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ccurate load models are required for the computation of load flows on Medium

Voltage (MV) distribution networks. Modern microprocessors in recent times

have enabled researchers to sample and log domestic loads. The findings show
that domestic loads are stochastic in nature and are best described by a beta
probability distribution [Herman et al, 1999]. The statistical evaluation of the
consumer voltages requires a description of load currents at the time of the system
maximum demand. In this paper, an analvtical tool for computing voltage regulation
on MV distribution networks feeding statistical loads is presented. To deal with beta-
distributed currents on MV distribution networks, new scaling factors are evaluated at
each node. These new scaling factors are evaluated from the distribution transformer
turns ratio and the deterministic component of the statistically distributed load currents
treated as constant real power loads. The comparison between analytical and Monte
Carlo simulation results compare very well giving a maximum percent difference
voltage drop of — 0.0153% for the risk level of 10% and 20% firom the test data.
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they applied a modern microprocessor
technology, which comprises of a multi-channel
microprocessor based loggers equipped with an
accurate on-board time clock. This enables the

INTRODUCTION

The accuracy of the computations for power

flow in distribution systems depends on hQW the monitoring of the multiple consumer load
loads are modelled. It needs to be said that the currents coincidentally at regular intervals.
result from load flow studies will be regarded as Analysis to date indicates that the most
useful if the load model and data used in the appropriate statistical model for describing

analysis are reasonably accurate. Significant
research has been done and published in this
area [IEEE, 1995]. The load models are
categorised on the basis of their applications.
Despite this wide coverage of load models, their
application on MV distribution network systems
feeding stochastic loads is inadequate. It is
imperative that to obtain an accurate load
description, application of end-use models are
necessary. But, this requires a considerable
amount of load-research data. In [Herman et al,
1993], the authors put emphasis on performing

grouped domestic electrical loads is the beta
probability density function (p.d.f.) [Herman et
al, 1993].

In [Herman et al, 1998], the authors describe a
probabilistic load-flow currently known as the
Herman Beta method. The Herman Beta method
of calculating voltage drops in LV feeders was
developed for three-phase, four-wire and bi-
phase topologies using the Beta pdf description
for the load currents. The method uses the
principle of manipulating random variables of

the analysis of the behaviour of domestic
electrical loads on the basis of valid data
measurement. In achieving this goal, means of
recording load data coincidentally must be
realised. In order to obtain reliable load data,

current into voltage drop random variables. The
statistical parameters of the consumer voltages
are then evaluated from their first and second
moments. The first and the second moments of
the consumer voltages are expressed in terms of
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the first and the second moments
of the branch voltage drops. The
percentile value of the consumer

b V4 Y-l g Vi

voltage variable is obtained by
assigning a risk level or

E
! v

I3 Iy Ly I

conversely, a confidence level.
The approach adopted in
[Herman et al, 1998], proves to
work well in developing the required general
expressions. This is due to the fact that, the
analysis is dealing with the three-phase four-
wire system on the LV distribution networks
where line inductive reactance and the consumer
voltage phase angles are neglected. On MV
distribution systems, such assumptions are not
valid and therefore the analysis should take into
consideration the line inductive reactance and
the consumer voltage phase-angles. It should
also be borne in mind that, expression adopted
for the Taylor expansion would give pessimistic
results in evaluating system voltage drop greater
than 15%. The analysis assumes three-phase
balanced system and therefore per phase
representation is considered.

PROBABILISTIC LOAD FLOW ANALYSIS

The probabilistic load flow analysis in this paper
1s based on the determination of the first and the
second moments of the real and imaginary parts
of the branch voltage drops due to statistical load
currents as described in [Herman, 1993]. The
first moments are obtained by considering the
expected values of the individual load current
variants that result from the total real and total
imaginary components of the branch voltage
drops at any node of the network. The second
moments are obtained by considering the
expected values of the individual load current
variants that result from the square of the total
real and total imaginary components of the
branch voltage drops at any node of the network.
Therefore, the development of the branch
voltage drop equations is the prerequisite in
order to apply probabilistic approach on the
evaluation of the voltage profile along the MV
radial distribution network without branches as
depicted in Figure 1. In order to be able to derive
the required equations, the load current phasors
Iy, 0y, 0,15 1, in Figure 1 are assumed to

m

Figure 1: One line diagram of a short model distribution line.

have phase angles «.,0;,a,,0ccccceeennn... &,
respectively. The node voltages at respectively

nodes are designated V, for & being the node

number while the branch impedance between
nodes £ and k —1are designated as Z, .

The consumer voltages are determined by taking
the difference between the magnitude of the
supply voltage V. and the total of the branch
voltage drops from the supply node to the node
under consideration. Therefore, the total real and
total imaginary component of the branch voltage
drops from the supply node with respect to the
other system nodes should be determined.
According to Figure 1, the total real and total
tmaginary components of the branch voltage
drops at node 7, can be expressed as:

i n

Vl/irc(l/_l = Zzlk (R‘ cosak e X", S]nak)(l)

v=2k=y

i

\% Vriinmg_t = Z Z ‘[k (R\ Sin ak & X_\' €os ak ) (2)

v=2k=yv

where

R, is the resistance between nodes k& and
k-1

X, is the inductive reactance between nodes
k and k-1

£ is the load current at node &

a, is the load current phase angle at node &

AV, .1, is the total real component of the

branch voltage drop at node {

is the total imaginary component

fimag 1

of the voltage drop at node 7

The square of expressions (1) and (2) can be
expressed as:
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~at node /. can be

scon |

The consumer voltage V.

expressed as:

) + (A l/llllll/‘ ) : 1’

= (1 —
seon | e I(LS Hul/ 1
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Using Taylor’s expansion, equation (5) can be
expressed in such a way that the first statistical
moment of the consumer voltage V may be

scon i

determined [Herman et al, 1994]. The Taylor
series 1s described as:

1
1+ X)? =1+%X—lX3

+
8 16
—-l< X <1 (6)
If equation (5) 1s normalised, the parameter .Y
in equation (6) can be given as:

2“3{/1 real /\L freal 1 A[/ fimag
= - : (7)
L, G [/,’ - l/v &

S k)

b o ko

The terms l+-— X ——. +LX7‘ will  be
2 8 16

considered in the Taylor's expansion. The final
at node /

result of the consumer voltage V'

scon_ 1

vreater than 2, 1s

after discarding powers
approximated as:

"

scon o
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‘ b Ve Vs
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+0.5 L ey (8)
I/.\'

In order to improve the accuracy of expression
(8), the coefficients for the last three terms were
evaluated with the aid of a search engine that
was i1mbedded in the probabilistic load tlow
program. The tinal coefficients can be expressed
as:

V L =

AI/u e ALlrlnmu 1t Al/, 5 ,AV:iimu;;l
VAl LY Ty i P
v, ; .
A ’ llLt [AL Hll(l
+0.829 Ll & 9)

'8

4

The square of the consumer voltage V ~son ; 18

obtained by squaring equation (5).

V Seon [ (V AL ) +(AVumu l):

ireal t

= v -2,

AV

ircal t

-+ A L/ 21’1 cl ++ A V :iinm,u 1 (1 ())

Due to the stochastic nature of the load currents,
the consumer voltage distribution fit the beta
model. [ts statistical parameters can be derived
from the first and the second moments of
distribution [Herman, 1993].

STATISTICAL ANALYSIS BASED ON
THE BETA MODEL

In statistics. 1t Y, Y5, Yio Y, arc independent

variables and arc identically distributed
according to a beta probability distribution
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function having parameters « and £ it follows
that the following expected values can be given
as [Herman, 1993]:

a

[Y.]= 11
E[Y;] Yy (1)
(l:
E[Y,.Y, )= —"— (12)
T tarpy
E[Y,.z]: ala+1) (13)
(a+ p)a+ p+])

The parameters o and f are evaluated from the

mean and standard deviation of the measured
data as follows:

dep— - o
o= Hen— i : ) (14)
co”
c—)cu—pu —c°
/3:( (e L ) (15)
co”
where
7] 1s the mean value of the measured data
o is the standard deviation of the measured
data
@ is the scaling factor conveniently taken

as the rating of the circuit breaker
Suppose each load current in Figurel at node /
has N, electrical consumers. The current /, at

node i can be expressed as [Herman, 1993]:

[ =CB(Y,+Y,+Y, +..+Y, ) (16)

If all Y* are independent and are identically
distributed with parameters ¢, and £, , it follows

that according to equation (11) and (16), the
expected value of the current /,, E[/,] will be:

ELL) = CBN.(——) (17)
ai i

The expected value of the square of the current

1,, E[1] can be expressed as:

a(a +1)

J (a0, + B, + 3 +1)

E[1’]=CB (N

(0{,2 + /))/3)’

For the product of two load currents /, and /,

+ N, (N, —1)

due to N, and N, consumers that are not
identically distributed, their expected value

E[1,1,] can be expressed as:

E:[ll\ [N ] = C‘BI\ ("BN E[)//\ ]E[)/II ]/VI\ /V”
ay

a; + fy

(—Z 1y (19)

= CB,CB,N,N,( ,
a” + ﬁll

where

CB, and CB, arc the scaling factors at nodes

kand n respectively

In  practice the scaling factors can be
conveniently be chosen as the circuit-breaker
size of the consumers [Herman et al, 1997].

EVALUATION  OF SCALING

FACTORS

NEW

In order to apply the same statistical parameter
of the beta-distributed currents described in the
low voltage level on MV distribution networks,
new scaling factors should be evaluated at each
node. These new scaling factors are evaluated
from the distribution transformer turns ratio and
the deterministic component of the statistically
distributed load currents treated as constant real
power loads because domestic loads can be
modelled as constant current at unity power
factor [Herman, 1993]. The node phase angles
assumed  previously are  calculated by
deterministic load flow using constant real
power loads as explained above and are
considered to be constant in the probabilistic
load flow analysis. The overall scaling factor,
SF at each load point taking into account the
variable scaling factor k.. the circuit
breaker scaling factor CB and the distribution
transformer turns ratio D, is evaluated as:

SF, =k, . CB.D, (20)

varsuhl

where
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D, =400/11000

[, ,=CB/N, is the deterministic value

a, +ﬂk
of beta-distributed currents at node kon low
voltage side

I
the deterministic load flow

1s the current on MV side evaluated from

k-—ny

I, .. 1s the converted value of / to the low

k=

voltage side of the distribution transformer

(11kV /400V)

By applying equations (11), (12) and (13), the
expected values for expressions (1), (3) and (4)
can be given as:
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The general expression of the first and second
moment of the consumer voltage distribution
V.~ atnode i, can be determined by finding the

expected values of equations (9) and (10)
respectively.  When  dealing with  beta
distribution function, the magnitude of the
random variable should lie in the interval (0,1)

and having positive statistical parameters c,

and A7 [Johnson et al, 1970]. Due to these
conditions, the consumer voltage random
variable V|, ; at node i, should be scaled or

normalised in order to satisfy the magnitude
criteria and the same time rendering positive

and ,B”-ﬂ
factor adopted in this paper is the MV nominal
voltage or the operating voltage V. Therefore,

— # ;
statistical parameters «; . The scaling

the normalised consumer voltage ¥ “w.n at node
i can be expressed as:

v,
I/l.("-ﬁll = ——Iﬂ (24 )
V

S

Referring to equation (11), the expccted value of
the normalised consumer voltage E[V, ] can be

fcon

expressed as:
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EV] )= — (25)
a‘fl‘ At ﬁx'f

It follows that according to equation (13), the
2" moment of the scaled consumer voltage

E[V ™ e ] can be expressed as:

g T, + B
E[l/n#(:n]: # a” (:(1” ::'ﬁ” )x:
((11'1' + ﬂ\ I )((Z\'i + ﬂ\l ER I)

Referring to [Herman et al, 1998], the statistical

# #
w and  B.7  of the
consumer voltage at node 7, can be expressed

as:

(26)

parameters « scaled
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According to equation (9), the expected value of
the normalised consumer voltage E[V ] at
node 7, can be given as:

E[VV,.. , E[VV;, =,
EVV i 1] ]+o.501; ]

EWVE 1=1-
VS Vsn

BV o s VTV gy ]
a
E[VV ieat ot 1E[VV2 ]

+0.829 29
v e

+0.448

Also, from equation (10), the second moment of
the normalised consumer voltage EWV ] at
node i, can be given as:

E[V ’/irou/ 1 J 4 E[V l/i/i'ul i ]

ElVen1=1-2 :
I/S V5 )
E[v l/ii?nug i ]
T (30)
Vs

The percentile value of the consumer voltage
V... at node i can be obtained by applying a
built in function BETAINV in MATLAB
software package at a specified level of risk R
as:

Vi, =BETAINV(R,a, . 1.7) (31

icon

7
fcon

Finally, the actual consumer voltage at

node / at a specity level of risk, is calculated
through rescaling the consumer voltage V ? seun_ v
of equation (24). Therefore, it can be expressed
as:

l/

icon

(32)

APPLICATION OF THE DEVELOPED
GENERAL EXPRESSIONS

In (Kundy, 2003), a development of a
formulation for radial distribution network is
presented. It shows that, the structure of radial
power distribution network allows each load
point to be traced to the source. Having this
characteristic, it is possible to develop a
formulation that can relate each node with the
source. The idea is to express the relationship in
terms of the system currents, which means that,
the individual load current is traced to the
source. This is facilitated by the formulation of
four main arrays as follows:

¢ path-array describing the path from any node
to the supply node, this path contains all the
branches connected between the node point
in question and the supply node

e b-array describing the individual load
currents through any branch of the network

* XZ2-array containing the total number of paths
(i.e. total number of connected branches)
from any node of the network to the supply
node

® wx-array containing the total number of load
currents through any branch of the network
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Table 1: The line data and load data of Figure 2.

branch R(Y) X(Q) node no. of o Yé; C'B for cach
no. consumers comsumer
per phasc

1-2 15.6 7.414 1

2-3 15.6 7.414 2

2-5 15.6 7.414 3

2-8 15.6 7.414 4
3-4 15.6 7.414 5 40 0.68 8.95 63
3-6 15.6 7.414 6 40 0.68 8.95 63
3-9 15.6 7.414 7 40 0.68 8.95 63
4-7 15.6 7.414 8 40 0.68 8.95 63
4-10 15.6 7.414 9 40 0.68 8.95 63
3¢ supply = 1 1AV 10 40 0.68 8.95 63

Table 2: The line and load data of Figure 2.
branch R(DY) X(Q) node no. of 104 Yéi CB for cach
no. consumers

per phasc consumer (A)

1-2 12.48 59312 1

2-3 12.48 5.9312 2

2-5 12.48 59312 3

2-8 12.48 59312 4

3-4 12.48 5.9312 5 40 1.2 10.4 63

3-6 12.48 5.9312 6 40 1.2 10.4 63

3-9 12.48 5.9312 7 40 1.2 10.4 63

4-7 12.48 5.9312 8 40 1.2 10.4 63

4-10 12.48 5.9312 9 40 1.2 10.4 63

3¢ supply =114V 10 40 1.2 10.4 63

The entire distribution network can be described . "
by an array -catled “D-array” in which the total ) -
number of columns represents the total number T T N
of the branches and their identification. ! 2 3 4
The developed general expressions (21-32) to be | — - I
used to perform the probabilistic load flow on | — L —
MV radial distribution networks are derived BhstaRon
from a radial distribution network without —— = 9 —t— 10
branches as depicted in Figurel. In reality, MV f v

distribution networks are all branched systems.
The above mentioned formulation can be applied
to make the developed expressions to be
applicable on MV radial distribution network of
any configuration. The procedure is facilitated ~ VERIFICATION OF THE ALGORITHM
by the developad arrays, which treats any
distribution network as if it is not a branched
system. This is possible by tracking the load
currents flowing through the network branches
between any node point and the supply node.

Figure 2:A single line diagram of an MV
radial distribution testing network

The consumer voltage percentile values are
evaluated using the analytical procedure
presented in previous sections based on the one
line diagram depicted in Figure 2.
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The line and load data applied to test the
developed algorithm is presented in Table 1 and
Table 2.

Table 3: The comparison of consumer voltages
for the data shown in Table 1.

node Risk=10%

no: Analytical MC Yo
(Volts) simulation difference
Volts volt-drop
2 5470.1 5471.8 -0.0005
3 4859.0 4862.5 -0.0011
4 4540.2 4545.4 -0.0018
5 5338.8 3341.1 -0.0007
6 4711.0 4713.9 -0.0010
7 43799 4387.0 -0.0025
8 5338.8 53423 -0.0010
9 4711.0 4714.4 -0.0011
10 4379.9 4386.1 -0.0022

The probabilistic load flow was performed
according to the computer flow chart shown in
appendix-A(a). The analytical results obtained
are compared with results from Monte Carlo
simulation. A computer flow chart for the
simulation procedure from beta distributed load
currents is shown in appendix-A(b). The
deterministic power load flow was performed
using forward a backward sweep algorithm
[Baran et al, 1997].

EVALUATION CRITERION

Monte Carlo simulation results are treated as

benchmark wvalues in calculating the %
difference volt-drop given as:
AV, — AV
A‘/Chop% — S an ok 1 00 (3 1)
where
VHV - VIHL X
AV, =—T—"2%100 is the % voltage drop

op

due to MC simulation

e 7

= ———=-*100 is the % voltage drop due

op

to analytical method

an

V is the consumer voltages due to MC

m

simulation

V. 1s the
analytical method

consumer voltages due to

Vs is the operating phase voltage equal to
6350.9 Volts

The distribution network shown in Figure 2 was
applied to evaluate the % difference volt-drop at
each node of the network. The line and load data
used are shown in Table 1 and 2. This data gives
a voltage drop of up to about 40 % so that the
accuracy of the proposed algorithm can be
tested. The number of simulations employed for
each case is 15000 in order to achieve a
reasonable accuracy in evaluating the consumer
voltages from Monte Carlo simulation. The
results are shown in Table 3 and Table 5 for the
risk level of 10% and Table 4 and Table 6 for the
risk level of 20%.

Table 4: The comparison of consumer voltages for
the data shown in Table [.

node Risk=20%
no: Analytical MC % difference
(Volts) simulation volt-drop
Volts

2 5497.6 5499.9 -0.0007
3 4906.6 4908.5 -0.0006
4 4600.4 4604.1 -0.0013
5 5371.0 5373.2 -0.0006
6 4764.3 4768.2 -0.0013
7 4445.8 4451.7 -0.0021
8 5371.0 5373.8 -0.0008
9 4764.3 4768.3 -0.0013
10 44458 4452.1 -0.0022
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Table 5: The comparison of consumer voltages

for the data shown in Table 2.

node no: Risk=10"%
Analytical MC Yo
(Volts) simulation differen
Volts ce volt-
drop

2 5226.1 5228.6 -0.0008
3 44291 4436.5 -0.0026
4 3998.8 4020.7 -0.0086
5 5069.2 5071.7 -0.0008
6 42384 42498 -0.0042
7 3777.7 3814.8 -0.0153
8 5069.2 5071.2 -0.0006
9 4238.4 4250.9 -0.0046
10 3777.7 3814.7 -0.0153

Table 6: The comparison of consumer voltages
for the data shown in Table 2.

node Risk=20%

no: Analytical MC %
(Volts) simulation difference
Volts volt-drop
2 5252.5 52547 -0.0007
3 4476.3 4481.7 -0.0019
4 4062.9 4079.6 -0.0064
5 5099.5 5102.5 -0.0009
6 4292.4 4301.8 -0.0034
7 3853.0 3880.1 -0.0110
8 5099.5 5102.2 -0.0008
9 4292.4 4301.4 -0.0033
10 3853.0 3879.5 -0.0108

DISCUSSION OF THE RESULTS

The data applied enables
consumer voltage percentile values of about
60% of the operating voltage. These values were
chosen so that the algorithm developed in this
paper can be tested for its accuracy. The
consumer voltage values evaluated at 10% risk
(or 90 % confidence level) can be interpreted as
values that have 0.1 probability of being less
than calculated values. Monte Carlo simulation
and analytical results for the consumer voltage
percentile values compare very well in the case
of 10% and 20% risk level giving a maximum
percentage difference voltage drop of -

calculation of

0.0153%. These results show that the proposed
algorithm can be applied to practical networks.

CONCLUSION

The algorithm developed in this paper can be
applied to evaluate consumer percentile voltages
on MV radial distribution networks using beta
distributed load currents for a specified level of
risk. The assumptions applied such as treating
the nodal phase angles constant and the
deterministic component of the statistically
distributed load currents as constant real power
loads had a little effect on the accuracy of the
algorithm. Despite of the big range of consumer
voltages considered, the algorithm demonstrated
to be capable of producing acceptable results if
beta-distributed load currents are applied to
evaluate consumer voltages on MV radial
distribution networks.

NOMENCLATURE

E[Y] is the expected value of Y

p.d.f. is the beta probability density function

SE,  is the overall scaling factor

is the first statistical moment of the

seon

consumer voltage (V)

is the parameter used in the Taylor series

a is the parameter of the beta probability
distribution function

£ is the parameter of the beta probability

distribution function

#

icon

is the normalised consumer voltage at

node i (V)

., 1s the actual consumer voltage V,  at
node i (V)

«,  is the statistical parameters of the scaled

consumer voltage at node i

P

is the statistical parameters of the scaled

consumer voltage at node
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AV,.. , 1s the total real component of the branch

Jes 1s the

iimag 1

ire,

voltage drop at node i (V)

is the total imaginary component

ot the voltage drop at node i (V)

is the square of the total real
component of the branch voltage
drop at node i (V7)

2

square of the total

imaginary component of the
branch voltage drop at node i

)
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APPENDIX-A
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(2) (b)

A computer flow chart for: (a) probabilistic load flow (b) MC

Figure 3:
simulations of the consumer voltages
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