‘P%]w—pafigsin9—(l—55)9 ’ (14)

al, s sy g 1P _ ol 1-86.)-2)|du=
[dt:ldp+[2(p(l d,) p)]dp [dt w[(l d;) u)]du

—{u(l -4,) —%‘i]w+paAgsin 6-(1-6,)Q2

(15)

Equations (13), (14) and (15) are the compatibility equations along the
path line characteristic G, and the right- and left-running Mach lines G
and C. respectively. According to the theory of characteristics [5], every
solution of the original system of partial differential equations should satisfy
the characteristic and compatibility equations. The converse is also true
and therefore every solution of the characteristic and compatibility equations
 must satisfy the original system of partial differential equations.

Whereas the natural method of characteristics is unconditionally stable,
the hybrid method of characteristics is only conditionally stable. The
stability criterion used is that of Courant, Friedrichs and Levy which states
that the domain of dependence of the exact solution is contained within
the domain of dependence of the numerical solution. The Courant-
Friedrichs-Levy stability criterion is represented as:

- (16)
Ax ~ (ul+a)

The solution of characteristic and compatibility equations could be obtained
using either a first- or second-order approximation such as the trapezoidal
rule.

#
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SOLUTION OF THE CHARACTERISTICAND COMPATIBILITY
EQUATIONS

(i) Determination of the positions Q, R and S by first-order
approximation

The mathematical structure used to obtain the solution of the characteristics

is given below:

Xg =X —upylt a7
xR =x-(u;,, +aly |As (18)
xg = x=(uhy - ahy s (19)

The subscripts and superscripts denote the point on the x-t plane time level
respectively (refer Fig. 1).

(ii) Determination of the fluid properties at Q, R and S by linear
interpolation

It is customary to assume that the characteristic lines are positioned as
shown in Fig. 1. However, this may not necessarily be the same always.
The only properties which were approximated using this method arep, p
and u. The remaining fluid properties were calculated by the QUANT
software using the values of p and p obtained in the first-order
approximation as input values. The equations for first-order approximation
of a fluid property, say p at point Q was as follows:

If xg <X'
Po =(x:\;Q)P;'“+[I_(xZQ )]p; - S
Ifxg>x
Pb'—-"[xQA;x)P;—Ax +[l_(xzx)]p; (21)

Similarly, the other fluid properties and the properties at the other positions
were calculated by replacing the p and Q in equations (20) and (21) by the

m
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other fluid properties and positions respectively

(iii) Calculation of p, u and p at position P using first-order
approximation

The values of p, u and p at position P are obtained by expressing the three
differential equations (13), (14) and (15) in finite diferences and solving
them simultaneously. The fluid properties used to calculate the coeficients
of the equations are evaluated at position M.

(iv) Determination of the positions Q, R and S by second-order
approximation
x6+l P ]2At1 22)
S, + o
5
ST 2 (23)

1 1
+
lw-a% @+a)} |

e 2 24)

+
| w-a)}  (u-a)p |

where the superscripts k and k+1 represent the iteration numbers.

(v) Determination of the fluid properties at Q, R and S by quadratic
interpolation

Taylor’s theorem was used with second-order accuracy. The resulting
equation, whose derivation was given [1] is as follows:

k+1 1 k+1 P k+1 2
=pyp E—(pp + x5t —xy+——= L PN -2PpMyE0 — 9 (25)
PQ PM Mx(PL PNY*Q ) 2(M)z( LTPN MY(*Q
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The positive and negative signs are used if the position of Q is between M
& N and L & M respectively. The superscripts k and k+1 represent the
iteration numbers. Similarly as for the first-order approximation, the other
fluid properties and the properties at the other positions were calculated
by replacing p and Q in equation (25) by the other properties and positions
respectively.

- Ld
(vi) Calculatio

approximation

SRR AL

The same equations as used in the first-order approximation, were used.
The fluid properties used to calculate the coefficients of the equations
were averaged between those at the newly established positions of Q, R
and S and those previously calculated at point B

BOUNDARY CONDITIONS

In order to obtain solution at a boundary point, the number of additional
equations required is the same as the number of characteristic curves lacking
at the boundary point. Let us consider a pipe flow from an upstream
boundary which is at a distance x, to a downstream boundary whichis ata
distance x,. For calculation between two time levels, the meshes next to
both boundaries are represented in Fig. 2. The characteristic curves defined
in Fig. 1 are superimposed on the boundary meshes. The requirement is to
find a solution at point P in Fig. 2(a) and (b). It is assumed that u is
positive in the downstream direction and also the flow is subsonic at both
the boundary points. The same procedure as for the interior points is used
to calculate the solution at point P, but in this case the number of
characteristics and hence the number of equations is less than the number
of unknowns i.e. two equations less in Fig. 2(a) and one equation less in
Fig. 2(b). In order to obtain a unique solution at the boundary points, the
missing equations must be replaced by specifications for some of the
dependent variables.

Boundary conditions which are commonly used are constant p, constant
mass flow rate, constant T, the prescription of p as a function of t and the
prescription of u as a function of t. The different possible boundary
conditions and their solutions have been discussed{!l.

W
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VALIDATION OF THE COMPUTER MODEL

The problem of obtaining suitable experimental data for validation of
computer models for modelling of linebreak in high-pressure gas pipelines
was discussed (13] and [1). Four sets of full-scale natural gas pipeline rupture
experimental data on pipe sections of varying lengths, diameters and
operating conditions were used to validate the computer model predictions.
Only two of these sets of test data i.e. the Foothills(14] and the API [15] test

data, are presented in this paper The main purpose of the Foothills tests
test was to examine the effect of gas composition on the fracture behaviour
of the pipe. Short lengths of atotal of 243m and diameters of approximately
1.2 and 1.4m were charged with natural gas of known composition and
pressurised to between 74 and 87 barA. Fracture was initiated at the centre
of the test section by detonating an explosive cutter Although the data can

be used to some extent to validate computer models for linebreak analysis,
it was not intended for that purpose. The major reason which makes this

data less suitable for validating linebreak models is the fact that the fracture
was designed to propagate along the axial direction of the pipe covering
some considerable lengths. This makes it difficult to model the break

boundary, especially using this model where the break boundary is assumed
to be fixed in the x-t plane. Only two test results, namely NABTFI

EAST and NABTF7 WEST were selected

> a ¥

19w
o

() Upstream Boundary (b) Downstream Boundary

Fig. 2 Solution at boundary points

for validation of the computer model. The result NABFI‘I EAST were
used to validate the model for flow reversal in the downstream section of
the broken pipe and the NABFT7WEST results were used for the upstream

%
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section. Results produced by the computer model are summarised in Figs.
3 to 6, together with the experimental results. A grid spacing of Ax =0.1m
and At=0.0001s, at the broken end and a variable grid spacing were used.

The API test data is a full-scale experimental data. The tests were carried
out using an existing 168.3mm outside diameter pipeline, which was typical
of sour gas pipelines in the province at pressures of 6.9 and 3.45 MPa
respectively. The test section was approximately 4.0 km long. It was
ruptured at the mid point. Another test was performed on a 323.9 mm
outside diameter and approximately 7.1 km long pipeline. Also in this test
the pipeline was pressurised to 6.9 MPa pressure and ruptured at the middle.
Due to the long run times required, a coarse grid spacing was used in
order to reduce the CPU time. Agrid spacing of Ax=10 m and At=0.01 s
and a variable grid spacing were used. The data for the latter test (APIT3),
and the corresponding prediction from the computer model, are presented
in Figs. 7 and 8.

DISCUSSION OF VALIDATION RESULTS

Simulation results produced in this study using the method of characteristics
compare very well with the experimental data. The final pressures calculated
for the Foothill tests were slightly higher than the experimental values.
The reason for this is that the theoretical models did not account for the
crack propagation along the length of the pipe. Results form theAPI data,

which involve relatively long pipes were more consistent and satisfactory

A good agreement was obtained between the experimental data and the
prediction results, even with the big grid size used. The major weakness

of the data is that they do not contain sufficient information about the gas
used, spome specifications of the testing system and accuracy of
measurements recorded. The values produced with the first-order method
compared much better with the experimental data than those obtained using
the second-order method. The values of mass flow rates produced by the
first-order method of characteristics are slightly lower than the experimental
values. The reasons for this discrepancy are errors in calculating the gas
density in the test results and the big grid spacing used. Problems of
numerical instability, accuracy of results and singularity such as those
encountered by Flatt [16] and Tiley [10], do not exist with this model.

Three main categories of error in validating the computer model are

W
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calibration, measurement and recording of experimental data errors; errors
due to assumptions and simplifications made in the basic theoretical
equations; and errors inherent in the numerical modelling procedure.The
error in experimental data also includes the error in converting graphical
data into numerical data. No error estimate was provided with the
experimental data. The error due to assumptions and simplifications in
the theoretical model were greatly minimised. This model still contains
some simplifications such as one-dimensional flow single-phase flow, non-
elastic pipe, no FSI and neglecting minor losses. However the error
introduced by these assumptions should be minimal in the case of straight
horizontal pipes with constant cross-section area. The errors in estimating
the friction factor and heat transfer have been minimized by using flow
dependent values, which are specific for each calculation step. It was not
possible to establish the magnitude of the accuracy of the computer model
developed in this study, with certainty, because of the poor quality of the
experimental data which has been used for validation. Howeves in most
cases the predicted results are in good agreement with the experimental
data.

CONCLUSIONS

A theoretical model has been developed for analysis of the transient flow
following linebreak in high-pressure natural gas pipelines. The basic
equations of flow are based on the gamma delta method. The three partial
differential equations of flow were derived for unsteady quasi-one-
dimensional flow of a real gas through a non-rigid non-constant cross-
sectional area pipe. The QUANT software for thermodynamic and transport
properties of the fluids was used. The flow dependent explicit equation of
Chen [3] was used to calculate frictional force. The heat transfer through
the pipe was calculated using a formula which is based on the adiabatic
wall temperature and recovery factor The heat transfer was also flow
dependent; and the calculation procedure included both pipes exposed to
the atmosphere and buried pipes. A non-uniform grid spacing was used,
in order to be able to handle long pipelines, to produce stable results and to
also adequately model the physical behaviour of the gas, following a rupture.
A possibility of modelling the flow reversal in the section of the pipeline
downstream of the break was provided. The theoretical transient analysis
model was developed into a PC based computer code using the C
programming language.

#
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The transient analysis models, based on the method of characteristics,
produced results which are in agreement with experimental data. A
PENTIUM P75 was just adequate to run the transient analysis programmes.
The computer model, is very stable numerically and it does not sufer
singularity problems. The model contains the additional feature of being
able to model heat transfer for cases where the pipeline is buried under
water, ground or any other medium whose thermal conductivity and also
the depth of the pipe in the medium are known. The first- and second-
order methods produce results that are very close. The first-order method
is over two times faster than the second-order method in computation speed
and in some cases the former method handles the boundary conditions
better than the latter method. At positions which are further away from the
break, the first-order method seems to produce better results than the
second-order method.

NOMENCLATURE

A = Cross-section area of pipe

a = Wave speed

Ca = Courant number

d = Pipe diameter

fp = Darcy’s friction factor

g = Gravitational acceleration

h = Specific enthaipy of gas

L = Length of pipeline

M. = Mach number

P = Static pressure of gas

Pr = Prandt! number

t = Time

u = Flow velocity of gas

X = Horizontal distance along the pipe
Greek Symbols

A = Gradient of the characteristic lines
¥s = Isentropic gamma coefficient

A = Small change in the quantity

Os = Isentropic delta coefficient

M
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DEOE @

()

Angle of inclination of pipe to horizontal
Coefficient of dynamic viscosity
Density of gas
Conical angle of the pipe
 Heat flow into the pipe per unit length of pipe per unit
time
Frictional force per unit length of pipe
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