Nonlinear Direct Torque Control of Interior Permanent Magnet Synchronous Motor Drive

Authors

  • Jackson J. Justo University of Dar es Salaam
  • Francis Mwasilu University of Dar es Salaam

Abstract

This paper presents a nonlinear direct torque control (NDTC) strategy of interior permanent magnet synchronous motors (IPMSMs) for electric vehicle (EV) propulsion. The proposed NDTC scheme applies a nonlinear model of IPMSM to dynamically determine the optimal switching states that optimize the EV drivers ' decision to reduce the workload. Moreover, the proposed NDTC method has a simple control structure and can explicitly handle system constraints and nonlinearities. The performance evaluation is conducted via a prototype IPMSM test-bed with a TMS320F28335 DSP. Comparative experimental results provide the evidence of improvements of the proposed NDTC strategy over the conventional DTC strategy by indicating a fast torque response and an accurate speed tracking even under rapid speed change conditions.

Keywords: Direct torque control (DTC), interior permanent magnet synchronous motor (IPMSM), nonlinear direct torque control (NDTC).

References

Chen Y., Li X., Wiet C. and J. Wang (2014). Energy management and driving strategy for in-wheel motor electric ground vehicles with terrain profile preview. IEEE Trans. Ind. Informat., 10(3): 1938 ˆ’1947.

Cortes P., Kazmierkowski M.P., Kennel R.M., Quevedo D.E. and Rodriguez J. (2008). Predictive control in power electronics and drives. IEEE Trans. Ind. Electron., 55(12): 4312 ˆ’4324.

DOI: 10.1109/TIE.2008.2007480

Do T.D., Kwak S., Choi H.H. and Jung J.W. (2014). Suboptimal control scheme design for interior permanent- magnet synchronous motors: An SDRE-based approach. IEEE Trans.

Power Electron., 29(6): 3020 ˆ’3031.

Errouissi R., Ouhrouche M., Chen C-W.H.and Trynadlowski A.M. (2012). Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron., 59(8): 3078 ˆ’3088.

Foo G. and Rahman M.F. (2009). Direct torque and flux control of an IPM synchronous motor drive using backstepping approach. IET Electr. Power Appl., 3(5): 413 ˆ’421. DOI: 10.1049/iet-epa.2008.0182

Foo G.H.B. and Rahman M.F. (2010). Direct torque control of an IPM- synchronous motor drive at very low speed using a sliding-mode stator flux observer. IEEE Trans. Power Electron., 25(4): 933 ˆ’942. DOI:10.1109/TPEL.2009.2036354

Justo J.J., Mwasilu F., Kim E.-K., Kim J., Choi H.H. and Jung J.-W. (2017). Fuzzy model predictive direct torque control of IPMSMs for electric vehicle applications. IEEE Transactions on Mechatronics, 22(4): 1542 - 1553. DOI:10.1109/TMECH.2017.2665670

Kolli A., Bethoux O., De Bernardinis A., Laboure E. and Coquery G. (2013). Space Vector PWM control synthesis for an H-bridge drive in electric vehicles. IEEE Trans. Veh. Technol., 62(6): 2441 ˆ’2452. DOI: 10.1109/tvt.2013.2246202

Lee J.S., Choi C.H., Seok J.K. and Lorenz R.D. (2011). Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator

flux linkage observer. IEEE Trans. Ind. Appl., 47(4): 1749 ˆ’1958.

DOI:10.1109/TIA.2011.2154293

Li S., Li K., Rajamani R. and Wang J. (2011). Model predictive multi- objective vehicular adaptive cruise control. IEEE Trans. Control Syst. Technol., 19(3): 556 ˆ’566. DOI: 10.1109/TCST.2010.2049203

Ma Z., Saeidi S. and Kennel R. (2014). FPGA implementation of model predictive control with constant switching frequency for PMSM drives. IEEE Trans. Ind. Informat., 10(4): 2055 ˆ’2063.

DOI: 10.1109/TII.2014.2344432

Mohamed Y.A.R.I. (2007). A newly designed instantaneous-torque control of direct-drive PMSM servo actuator with improved torque estimation and control characteristics. IEEE Trans. Ind. Electron., 54(5): 2864 ˆ’2873. DOI: 10.1109/TIE.2007.901356

Miranda H., Cortes P., Yuz J.I. and Rodriguez J. (2009). Predictive torque control of induction machines based on state-space models. IEEE Trans. Ind. Electron., 56(6): 1916 ˆ’1924. DOI: 10.1109/TIE.2009.2014904

Preindl M. and Bolognani S. (2013a). Model predictive direct torque control with finite control set for PMSM drive systems, part I: Maximum torque per ampere operation. IEEE Trans. Ind.

Informat., 9(4): 1912 ˆ’1921.

Preindl M. and Bolognani S. (2013b). Model predictive direct speed control with finite set of PMSM drive systems. IEEE Trans. Power Electron., 28(2): 1007 ˆ’1015.

Prior G. and Krstic M. (2013). Quantizedinput control lyapunov approach for permanent magnet synchronous motor drives. IEEE Trans. Control Syst. Technol., 21(5): 1784 ˆ’1794. DOI: 10.1109/TCST.2012.2212246

Rahman M.F., Haque Md. E., Lixin T. and Limin Z. (2004). Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies. IEEE Trans. Ind. Electron., 54(4): 799 ˆ’809.

Wallmark O., Lundberg S., and Bongiorno M. (2012). Input admittance expressions for field-oriented controlled salient PMSM drives. IEEE Trans. Power Electron., 27(3): 1514 ˆ’1520.

Xia C., Zhao J., Yan Y. and Shi T. (2014). A novel direct torque control and flux control method of matrix converter-fed PMSM drives. IEEE Trans. Power Electron., 29(10): 5417 ˆ’5430.

DOI:10.1109/TPEL.2013.2293171

Xu Z. and Rahman M.F. (2012). Comparison of a sliding observer and a Kalman filter for direct-torque- controlled IPM synchronous motor drive. IEEE Trans. Ind. Electron., 59(11): 4179 ˆ’4188.

DOI: 10.1109/TIE.2012.2188252

Zhao Y., Qiao W. and Wu L. (2013). An adaptive quasi-sliding-mode rotor position observer-based sensorless control for interior permanent magnet synchronous machines. IEEE Trans. Power Electron., 28(12): 5618 ˆ’5629. DOI: 10.1109/TPEL.2013.2246871

Zhang X. (2013). Sensorless induction motor drive using indirect vector controller and sliding €“mode observer for electric vehicles. IEEE Trans. Veh. Technol., 62(7): 3010 ˆ’3018. DOI: 10.1109/TVT.2013.2251921

Zhang Y. and Zhu J. (2011a). Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans. Power Electron., 26(1):

ˆ’248. DOI:10.1109/TPEL.2010.2059047

Zhang Y. and Zhu J. (2011b). A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency

reduction. IEEE Trans. Power Electron., 26(10): 3055 ˆ’3067.

DOI:10.1109/TPEL.2011.2129577

Downloads

Published

2019-08-21

How to Cite

Justo, J. J., & Mwasilu, F. (2019). Nonlinear Direct Torque Control of Interior Permanent Magnet Synchronous Motor Drive. Tanzania Journal of Engineering and Technology, 38(1). Retrieved from https://journals.udsm.ac.tz/index.php/tjet/article/view/2933