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ABSTRACT

Linebreak problems are a typical example of transient and unsteady flow
of fluids in pipeline. The three equations of conservation which
mathematically model such flows are well known. Many numerical
methods are available and have been used for the solution of these
equations. In this paper, the most commonly used numerical methods and
their applications are described together with their comparative
advantages and drawbacks in various fluid transient phenomena. The
methods are the method of characteristics, finite-difference methods,
finite-element methods, flux-difference splitting schemes, the method of
lines and the wave-plan method. A computer model based on the gamma
delta method has been developed for analysis of unsteady and transient
flow of natural gas following linebreak in high pressure pipeline. The
second-order two-step method of MacCormack was used for numerical
solution of the equations of conservation. The procedure and equations
used are presented. Validation of the computer model with somée
experimental data gave encouraging results. The method could be applied
for solution of linebreak problems. These results are presented and
discussed in this paper. Also the merits of the MacCormack method over
the method of characteristics which is the most common method of solution
for such problems are discussed. ’

INTRODUCTION

In the process of developing a computer model for analysis of unsteady
flow of fluids in pipelines, one of the critical factors is selection of the
numerical method to be used for solution of the basic equations. The
various numerical methods for solution of the basic partial differential
equations of unsteady fluid flow in a pipeline and a discussion of their
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applications and suitability for the solution of the unsteady flow equations

for a ruptured high-pressure gas pipeline are presented in this section. The
shock-capturing explicit finite-difference methods of solution are preferred

to the shock fitting scheme using the method of characteristics [1].

Presentations of the basic partial differential equations for the more popular

numerical methods were made [2, 3]. Explicit finite-difference schemes
range from the single-step first-order schemes to four-step fourth-order
schemes. Explicit finite-difference methods integrate the basic partial

differential equations by considering the changes in the dependent variables

along the directions of the independent variables. This produces the solution

values at evenly spaced points in the physical plane. This study focuses

on the two-step second-order MacCormack method. Referring to Fig. .

this method allows explicit calculation of approximate values A +ar) Of
the solution at certain node points (i, t+At) of arectangular grid from known

exact or approximate values A y) of the solution at another node point (i,
t), preferably belonging to the past.
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Fig. 1 Calculation Mesh for the Second-order MacCormack Method

The basis of finite-difference formulations is that the differential terms of
the dependent variables appearing in the partial differential equations, are
expressed in approximate expressions so that a digital computer which
performs only standard arithmetic and logical operations can be employed
to obtain a solution. Two methods which are used for approximating the
differential terms are the Taylor series expansion and polynomials. The
approximations of the derivatives may be expressed as either forward,
backward or central differences; first-, second-order accurate and so on.
The finite-difference approximations are used to replace the derivatives
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* that appear in the partial differential equations. Finite-difference
formulation of the partial differential equations can be done in (wo \Qalys.
namely, explicit and implicit formulations. Finite-differcnce methods are
therefore categorised in the two types mentioned above. Obviously, the
solution of explicit equations is simpler than the implicit equations.
However, implicit formulations are more stable than explicit formulations.
In case of rapid transients, where small time-steps and large number of
sections are required, the method looses the advantage of fast computation.
Implicit finite-difference methods are suitable for the analysis of slow
transients on relatively large networks. Among the other categories of
numerical methods, there are some which are based on finite-difference
formulation. These include the method of characteristics, the
flux-difference splitting schemes, the method of lines and the wave-pian
method.

Many different explicit finite-difference methods, ranging from single-step
first-order accurate to four-step fourth-order accurate schemes, have been
developed for the fluid transient equations. Some of the popular methods
are: Forward Euler Method, Method of Lax, Lax-Wendroff Single-Step
Method, Lax-Wendroff Two-Step Method, Alternating Gradient Method,
MacCormack Method, Rusanov-Burstein-Mirin Method.
Abarbanel-Gottlieb-Turkel Method, Hopscotch Method, Leap Frog
Method, Pseudoviscosity Method and Warming-Kutler-Lomax Third-Order
Method. Similarly, many implicit finite-difference methods have been
developed and used for the solution of various engineering problems. Those
which have been popular for the solution of the partial differential equations
describing unsteady fluid flow in pipelines include the following: Fully
Implicit Method, Crank-Nicolson Method, Centred Difference Method,
Characteristic Finite-Difference Method, Explicit-Implicit Methods, Guy
Method, Gear Method, Backward Euler Method, and Beam-Warming
Method.

The major advantage of explicit finite-difference methods especially in
comparison with the method of characteristics 1s that they are very simple
to programme. The conservative form of the hyperbolic equations for
unsteady pipe flow has the favourable property that conservative finite-
difference methods applied to it produce solutions which greatly facilitates
accurate shock calculation. No special care needs to be taken of the location
of shocks, therefore it is suitable for systems in which shocks form. There
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are no eigenvectors to be computed. Eigenvectors are needed solely for
testing stability conditions. There are no linear or non-linear equations to
be solved. Explicit finite-difference mcthods need comparatively little
computer memory space since they solve the equations directly rather than
simultaneously. Second-order of accuracy is normally regarded as sufticient
tor the analysis of gas transients. Finite-difference methods produce
solution values at evenly spaced points in the physical plane. One of the
major disadvantages of finite-difference methods, other than the method
of characteristics, is that continuous initial data may propagate along the
characteristics thus making it difficult to handle. Explicit methods suffer
from stability problems since they are only conditionally stable. Time
steps are restricted by a stability criterion, which result in a large amount
of computer time being required. They are therefore not suitable for analysis
of large systems or unsteady flows over long periods of time. In the presence
of shocks, methods of higher than first-order produce considerable
overshoot and oscillatory systems. A smoothing parameter for overshoot
can tend to smooth out the transient peaks. Unlike the method of
characteristics, finite-difference methods are unable to solve the boundary
conditions naturally.

The method of characteristics has been described in detail [1]. One of the
major drawbacks of the method of characteristics is that if the dependent
variables are required at fixed time intervals, a two-dimensional
interpolation in the characteristic net is required and this may be quite
complicated. However, this drawback has béen overcome by the mesh
method of characteristics called the method of specified time intervals,
which solves the characteristic equations on values for the dependent
variables at specified time-distance coordinates. The method of
characteristics has many advantages compared with the other numerical
methods of solution. In the method of characteristics solution,
discontinuities in the initial value may propagate along the characteristics,
making it easy to handle them. Large time steps are possible in the natural
method, since they are not restricted by a stability criterion. The boundary
conditions are also properly posed. Itis time consuming to programme on
a computer. Discontinuous initial data and shock waves do not lead to
solution with overshoot and details are not smeared, in the natural method.
Exact solution is possible in the constant coefficient case with two
dependent variables regardless of eventual discontinuities in the mitial data,
in the case of the natural method. No attention needs to be paid to the
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position of the shocks, in the hybrid method and in general it causes only
a small overshoot.

The theoretical basis of the finite-element methods has been covered
extensively {4]. Finite-element methods have not been used for gas
transients as widely as the finite-difference based methods and thus there
are not many of these methods known. Until recent years, only two methods
namely the Galerkin Method [5], and more recently [6, 7] and the moving
finite-element method, have been used. A weighted residual finite-element
method, which uses the Galerkin finite-element method to discretize the
equation, was developed [8]. The most popular finite-element methods
for fluid transients are therefore the following: Galerkin Method. Spectral
Galerkin Method, Spectral Collocation Method, Moving Finite-Element
Method, and the Method of Bisgaard-Serensen-Spangenberg {3]. Finite-
element methods have some advantages over finite-difference methods.
The former methods can be used to solve virtually any engineering problem
for which a differential equation can be written. They have a higher
accuracy because cubic hermite splines which should give smallest errors
could be used. The major disadvantage of finite-element methods is that
they are somewhat complex, with complexity being proportional to the
complexity of the differential equations for that particular problem.

The concept of upwinding has been used in local discrete approximations
in finite-difference and finite-element methods for many years. Upwind
schemes have become popular since the beginning of the 1980’s (9. 10.
11], and these methods now play an important role in computational fluid
dynamics. They offer a sound theoretical basis of the characteristic theory
for hyperbolic systems and are capable of capturing discontinuities. Some
of the most common methods for the solution of the basic equations for
transient gas flow are the formulation, flux-vector splitting methods and
flux-difference splitting methods. Theoretical descriptions of the method
of lines has been published [12, 13, 14]. The method of lines is empirical
and extremely simple. Higher-order methods can be used for the integration
of time, for example fourth-order Runge-Kutta or multi-step
predictor-corrector method, which is approximate for parabolic problems.
The main advantage of the method of lines is that it offers the possibility
of utilizing highly developed software for ordinary differential equations.
The method is convenient in particular where lumped-parameter systems
of ordinary differential equations in time is required. With the method of
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lines it is difficult to treat the boundary conditions properly. Application
of the wave plan method has mainly been on liquid systemis [15, 16]; and
therefore the basic partial differential equations have been derived from
the equations of continuity and momentum. The wave-plan method is
more easily applied to complex unsteady flow systems. The wave-plan
method is advantageous in making certain types of dynamic response
calculations. For example, the response of fluid filled lines having types
of axial cross-sectional area distribution for which there would be little
hope of obtaining closed-form analytical solutions, can be easily handled.
The method readily solves problems in which there is interaction between
the structural motion of the conduits and the perturbations in the fluid
flowing within the conduit. The main limitation of the wave-plan method
when dealing with pipe networks is that the time interval must be chosen
small enough to account for pressure waves traversing the shortest pipe
section in the network thus requiring frequent calculations.

There has been many studies on fluid transients using the numerical methods
described in this section. These have been discussed in detail [17]. Most
of the studies are based on gas systems, although a few based on other
fluid systems have also been included. The studies are generally grouped
into three categories. The first category is that of studies consisting of
theoretical reviews and comparisons of various numerical methods of
solution of fluid transient problems. The second category consists of
practical studies on various fluid transient phenomena, other than linebreak.
The third category is that of studies dealing with linebreak (pipe rupture
and blowdown) modelling. Based on this analysis it was concluded that
explicit finite-difference methods are the most suitable for solution of the
basic equations for analysis of linebreak problems. Based on the literature
study conducted, the second order-method developed by MacCormack { 18]
and the third-order method developed by Warming, Kutler and Lomax
[19] were the most preferable. The method of characteristic was selected
for solution at the boundary points. However, comparative studies on the
three numerical methods mentioned above proved that the method of
characteristics is the best of the three for modelling rapid transients in
ruptured high pressure gas pipelines. The second-order MacCormack
method gave satisfactory results.

THE BASIC EQUATIONS OF FLOW
The basic equations for unsteady quasi-one-dimensional flow of real gases
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through non- rlgld and variable cross-sectional area pipes are considered,
using the Gamma Delta method, which were derived [20]. The basic
equations for unsteady flow equations were further simplified to the
following equations:

Continuity equation

0 d o/
-—p- + u __P + p._l_"_ = { (1)
ot ox ox
Momentum equation
ou 1 3 Ju w ;
—+——£+U—-—=—-———-gsm6 2)
ot p Ox ox pA
Energy equation
op ap 2 ou 1
— * = % g3 — = — (6, - DQ + wu
ar ox P~ g B P b8

The QUANT software for thermodynamic and transport properties of fluids
[21] was used.

In order to write the equations for the second-order MacCormack method,
the basic partial differential equations of conservation (equations (1), (2)
and (3)) have to be expressed in the following form:

94, 9.8 |
w2t & e C
ot ox &)

MacCormack [18] used his method for the time dependent Navier-Stokes
equations in two dimensions. The equations are linear i.e. body forces and
heat transfer were neglected. However, the method can be used in situations
where the basic equations are not linear, for example [22] for analysis of
transient flow of a compressible single-phase liquid in an elastic pipe. The
basic equations in that case were quasi-linear.

The three basic partial differential equations (1), (2) and (3) can be expressed
in the matrix form of equation (4), where the matrices A, B and C are as
follows:

Uhandisi Publications, Faculty of Engineering, University of Dar es salaam, 75
P. 0. Box 35131, Dar es salaam, Tanzania



Modelling rapid transients 'u'sing Maccormack method
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Before performing transient analysis, steady state analysis was performed
in order to establish the initial conditions (conditions at t = 0 s) in the
pipeline. This was followed by transient analysis before introducing the
break boundary conditions.

SOLUTION OF THE BASIC EQUATIONS BY MACCORMACK
METHOD

The MacCormack Method is superior to the method of characteristics when
Courant number (C,,) differs appreciably from unity. It is inherently
dissipative 1.e. because it is second-order accurate in both space and time,
no special shock capturing approach is needed. It is unconditionally stable
if C,, is less than unity and it produces minimal precision loss when C,,
moves away from unity. The method permits the use of a grid spacing that
is not overly fine even in highly complex cases. As the method is quite
efficient, overall computation effort remains reasonable. The MacCormack
method could be very well suited for applications of increasing complexity
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such as two-phase, gas-liquid flow problems and multi-dimensional flow .
Itis simple and has low development cost. The complete equations can be
used without making any simplification.

The finite difference form of equation (4) using the MacCormack method
can be written in either of the two alternatives 1 or 2 described below. The
subscripts and superscripts used refer to Fig. 1.

ALTERNATIVE 1:

Predictor step (forward difference):

A5 = 4, -B‘——(A

t {
_Af) - C!At (8)

i+1

Corrector step (backward difference):

A_C = At,P - BP At (A A;‘}-)l) = CiPAf (9)

f

ALTERNATIVE 2:

Predictor step (backward difference):

A = 4' - B,

H i

t t

& t t
—: [Ai - Af-l} - Cr.Af (10)
Corrector step (forward difference):

p Ar P B
4% = A:.P"B ——(A -4 - €, &t an

Writing the finite difference equations for equations (1), (2) and (3), the
following equations were obtained: -

ALTERNATIVE 1:

Predictor step (forward difference):

Pl ' : A t _ t _éi al w5 '
pf = pf uf Ao {pf-r}, Pf ) p!Ax ( i+l i ] (12)
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Corrector step (backward difference):
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Uhandisi Journal Vol. 21 No. 3, December 1997 78



Kimambo

ALTERNATIVE 2:

Predictor step (backward difference):

P2 ¢ ¢l _ t Ar ¢
Pi = By Y OBy F— (P: ptl ) P __x oy My Vo (18)

Corrector step (forward difference):
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u; :ui-“—_{pf_ptl] T{”f
- %
P,
{
-u' + A - + gsind
) ) : g (19)
. teAd,
P2 t ¢ At _ t Al ¢
p; =pz"”t‘A—x{Pi pu) [a]pi (f
LI t f z
uiil) + A l—-[a ]‘ M (20)
[~y A
At r2 At P2
P, = g = “.em A {Pfﬁ - P‘:z) O™ ("m =y ] 1)
C2 P2 1 Ar _p2 P2
u, =#; T e —Pir T P, )
Ax :
J
o’
. ur.m-é—{- [u:f - ul.'uz y *+ Al —A + gsin®|  (22)
Ax p
g p2 pP2At P2 P22 P:C\I P2 P2

= -u. T —p.. " a. ey
P, p, -u, Ax(P,,,P )[ Ip A( 1 )
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P2 P2 P2
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A
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The value of each variable at the end of a time step is the average of the
variables’ values at the beginning of the time step and its corrected values.

t+Ar 1 ¢ &f t+Aet 1 t cC2
P; = TPttt Piy P = P T P (24)
3 Z
YR t cl (bt 1 ¢ c2
u, = ; & * ¥ ) K = ; M Uy (25)
cl t+At 1 t C2

teAL | S B

P, _EEP:' * Py B —;‘p,- * Pi ) (20)
Itis possible to use each of the two alternatives exclusively or alternatively
ateach time step. Another more complicated alternative is to use an average

of the corrected values obtained when both alternatives are carried out at
every time step. In equation form, this alternative is expressed as follows:

gl o Bt o & gH 2 o @7)
: s P 4 4

u.“m _ i i o _l_ u.m . _!_ u.cz -
1 2 1 4 1 4 1

t+ht | S 1 ¢ 1 ¢2

P, = ";'2' p; T : b; = z pi (29)

The merits, demerits and suitability for application of the three alternatives
of using the MacCormack method were discussed [17]. The three
alternatives were compared. However, it should be noted that it was
recommended [22] to use the average values with both alternatives, in
cases where it 1s important that the signal be transmitted at the correct
speed.

VALIDATION OF THE COMPUTER MODEL

Results Qroduccd bx the computer model were comEared with exErimental
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results from the Foothills tests [23]. In the Foothills test, short pipe lengths
of a total of 243m and diameters of approximately 1.2 and 1.4m were
charged with natural gas of known composition and pressurised (o between
74 and 87 barA. Fracture was initiated at the centre of the test section by
detonating an explosive cutter. Although the data can be used to some
extent to validate computer models for linebreak analysis, it is not suitable
for this purpose because the fracture was designed to propagate along the
axial direction of the pipe covering some considerable lengths. This makes
it difficuit to model the break boundary, especially using this model where
the break boundary is assumed to be fixed in the x-t plane. Only one test
result, namely NABTF1 EAST, was selected for validation of the computer
model. The result NABFT1 EAST was used to validate the model for
flow reversal in the downstream section of the broken pipe. Results
produced by the computer model are presented in Figs. 2 and 3, together
with the experimental results and numerical results produced by the
characteristics model [1]. A grid spacing of x=0.1m and t=0.0001s,
at the broken end and a variable grid spacing were used.

DISCUSSION OF THE VALIDATION OF RESULTS

The symbols used in the graphs are defined as follows: MOC (Method of
characteristics) and MCC (MacCormack method). Results and observations
made in using the method of characteristics were presented in preceding
paper [1]. In addition, it was observed that in situations where there are
sharp changes in the fluid properties, such as during the first few " s in
the region around the break, the second-order method of characteristics
failed numerically. For such cases, the first-order method was used
throughout the calculation. Also when the method of characteristics was
used to model the flow reversal in the section of the pipeline downstream
of the break, it produced results which tend to lean-on the values at the
intact end of the pipeline section. This directional bias resulted in a very
slow pressure drop in the broken section of the pipeline, including the
broken boundary. The problem of directional bias does not exist with the
programme based on the MacCormack method. An investigation into the
possible causes of the problem did not reveal any error in the calculation
procedure or computer coding. The problem of directional bias with the
method of characteristics was observed only when the second-order
approximation was used. Both the upstream and downstream models
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Fig.3 Pressure Wave Propagation Speed for Foothills Test NABTF1

produce comparable results, when the first-order method of characteristics
was used.

It was earlier concluded [22] that the MacCormack method is superior to
the method of characteristics when C,, differs appreciably from unity. When
C, is much smaller than unity, the MacCormack method produces results
with a precision that could not be attained with any reasonable number of
computation nodes, when the method of characteristic is used. It was also
concluded that the use of the alternatives 1 and 2 in succession on time
steps could introduce significant oscillations in the solution, especially
where the basic equations are poorly approximated. Directional bias could
be avoided by using exclusively one of the two calculation alternatives.
The directional bias is important only when working with two space
dimensions, in which case it was recommended that the average of both
methods (alternative 3) be used. It was also claimed that doing so did
seem to smear the shock slightly and the computation time was doubled.

In this study the computer programme 1s written in a way that any of the
three alternatives could be used. This is despite the fact that it is was
decided to use alternative 1 exclusively. Results from the three alternatives
were compared [ 17], using a different set of experimental data called British
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Gas BGT2 [24]. Due to limited computer memory, only the first-order
calculation of the method of characteristics could be used at the boundary
points, when using alternative 3. Alternatives 1 and 3 produced simifar
results. Alternative 2 produced the worst results, with much bigger
oscillations and pressures falling fastest. The computation speed of
alternative 1 is higher than that of alternative 3. The MacCormack method
is extremely simple to programme, compared with the method of
characteristics. The execution speed of the MacCormack method is faster
than that of the method of characteristics but in this case, where the time
used to calculate the fluid properties from the QUANT software constitutes
the biggest proportion of the CPU time, the two methods have execution
speeds which do not differ much. The same argument applies for the
difference which is to be expected between alternative 3 and the other two
alternatives of the MacCormack method.

It was stated earlier that in the presence of shocks, explicit finite-difference
methods of higher than first order produce considerable overshoot and -
oscillatory systems. Results obtained from the MacCormack method were

oscillatory especially near the broken end. The oscillations are more severe

for smaller L/D values. Also an overshoot was observed in the flow velocity,

at the node next to the boundary node at the break. The overshoot was

controlled by limiting the magnitude of the flow velocity to that of the

corresponding speed of sound. These problems were not encountered with

the method of characteristics. With the MacCormack method the problem

of directional bias which was encountered with the method of
characteristics, in the section of the pipeline down stream the break, did

not exist.

CONCLUSIONS

The transient analysis models based on the method of characteristics and
the MacCormack method were compared based on accuracy, stability of
results and computational economy. The main reason for including the
MacCormack was to confirm findings that the method is suitable for
modelling the transient flow following a break in high-pressure gas
pipelines. The literature review which was conducted during this study
indicated that this method could be more suitable for high-pressure gas
linebreak applications than the method of characteristics. A previous study
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[2] used the second-order method of characteristics, but concluded that
better results could be obtained by using an alternative numerical method
of solution. In a previous publication {25], the MacCormack method was
recommended as the most suitable for linebreak problems.

Based on the comparison made in this study, it is concluded that the method
of characteristics produces better results than the MacCormack method,
for linebreak applications. The criteria used in comparing the two models
is accuracy and stability of results, computer memory and CPU time
requirements. The MacCormack method was found to be unsuitable for
modelling transient flow following a linebreak in high-pressure natural
gas pipelines. It produced oscillating results in the low pressure region,
which resulted in p-t curves crossing each other. It predicts the wave speeds
reasonably well in the low pressure region, but it underestimates it in the
high pressure region. The magnitude of equalization pressure is slightly
higher than that calculated with the method of characteristics. The
computation speed of the MacCormack method is one and a half times
faster than that of the second-order method of characteristics, when the
alternatives 1 and 2 were used. When the alteinative 3 was used, the
computation speed of the MacCormack method was the same as that of
the second order-method of characteristics

The MacCormack second-order method was previously thought of as being
potentially better for linebreak problems than the method of characteristics.
In contrast, this study has confirmed that the MacCormack method is less
suitable for modelling of the flow following linebreak in high-pressure
gas pipelines. '

NOMENCLATURE ' .

A = Cross-section area of pipe
a = Wave speed
L = Courant number
d = Pipe diameter
fp = Darcy'’s fiiction factor
g = Gravitational acceleration
h = Specific enthalpy of gas
1= = Length of pipeline
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M, = Mach number

p = Static pressure of gas

Pr = Prandtl number

t = Time

u = Flow velocity of gas

X = Horizontal distance along the pipe

Greek Symbols

A = Gradient of the characteristic lines

g = [sentropic gamma coefficient

A = Small change in the quantity

5 = Isentropic delta coefficient

0 = ~ Angle of inclination of pipe to horizontal

u = Coefficient of dynamic viscosity

p = - Density of gas

W = Conical angle of the pipe
— Heat flow into the pipe per unit length of pipe per unit

time
o = Frictional force per unit length of pipe
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