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ABSTRACT

Effective eigenvalue method is applied to obtain closed form expressions
for the effective relaxation times of the two dimensional rotational
Brownian motion in N-fold Cosine potentials. The expressions obtained
are valid for any potential of the form CosN6.

INTRODUCTION

A comprehensive numerical study of the rotational Brownian motion of
the two dimensional rotator in N-fold cosine potentials in both time and
frequency domains has been given by Reid [1] with particular reference to
the behaviour of the dielectric dispersion and absorption spectra. The
analysis was based on the Fokker-Planck equation approach. Reid [1]
compares the spectra computed from the model with those obtained from
experimental observations of rotator-phase furan and CH,Cl;. There is

reasonable agreement with experiment. Further he finds that, unlike the
free rotator or the harmonic potential version, this model can reproduce
both relaxation and resonant behaviour when inertial effects are included.
This is due to the use of a periodic potential rather than a parabolic
potential. Such a potential allows the flipping of rotators to
neighbouring wells, thus permitting both relaxation and oscillatory
behaviour [1] in the same model. Such a model has also been studied
(also in the non-inertial limit) by Lauritzen and Zwanzig [2] in
connection with site models of dielectric relaxation in molecular crystals.

In this paper the effective eigenvalue method is applied to this model to
obtain general longitudinal and transverse relaxation times in the non-
inertial limit. We shall consider the rotational Brownian motion of a two
dimensional rotator with dipole moment U in the N-fold cosine potential

V(@)=-V,cos N8 _ (1)
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in the context of the Langevin equation. @ is the angle between the
dipole vector WL and the z-axis. (See Figure 1)

Y
L

Figure. 1

The quantities of interest are the longitudinal and transverse effective

relaxation times T| | andt; respectively.

THE LANGEVIN EQUATION FOR ROTATION IN TWO
DIMENSIONS: APPLICATION TO THE DIELECTRIC
RELAXATION OF AN ASSEMBLY OF TWO
DIMENSIONAL ROTATORS

The Langevin equation for a dipole M to rotate about an axis normal to
the xy plane is [1,3]
LX)

1O(1)+¢ ('9(1)+ NV sin NO(1)+ u(t)F(e)sin 8(t) = A (1) )

In Eq. (2), [is the moment of inertia of the rotator about the axis of
rotation, @ is the angle the rotator makes with the direction of the

driving field F(¢), ¢(8)and A(f) are the frictional and white noise
torques due to the Brownian motion. It is assumed that the random torque A( B
has the property
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Aty =0, A(OA(Y) =20kTs(t- 1) (3)

kT is the thermal energy with k the Boltzmann constant and T the
absolute temperature. The overbar indicates statistical average. O(t)is the
Dirac delta function

o if =1
0 otherwise ()

5(I—~t')={

In order to specialise Eq. (2) to a step-on field we write

F(r)=F0U(I) (5)

where U (f) is the unit step function and Fo is its amplitude. We require
to calculate, for this model, the statistical averages
(tcos B) and (usin 6) when the inertial effects are ignored.

The problem which presents itself when treating the model using the
Langevin equation in the form of Eq. (2) is that it is not apparent how

that equation may be linearized to yield the solution for small WFy 1 KT
This difficulty may be circumvented by rewriting Eq. (2) as an equation
of motion for instantaneous dipole moment

p=pcos b (6)
so that

L] L ] l L ]

g = --p(Ju2 - p2 )'"/2 =-—p(usin 9)—l (7
and

L 1] (1] 02

0 =-p(usin@)' =6 p(usin6)™ (8)

The Langevin equation (2) with the field F applied along the z-axis and
this change of variable becomes
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2]

[jT;COS 0()+ C%COS 6(r)+1 éz(f)cos o(r)+ iy [cos(N + 1)8(r) - cos(N = 1)6(1)]

2

= UF,U(t)(1-cos* 6(1)) - sin 6(1)A(r) 9)

which is the Langevin equation for the motion of the instantancous
dipole moment. To solve it we first form its statistical average over a
large number of rotalors to obtain

2

Ij!—-.,(cos 6)+ Qdi(cos 6) +<’ 6" cos 9)"' %KCOS(N*' 1)6)-(cos(N ~1)é)]
dr” !

= UF,U(1)(1 = (cos” 6)) (10)

We remark that Q(I) in Eq. (9) and @ in Eq. (10) have different
meanings. 6(2) in Eq. (9) is a stochastic variable while in Eq. (10) @ is
the sharp (definite) value 6(2) = @ at time . (Instead of using different

symbols for the two quantities we have distinguished the sharp values at
time [ from the stochastic variables by deleting the time argument).

However the quantity @ is itself a random variable which must be
averaged over an ensemble of rotators. The symbol { ) means such an
ensemble average. We also note that Eq. (10) may be written as

f%(cos 0)+ g%(cos 6) +<1 92 cos 9>+%‘i"-[{cos(N+ 1)8) —{cos(N - 1)8)]
¢ a

l p
=—uF,U(t)(1—(cos28

2 H ( )) (D
We note that when the field F is applied along the x-axis the quantity of

interest ¢ = L sin 6(t) obeys the similar equation

2 L)
l—c%-(sin 8) + g%(sin )+ <! 6% sin G>+£2Vi[(sin(N+ 1B) - (sin(N - 1)8)]
G

= uF, U1 --(sin2 9)) (12).
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The remaining terms in Egs. (11) and (12) which cause difficulty arc

(192 sin 6) and (182 cos 6) (13)

Since the non-inertial response (Debye theory) pertains to the situation
where

t>> 1/ (14

which implicitly means [4] that a Maxwellian distribution of angular
velocities has been achieved, we may now wrile

(162 cos )= kT {cos 6) (15)

and

(16 sin ) = kT (sin 6) (16)

since the orientation and the angular velocity variables, when equilibrium
of the angular velocities has been reached, are decoupled from each other,
as far as the time behaviour of the orientations is concerned [5]. In the
non-inertial limit we set

1<ﬁ>=0 (17)

in Egs. (11) and (12), so that finally

d k1 NV
= (cos B) + : (cos 6) > [{cos(N —1)8) —(cos(N +1)6)]

+-21—g UF, U - (cos26))

(18)
and
d kT NV
— (si —(sin 0) = —2[{sin(N = 1)8) - (si
dz(sme)+ . (sin 6) ¥ [{(sin(N = 1)8) — (sin(N +1)6)]
1 . 5
+—uF U(t)(1 = (sin” 8))
¢ < ) (19)
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GENERAL EXPRESSIONS FOR THE LONGITUDINAL
AND TRANSVERSE EFFECTIVE RELAXATION TIMES

Eqs. (18) and (19) are the first terms in the infinite hierarchy of
differential-difference equations, which describe the ensemble averages

(cos n6) and (sinn6). We have mentioned in the previous chapter

that the standard approach to the calculation of the longitudinal and
transverse relaxation times is accomplished by rewriting the infinite
hierarchy as a set of ordinary differential equations of the form

where A is the transition matrix and B is the driving force matrix, and
truncating at a given size of A . The longest relaxation time is then the
reciprocal of the lowest root of the characteristic equation

dC[{SI—A}-_-O (21)

where § denoles the complex frequency.

The disadvantage of this method is that it is in general, impossible 10
obtain a closed form expression for the longest relaxation time. This
difficulty may be circumvented by means of the effective eigenvalue
method.

We first consider the parallel equation of motion, namely Eq. (18) and
recall that the field FO has been applied for a long time and that we are
only interested in the response linear in . We therefore assume that in
Eq. (18)

(cos n6) = (cos n0),, +{cosnb), 22)
where the subscript €9 denotes the equilibrium ensemble average in the

absence of a perturbing constant field F and the subscript 1 denotes the
portion of the ensemble average which is linear in . On substituting

this equation into Eq. (18) we find that (COS ne)[ satisfies
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d kT NV
Z(COS 8), +~g—(cos 6), = 2; [{(cos(N - 1)8), = (cos(N + 1)), ]

1
+—uF,U()(1 = (c0s28),)
2g‘u (¢ Yo (23)

In the last term of Eq. (23), the ensemble average is taken as that in the
absence of F. This is because this term is multiplied by FyU thus
making it comparable to the other terms in the equation.

Eq. (23) represents a recurrence relation driven by a forcing function,
namely the U(¢) term. In order to determine the effective cigenvalues we
consider the unforced equation, namely

d kT NV,
.d_t(cos 6), +-—g—(cos 6), = .Egi[(cos(N ~1)6), ={cos(N + 1)6),]

Following the discussions of Colfey et. al. [6] the cffective relaxation
time is defined as :

e 1
o =T
where
o)
4~ {A0)) (25)

is the effective eigenvalue. A(t) is any given quantity.

Whence the effective eigenvalue method leads to
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= -(-{r-(cos 6),
J"f B (cos 6),
1‘17;((;05 6), + ];? [(cos(N +1)6), — (COS(N“I)G)l]
- (cos 8), (26)
We now have at 1= 0
(cos ), =(cos B)q — _(cos B) g (27)

At cquilibrium

Jr cos Bg(vr, cos N@+uF, cos 8).’de9

e{ V., cos NO+ul, cos OJIdeg

ot—3

2

jcos Ge'Ye COSB)“T[I + &cos 0 + O(E—I—:Q-)2 ]d@
kT kT

[

]
A

< e,

1y cosA*Q)!kT'lil+ﬂ)f‘0 cosQ-i-O(‘uFO )2]d9
AT kT
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(cos 6)g + g}%{cos 28

E
1+ 50 (o5 0o
kT (28)

On using the approximation (1+ ;i:)_l =] -x+ O(xz) for the lincar
response we get

F
(cos 8),, = (cos 0) +%T—O-i_(cos z 8)y —(cos 9)% I

B UFy B 2
=(cos 6) +Fll+(cos29)0 2(cos 9)0‘- 29)

Furtherat t = ()

NV, - "
= [{cos(N +1)8), = {cos(N -1)6),] (30)

NV NV
= -El’-[(cos(N +1)8), = (cos(N -1)8), 1~ T” (cos(N + 1)9)‘_“ —(cos(N - I)Q}(_q]
= =NVy[{sin NOsin ), - (sin NOsin ), |

At equilibrium we have

2

; g 0 7, cos 8)/kT
jsm NOsin Q¢' Vv cSNO+HF, cosOIKT g
0

NVy(sin N@sin 8) = NV,

n
J‘e(v,, cos N8 +uF, cos 9)fki'd9

0
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2r

Jsin NOsin Ge' "o cOSWWT[I +EE&COS e+ O(Hf'”-)z]da
kT kT
= NV, 2

2r "
JB(V” L‘usNG)/kT[l % Ju'Fo COSO“I"O(“ﬁ" )2Jd9
; kT kT

NVU{(sin N6sin 6), + Eg{-‘-(.«;in N@sin Ocos 8)0j|

BE, g
[ +—j-&-(cos 6);]

= NV, (sin N@sin ), -!-—N—%i(Sin N@sin 6(cos 8 —(cos 6), )>0 (31)

The last term on the right hand side of Eq. (31) can be simplified as
lollows:

—\SIYUSII U COS U—\L0S U7 () )/ = s\ LU =& ST O\ U/ ) ==V (U )/
kT 2k d0
Now
2n

j sin 295‘% V(8)e' Vo cosNOVAT g

<sin 29% V(9)>0 =0

e(Vu cos NG)!deg

ot—YF

2x

_ o O
=T 5=
J“‘g(vu cos Ne)ldeg
0
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2r
KT sin2etYo s NOVAT 2 % Icos29ew" KUV 5

s 0
2r

Ie( Vo cosNB)fdee
0

=-k—;£(00329)0
Similarly

| J ,
(2 sin 6(cos 0), %V(B))O = 2kT (cos 0)}.

Thus taking account of Egs. (29)-(32) we obtain

o1 - KT _2KT _ (cos26), - (cosb);
¥ ¢ ¢ 1+(cos26),—2(cost),

_kr 1—{cos 26),
¢ 1+ (cos 26), — 2(cos 6)3 (33)

-l
so that the effective longitudinal relaxation time "'Ef = (flllf) is given
by

4 - 1+ (c0s20), — 2(cosh)?

=7

2 1-{cos26), (34)
where

5
L. _E (35)

is the Debye relaxation time for planar rotators [3].
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In order to calculate the transverse relaxation time T, we consider the

same problem as above but this time the step change in the field is
applied parallel to the x-axis so that we need to determine the behaviour

of (}J_‘. ). We assume as before that

(sinn@) = (sinnb),, +(sinnd)

which leads to the linearized equation for (Sin 9)] p LB,

i(sin 0), +£(sin 0), = EY-O—[(sin( N-1)8), - (sin(N+1)6)]
dt S 25

H 3
+—=FU@)| 1 - (sin” 6)
a 0 l O_l. (36)

Likewise, the eigenvalue equation is

£-1-(sin o), +—[Y-V—Q-[(sin(N+1)9)] —(sin(N—l_)Ebl] '

ﬂJL S 2g
of =

(sin @),
(37)
Noting that

2r
J-sin Qe Vo COSNO+1iFy cos /4T 1o

(Sin 9)0 = 0211 =0

Je(vi, cos NO+uFo cos 8)/AT g

0 (38)
we obtain in the linear approximation of Hfg /KT thatat t = ()

(sin@), ==(sin @) = _E_{Q_(] -(cosZB)O)

o 2kT (39)
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and similarly

%‘l[(sin( N+1)6); = (sin(N-1)6), ] = -ﬁgo-@s 20),.

(40)
Thus
g KT 14 {cos 26),,
47 ¢ 1—{cos 26), @l
so that the effective transverse relaxation time is given by
1—-{cos 26
o gy L0820
1+{cos 28), (42)

Eqgs. (34) and (42) are the general formulae for the effective relaxation
times in NV -fold cosine potential. They will hold for any potential of the

form cos N@.

CONCLUSIONS

The purpose of this paper was to demonstrate how the cffective
eigenvalue method allied with the Langevin equation may be applicd with
much success to the Two-Dimensional rotational Brownian motion in
N -fold cosine potential. The most noteworthy feature of the method is
that it yields closed form expressions which in many cases may

accurately describe the low frequency relaxation behaviour of the system
in question.
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