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ABSTRACT

A numerical method for solving two dimensional elliptic boundary-value
problems of fourth order 1s used for finding stationary solutions of the
equations of motion for a laminar flow through a sudden pipe expansion
of an 1ncompressib1é non- Newtonfan fluid with a constitutive equation
of the Rginer-ﬂ1viin (R-R) type. Results for the Newtonian fluid,

which 1s a special case, are in’‘excellent agreement with those by
previous investigators and they quﬁnstrate the relfabflity, superiorit
and accﬁracylof the method. Rgsul;s for the non- Newtonfan cases could
be of valug for*f1x1ng {deas about ;1sco-elast1c behaviour although the
R-R fluid allows only fnelasticity: this 1s particularly useful since
the R-R model 1s mathematically the least complicated allowing the

introduction of non-zero normal stress differences.
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Introduction

Flow in pipes has long been a subject of experimental and theoretical
investigations. Results from such work provide essential data for

construction of efficient fluid handling systems.

Rheologically complex fluids occcur in “wdustrially important contexts
such as polyiwer and chemica: rvocess plants, food processing and
textile industries, thern:l [cwer plants, tubular exchangers,
geological piping systems, sewage systems and polymer extrusion
pipes. Understanding the behaviour of such fluids in non-

trivial situations is a matter of practical importance and concern.

In industrial situations fluids are often exposed to sudden geometry
changes and one of the unresolved problems is the theoretical prediction
of fluid behaviour in situations involving abrupt geometry changes,
especially when fluids involve long-range memory of past history of

deformation such as visco-elastic fluids.

Experimental investigations an” computatinna! <tudies [2,3,41 for
flow through abrupt geometry cnanges show Lhe need for application
of simple constitutive models for a better understanding of the
flow mechanism. The Reiner-Ri.iin constitutive equation is
mathematically the least complicated allowing the introduction of

non-zero normal stress differences (1.e. viscometric functions) and

can be of value for fixing jae:t coout viscoelasticity.
In this analysis, the [ o1 o special Feiper-Riviin fluid formulated
by Masanja 16| through a circular pipe witn sudden expansion, is

Tnvestigated numerically.
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The numerical method is a difference procedure based on a 9-point
star which allows fourth order approximation of all differential
operators up to the third derivative. This method developed by
Wagner |1/ 1s being extended for non-Newtonian fluids

for solving 2-dimensional elliptic boundary-value problems
of fourth order. Hence it utilises the stream-function formulation
of the equations of motion, which 1s a non-linear differential
equation (d.e) of 4th order. This d.e. is linearised with the
help of the Newton-Chord Method and the resulting linear d.e. is
discretized using the difference procedure and solved using a

direct-solver.

Formulation of the Problem

Consider flow of an incompressible non-Newtonian fluid with negligible
temperature and memory effects, the equation of motion for the velocity

field vix,t) fis

v .
P [a—-f + (v.v);[ = v.T, v.v=20 P

where p 1s the constant density and T(x,t) is the symmetric stress

tensor. The latter can be written as
T=-pl+1 (2)

where the pressure p(x,t) s to be determined from the condition of

incompressibility, and the deviatoric stress tensor 1 1s related by
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the constitutive equation to the rate of strain tensor

1 avi av

diJ = E(W + 3!1) (3)

If this relation is Tinear,
1 = 2n-d- (4

where n 1s the shear viscosity, we deal with an fncompressible
Newtonian or Navier-Stokes fluid. It has been shown by Reiner |1|
and Rivlin 12| from euclidean invariance that the general nonlinear

constitutive equation must be of the form

x = gl 19 + haly, 1d (5)
where 12 and 13 are the invariants

2 3

The invariant I, = tr d vanishes due to 1ncompress}b111ty. Fluids
characterized by the constitutive equation (5) are called purely
viscous or Reiner-Rivliin (R-R) fluids. A special case of the R-R
fluid obtdined by Masanja 16/,

I 3

1 = —Zul_d_ Lo g 2"2 (T‘ l - I3g ) (7
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-

is used in this investigation. The material constant W; and Mo
are called the viscosity coefficients. Consider a statfonary state,

a8 ;f() = 0. The suitable physical coordinates for the flow

through a circular pipe are cvlindrical polar (x,e , r) with the
velocity vector field v =(u, 0, V) 1n the axial-, azimuthal-
and radial directionals respectively. The deviatoric stress

tensor 1s thus

ﬁ
E R [ 0 (-
0 - 0 = —Zp] 0 dee 0
0 d-~
| 0 | %7 rr |
» I
daedii L b 0 “dge
~2u 0 S 0
2 XX T rx"3
'dasdEF 0 dog
where the components of d are
au ¢ 1 (aﬁ N aV) q:"' av and
.  GE s W=, o
dii X xr — 2 ar ax J ar
d. o ¥
g6 F
and the scalar invarfant I2 1s
s F o w
=g Yy "y @, &7 a0, v (10)
ar ax r ar ax
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As common practice, the following dimensionless quantities are

introduced:
i v F x P = Po
Us—=, Ve  P=-, Xx==- and p = iy an

where a 1{s the constant pipe diameter, Uy and Po respectively

are the velocity and pressure at the entrance cross-section.

In view of the mass balance Vv.v = 0, there exists a stream-function

such that
1 4y Y ‘
u-'-'-; -a'?; > v FTK- (12)

By taking the curl of o(v.v)v = v.T  and making use of (12) a non-

Iinear 4th order elliptic partial differential equation in ¢ is

chtatned:
ACY) () + !2 13 -RB(W = 0 (13)
r

with
TR R TP o T SR L

o e arfaxt T oaxlar T P

, 3 3% 3 s

:? ;;? :3 r (14)

and
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1 a3y 3 a3y Ay lava 3% o L4
B(‘;)-——- -_( + )———.—( + }
rar ar ax? 3r2 roar ax axz ar2
1 ay (2 2%y 3' azw} 1 ay azv 3 3y : a%
r X axz 4 arz * r? ar axar r3 ax ar

where W, the non-Newtonian parameter and Re the Reynolds number are

given by
M W pau
H - _]. ._g ; R - -—'-0- (]‘)

The differential equation (13) 1s to be solved subject to imposed boundary
conditions.

Consider a circular pipe with constant cress-sartfon of dlameter a. The

pipe 1s sharply expanded as stown in Fig.1 below.

e ey

8 27,
*;Z'F’" L
=4
L.'.r "
— !
. @ . . ——
e e
uz2(1-4r2) u:-é;(:-(*dg)
Xz-st X=0 =&

Fig. 1: A schematic representation »i flow after ar ibrupt expansion
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Taking the origin to be the intersection of the entrance cross-section

and the axis of symmetry, the boundaries and their conditions are

(1) the inlet: Assume the flow regime to be fully developed,

then
=
O<r<i Ho.xa-aad
4 ¢17)
2%
X = -sL r-a-; = 0
v = r2(1-2r2)+%

where s> 0 s a constant, L 1s the pipe length.

(11) IEE E'ﬂf.&tii

- -.i("
r=9 a¥ (18)
w -0
-sl <x<lL
ol b

(111)  The pipe wall: The wall 1s considered impermeable and the

no-s11p ‘condition 1s assumed to hold. Further, 1t 1s ussumd

that v =0 at the wall, so

P

XxX=0
$<rc<a 9
r = 3" i
-sL<x<0] v = 0
r= a,
0<x<lL

— - s
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(1v) The exit: A sufficiently long distance behind the expansion
the flow is assumed to have resumed the form of a fully
developed profjie, f.e. u=k( - (E—)z); ﬁ(ae) =0

1 =
leads to k = - —y SO that
2a

e
k 2
v 1 r r
0< r< 'e =7 ;'2 a - (i;) )
e
Jay | (20)
X'L -ﬁﬂo
2
| r 1
vV = (=) (1-(=)) +
i T a, 2, B

The Numerical Solution

For solving the non-1inear d.e. (13) the Newton-Chord iteration
procedure 18| {s used. The relation for the {terated value

MO DR (SRR (3

(21)
for calculating the value of the stream function v(k*‘) in the
(k+1)th 1{teration is uséd. In the d.e. (13) the stream function
value v 1s substituted by values from (21). For the first
fteration a suitable initial value for ¥(0) 4s chosen so that
cvto} is small enough. This results in the products with cv‘k}
to be negligible so that a 1inear d.e. is obtained. Hence av(k)

"(k)

and 1ts derivatives, with considered known, is obtained
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from
(k)
F ; 63 x r)-Aaa4" A
Am,n 85 % ; 90° T+ Ay
+ A, & a4v v + A,.6 33¢ B + A, 8 2
04 ° 7 30° .3 2%
3° (k) a3v (k) az
dion Pl St + A..& + A,q0
12 axar2 03 ;:3 20 ;:?
A a—__az"’ " A caz“m A8 2¥
* M % axar L 02" 77 * Mo®
+ G = 0
where
(k)
1 W ay
"‘40‘“04'2‘22’;237 LT
. 4 Re at(k)
30 ° M2 *F 37
(k)
ay 2W
Az-l = Aos = - _X f:z'l' Re)
" =__Re 2y (k)
20 ;? X
. Ee ﬂl:i:)
11 r2 ar
(k) *
3 Ay W 3
A = =, — (=, + RY+ 2
02 r_2 X r2 e r4
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(k) (k) k)
4 4 3
A = % (4 s2 -+ -
10 r? ;;;; ax“ar ;;3
(k) (k) (k)
R 3 3 2
(" 2y %y 2 3%y
= P & K + ) + =, Re
3T axlar ars r2 % axl
2 (k)
3 W 3ty 1 av
4 2, (=) +R) (=) - = = ) 29
o g8 € o2 F
(k) (k) (K
(k) R .3 3 2
3 a3 W e, a3 ¢ v ay
AL, = - =, — (=, +R_+ =« + + =
01 +3 X it Skl A ;;3 A arax
and
Gx,r) = A (a“'(k) + 2 a’“(k) + sy (k))
0 ¥ axtar? ar?
3 (k) 3 (k) 3 (k)
+ A30 3—; + ﬂ21 ( E—% + E—% )
ax ax“ar ar
» 3_j:k) » 32* (k) - 252 (k)
L 203_,"2 11 axar
2, (k) k)
Ay, ¢y 1 38, (31
02 " .2 r ar :
The iteration 1s stopped when ﬁv{k} is small enough or if the

prescribed number of {terations {s attained.

In order to increase the accuracy we transform the xr-plane into
a tn- plane in such a way that the mesh net is dense near regions

of high velocity changes and it spreads out elsewhere.
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For a pipe expansion big velocity changes occur behind the expan: g

Following 9] we assume the transformations

(£—£0)3

y-¢ e

and

3

n) = an” + bnz + Cn (3

in the x- and r- directions respectively with o &0 8 v, @, b,
¢ constants. For suitability to the pipe expansion certain conditions
must be satisfied. For the x- direction transformation, conditfons f)

determining o are:

. dx s ad
X(co) =0; X(0) = -sL; 3 tzo) - e &

from this and (32) follows

Y
f = ——3- (SL - axto)
%o

which when substituted in (32) gives

¥ (£-£0)3 7
XCS) = Gx (c"'to) + E—j (SL - zeo) T_—_f-_ (36
0
5@ derivative with respect to (w.r.t) ¢ 1is
3.
3CE-E) (Y=E) = (E=§,)7(-1)

dx Y 0 0 B 479
IF (E) = a + ;-3 (SL - uxzo) : — (a7

0 (y - B)
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So that the condition % “o’ -e, is satisfied since for ¢ = )

the Tast term in (37) 1s zero. € ¢ [0,1] so the value of vy e (1,1.1].
The nearer to 1 the value of v 1s, the more stretched out the mesh
net 1s, in the x,r-plane far down the pipe expansion. Small values of
o of the equation (36) effect the compression of the net 1n the
x-direction in the region of the expansion step. The mesh net in the
x,r-plane 1s given in Figure 2.

In order the pipe wall in the expansion to be always 1n one mesh point,
the transformation (33) must fulfi11 the conditions

E = 1 dr
r(1) o & r(no) -! ' In (I‘Io) =a, (38)

‘rom which the constants a, b, ¢ are determined as

3
T-¢ (na =na)
1 "o, 1 ¢ "0 ~"o
1 [
a B.k-! (lr "y (2!‘lo - 13b) (40)
C s -(a+h) (41)
where
Ky =3 = bty Ky A ok, L (R s " (42)
1=y r T Y "™ "o "o ~"o
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The transformations (32) and (33) are used to transform equatfon (22)

i.e.

Fcnnn (x,r); G(x,r); x; r) = 0 into

F(amn(c.n); g(g,n); E,n) = 0 43)
with ann(:,n) and g(g,n) respective transformations of

Ann(x,r) and G(x,r). e and g are obtained using formulae (A1)
to (A8) and (B1) to (B8) given in the appendix.

Results and Conclusion

Numerical results are 1llustrated graphically in diagrams Fig.3 to 7 and
tabulated in plots Tab.1 to111.The parameters W and Rgq are the non-

Newtonian parameter and the Reynolds number respectively. R the measure

e!
of the importance of inertia, 1s based on the pipe diameter and average
velocity. The non-Newtonian character of the fluid 1s displayed by W.
The larger W 1s the more non-Newtonian the fluid 1s. The parameter

is the ratio of pipe diameter after and before the expansion.

Most results were obtained for 8 = 2 using a grid of maximum size of

31 x 31 1n the radial and axfal directionals.

Tab.1 shows the effect of the Reynolds number on the re-attachment Tength
Xg for 3 reprsentative non-Newtonian fluid parameters. Also shown In
Tab. 11 1s the excellent agreement of this work with the results obtaiied
by Halmos et al. |10/ and Macagno et al. |2]| for a Newtonfan Fluid with
the same geometry. For vanishing W, the re-attachment length increas:s

with increasing Re'
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Fig. 3 11lustrates the increasing size of the secondary cell which 1s
associated with increasing values of Re. As a result, the development length
down stream of the expansion 1s also found to be longer the larger the

value of Re is. The longer secondary cell allows the main flow to
decelerate gradually and behaves not only as a dissipator of energy but also
as a mechanism which shapes the flow through the expansion and dampens the
effect of the discontinuity in geometry. Intuitively i1t can be seen that
the greater the inertia, the more difficult 1t 1s for the fluid to follow
the contour of the expansion and therefore, the larger will be the size

of the cell.

The effect of the non-Newtonfan parameter W on the flow field is
11lustrated in Fig. 4 for Re =5 and W=0.0, 0.1 and 1.0. The
secondary cell can be seen to be longer for the larger W value. The
intensity of the secondary cell decreases as W 1increases. This decrease
1s caused by an increase in the non-Newtonfan viscosity of the secondary
motion as W departs away from Newtonfan behaviour. The main flow therefore

drives the circulation in the cell at a lower rate.

The axi-symmetric flow produced by the sudden expansion can be analysed
.1n terms of axfal and radial velocity components. Both u and v are
functions of R, and W. Fig.5 11lustrates the development of the axiai
velocity profile for W =0.0 and 1.0 for Re = 10. The dependence of

u on the two flow parameters W and Re 1s best described by the centre
1ine values of this variable as 11lustrated by Fig.6. The length necessary
for fully developed flow to be attained increases with increasing Re but

decreases with increasing W.
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Fig. 7 display the dependence of the centre 1ine axial velocity on the pt
expansion ratio . It 1s observed that after expansion, the entrance
Tength depends strongly on 8. Tab.111 shows the dependence of re-attachie:

lengths on W and 8.

W

0.0 0.1 0.4
Re
10 x; = 0.64 0.66 0.67
20 xy = 0.89 1.15 1.19

Tab.1: Dependence of re-attachment length X, on W and
R. fOI" B = 2-

Re Re-attachment lengths obtained by This study
Halmos et.al.[10] Macagno et.al.|2|
Numerical Experimental
(from graphs) (from graphs)

5 0.2 0.3 0.25
20 0.9 0.9 0.87
40 1.8 1.6 1.70
70 3 3.0 2.94

100 4.4 4.3 4.17
150 6.5 6.5 6.30
200 - 8.6 8.47

Tab .11: Effect of Re on the re-attachment length for
W=0.0 and B = 2.0.
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W 0.0 0.1 0.4
2.0 0.64 0.66 0.67
% 1.25 .29 1.33
4.0 1.89 1.99 2.1

Tab. 111. Re-attachment lengths forRe =10 and varfous W

and 8 parameters,

L ]
B
|
" -

4
Lo

e -

e
e

Fig.2: A transformed coor
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Fig.3: Stream lines for a 2:1 pipe expansion
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Fig.4: Stream lines for a 2'1 pipe expansion
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Fig.S5: Axial velocity as a function of location for the 2:1
Pipe expansion for Rg=10.
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Fig. 6: Variation of centreline axial velocity with the pipe
expansion ratios.
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Fig.7 Dependence of the centreline axial velocity con

the reynolds number and non-newtonian para.
meter for the 2:1 pipe expansion.
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APPENDIX
A. Transformation equatfons for ¢ = $(x(£), r(n))
We use subscripts for partial differentiation, e.g.
P
T3 ()= ( )x
x " x Y
-
2 X
1 (13
v =(=) 9 _ - ] (A2)
" & (x,) ¢
1 Xee ‘“cc’z Xeee
Yaxx = 77 Yeee 3 Tl Ll S —Ll' Vg (A3)
X3 (x.) (x.) (x. )
£ £ E £
2
| Xeg (Xeg) Xege
Yoox " T F %t st |-t — 3 e
(x,) (x) (x,) (xg)
s s < e “;::’3 Xeeee
+ |10 —5-3-—-- 5 vy atbote o of I8 % ()
(xt) (xt) xE ¢

For partial derivatives w.r.t r similar expressions to
(A1) - (A4) are obtained by interchanging x with r and ¢
with n. Mixed derivatives are

 J = v (F5)
xr rn xz En
v = L v x—‘% L (F6)
xxr 2 "Etn "~ En

r (x.) r (x.)

n E&¢ n-—%
Yoo v - Tnn v (A7)
xrr 4 Enn 3 En

(r“) xt (rn) xg
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v = —21 v - -——3""—"rnn - ¥ = ———-—2—‘—3-,:55 v +
T % Benn p 39x )¢ SN yE(x )0 &M
n E n 3 n 2
X_.r
" EL nn "5 (A8)
(r x.) "
n £
Derivatives of transformation functions
03¢5-£)2 (y-£) + (§-£)°
0 0 ,
XE = ﬂx + 2 \,B])
(y-£)
2 2 3
sG(c-iC}(v—z) ¥ 6(;—50) (y=¢) + 2 (a-EO)
Xee = — 3 '
36(7-£)3+ 18 (c—zo)(y-£)2+ 18 (E-Eo‘z fv-E) + 6 (5*50?3 'B3)
Reez ™ 7 -
(y-£)
3 " Z 3 4
628(y-€) '+ ?;E{—EO)(T-E) - 72({—:01 (y-L, + 24(;—;0)
T s s 84>
(y-£)
Py = 3an2 + 2bn + ¢ (B5)
Pog ™ 6an + 2b (B6)
T i ba (B7)
(38"
nnan = 0
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