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Abstract 

The univariate kernel density estimator requires one smoothing parameter while the bivariate and 

other higher dimensional kernel density estimators demand more than one smoothing parameter 

depending on the form of smoothing parameterizations used. The smoothing parameters of the 

higher dimensional kernels are presented in a matrix form called the smoothing matrix. The two 

forms of parameterizations frequently used in higher dimensional kernel estimators are diagonal or 

constrained parameterization and full or unconstrained parameterization. While the full 

parameterization has no restrictions, the diagonal has some form of restrictions. The study 

investigates the performance of smoothing parameterizations of bivariate kernel estimator using 

asymptotic mean integrated squared error as error criterion function. The results show that in 

retention of statistical properties of data and production of smaller values of asymptotic mean 

integrated squared error as tabulated, the full smoothing parameterization outperforms its diagonal 

counterpart. 
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Introduction 

Nonparametric density estimation 

techniques are of wide applications with the 

kernel density estimator playing vital 

statistical roles in data analysis. Kernel 

estimation is a data smoothing method where 

inferences and conclusions are made about a 

set of observations. As a nonparametric 

method, kernel density estimation is a very 

useful tool for analysis and visualization of the 

distribution of observations (Simonoff 2012). 

The kernel estimator is one of the popular 

nonparametric techniques in density 

estimation. The univariate kernel estimator is 

of the form 

 ̂( )  
 

   
∑ 

 

   

(
    
   

)                            ( ) 

where  ( ) is a kernel function,     is 

smoothing parameter also called bandwidth, 

    are observations or measurements obtained 

from real life and   is sample size. The kernel 

function determines the shape of the resulting 

estimates while the smoothing parameter 

regulates the level of smoothing apply on the 

kernel estimator. The kernel function is a non-

negative function that satisfies the following 

conditions. 
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The first condition in equation (2) implies that 

the kernel function must integrate to unity, 

therefore most kernel functions are probability 

density functions; the second condition simply 

states that the average of the kernel is zero, 

while the third condition means that the 

variance of the kernel function denoted by 

  ( ) is not equal to zero (Scott 1992).  

The bivariate kernel density estimator 

occupied a unique position of bridging the 

univariate kernel estimator and other higher 

dimensional kernel estimators (Duong and 

Hazelton 2003). In bivariate kernel density 

estimation,      are taken to be the random 

variables assuming values in    and they have 

a joint density function  (    ) (    )     

with                    being the set of 

observations of size   drawn from the 

distribution. The bivariate kernel density 

estimate of  (    )  based on this sample is of 

the form    

 ̂(   )  
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)     ( ) 

where       and       are smoothing 

parameters in   and   axes and  (    ) is a 

bivariate kernel function which is usually the 

product of two univariate kernels. The 

bivariate kernel density estimates are simple to 

understand and interpret, either as surface 

plots (wire frames) or contour plots. The 

bivariate kernel estimator in equation (3) can 

also be written as 
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The kernel estimator in equation (3) and 

equation (4) is a useful tool for data 

exploratory analysis and data visualization 

especially for bivariate data when  ̂(   ) can 

be visualized using the familiar perspectives 

or contour plots (Scott 1992, Simonoff 2012, 

Silverman 2018). Other areas of applications 

of kernel density estimator are nonparametric 

discriminant analysis, intensity function 

estimation and goodness-of-fit testing (Duong 

and Hazelton 2003). It is generally known that 

the choice of smoothing parameter is very 

important to the performance of   ̂(   ) either 

in the constrained form or the unconstrained 

form (Liu et al. 2011, Siloko et al. 2018). 

Examination of performance of kernel 

density estimator using diagonal smoothing 

matrix and full smoothing matrix with 

emphasis on bivariate kernel employing the 

asymptotic mean integrated squared error as 

error criterion is presented in this paper. The 

asymptotic mean integrated squared error of 

the univariate and bivariate cases were 

discussed with the forms of parameterizations. 

A comparative study of forms of 

parameterizations with real data example was 

investigated and results showing the inherent 

statistical properties of the data and also 

producing smaller AMISE value with the full 

smoothing parameterization. 

 

Methodology 

The methodology behind the derivation of 

the expression of the asymptotic mean 

integrated squared error for kernel density 

estimation lie in the application of Taylor’s 

series expansion of the kernel function. The 

estimate of  ̂( ) in equation (1) is measured 

by the asymptotic mean integrated squared 

error. An asymptotic approximation of 

equation (1) using Taylor’s series expansion 

yields the integrated variance and the 

integrated squared bias given by 

{
 

    
 ( )
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  (   )                            
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where  ( ) is roughness of kernel function, 

  ( )
 
 
 is variance of kernel and   (   )  

 ∫    ( )
    is the roughness of unknown 

probability density function (Scott 1992, 

Guidoum 2015). The combination of the terms 

in equation (5) will yield an estimate of 

asymptotic mean integrated squared error 

given as 
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The minimum of the AMISE is the solution to 

the differential equation  
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Therefore, the smoothing parameter that 

minimizes the AMISE of the kernel estimator 

is given by 

       *
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  (   )  

+
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where   is dimension of kernel and   is 

sample size. 

Similarly, the asymptotic mean integrated 

squared error of the bivariate kernel is 
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where  ( ) is roughness of kernel,   ( )
 
 
 is 

variance of kernel 

and  (   )  ∫∫   (   )
          (   )  

∫∫    (   )
      are the roughnesses of the 

unknown probability density function. The 

choice of smoothing parameters also known as 

smoothing matrices in bivariate kernel is 

strictly based on the complexity of the 

underlying density and the number of 

parameters to be estimated. In practice, the 

commonest parameterizations are diagonal 

parameterization and full smoothing 

parameterization. If the product kernel is 

employed, then the smoothing parameters that 

will minimize the AMISE in equation (8) 

denoted by                           are of 

the form 

{
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As observed in the smoothing parameter 

that minimizes the AMISE of the univariate 

kernel, the expressions in equation (9) contain 

the second derivatives of the unknown density 

    being estimated and this will require some 

approximations. The order of the smoothing 

parameter obtained from equation (9) 

is     (   )⁄ . The full smoothing 

parameterization requires 
 (   )

 
 smoothing 

parameters where   is dimension of kernel 

and the order is same as that of equation (9). 

The compact form of the smoothing parameter 

that minimizes the AMISE in the case of the 

full smoothing parameterization is of the form 

       *
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  (   (   )) 
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where 

 (   (   ))  ∫∫(
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   (   )  (
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is roughness of the unknown probability 

density function.  

The choice of a kernel function is not a 

difficult task because most kernel functions 

are probability density functions. In this paper, 

the standard normal kernel was employed 

because it produced smooth density estimates 

and simplified the mathematical computations. 

The standard normal kernel function of the 

bivariate kernel estimator given in equation 

(4) is of the form 

 (    )  
 

  
   ( 

     

 
)             (  ) 
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The matrix form of the diagonal 

parameterization and full smoothing 

parameterization of the bivariate kernel 

estimator given in equation (4) above are 

    [
   
   

]         *
     
     

+     (  ) 

The diagonal form of smoothing 

parameterization considers only the elements 

of the leading diagonal of the smoothing 

matrix while the off diagonal elements are 

zero while the full smoothing parameterization 

takes into consideration all the elements as 

shown in equation (12). The performance of 

these forms of parameterizations will be 

compared using the asymptotic mean 

integrated squared error (AMISE) as the error 

criterion function. 

 

Results 

       This section is about comparing the 

performance of the diagonal smoothing matrix 

with the full smoothing matrix using a real 

data example. Two data set will be examined; 

a univariate case and a bivariate case. The 

univariate case requires one smoothing 

parameter; hence there will be no comparison 

in terms of performance. The smoothing 

matrix that minimizes the asymptotic mean 

integrated squared error (AMISE) in the case 

of diagonal smoothing matrix is represented 

by          , while the full smoothing matrix 

is represented by          . It is observed that 

in both parameterizations, the smoothing 

matrices obtained are usually symmetric.  

The first data set examined is the lengths 

of 86 spells (in days) of psychiatric treatment 

undergone by patients used as controls in a 

study of suicide risks (Silverman 2018). The 

data are log transformed and treated as 

observations on the interval (–2, 10). Figure 1 

is the kernel estimate for the suicide study data 

and the estimate presents the data to be 

bimodal. 

 

 
Figure 1: Kernel estimate of length of treatment data (Days). 

The smoothing parameter that minimizes the 

AMISE and its value is in Table 1 and there is 

no comparison of performance since 

univariate kernel requires a single bandwidth.  

The second data set examined is the 

waiting time between eruptions and the 

duration of the eruption for the Old Faithful 

Geyser in Yellowstone National Park, 

Wyoming, USA (Azzalini and Bowman 

1990). The data set is made up of 272 

observations on two variables in which 

variable   represents the duration of the 

eruption, while variable   represents the 

waiting time between eruptions. Figure 2 
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shows the scatterplots of the Old Faithful data 

while Figure 3 and Figure 4 show the kernel 

estimates (surface plots and contour plots) of 

the two forms of smoothing parameterizations 

using the bivariate normal kernel.  

One fundamental step to observe in the 

examination of bivariate data set is to consider 

the scatterplots of the bivariate data but often 

times, while density estimate will reveal or 

highlight important features, scatterplots 

cannot play this vital role (Siloko et al. 2018). 

Scatterplots have been regarded as the most 

frequently used tools for graphically 

displaying bivariate data sets but with the 

serious disadvantage that the observers are 

only drawn to the peripheries of the data 

cloud, while significant structures in the main 

body of the data will be hidden by the high 

density of points (Wand and Jones 1995). In 

kernel density estimates, these disadvantages 

are eliminated because they have an advantage 

of presentation of information regarding the 

distribution of the data set. As noted from the 

scatterplots of the Old Faithful data, the modes 

were not as apparent from the scatterplots like 

the kernel estimates and this exemplifies the 

usefulness of bivariate density estimates for 

highlighting structure. One very important 

point to note from the kernel estimates of the 

Old Faithful data is that it is bimodal and this 

provides evidence in favour of eruption times 

and the time interval until the next eruption 

exhibiting a bimodal distribution.  

 

Table 1: Variance, bias
2
 and AMISE for treatment data set 

Bandwidth Variance  Bias
2
 AMISE 

0.448953 0.0073062666 0.0018265666 0.0091328332 

 

 
Figure 2: Scatterplot of Old Faithful data. 

 

The scatterplots show a strong 

relationship between the variables and this is 

obvious that the time interval until the next 

eruption is positively correlated with the 

duration of the eruption. The data were 

standardized in order to obtain equal variances 

in each dimension because in most 

multivariate statistical analysis, the data 
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should be standardized in order to make sure 

that the difference among the ranges of 

variables will disappear (Sain 2002, Simonoff 

2012). The smoothing matrices for the forms 

of parameterizations for this data are  

         *
                
                

+                 *
                    
                    

+ 

 

 

 
Figure 3: Kernel estimates (surface and contour plots) of    smoothing matrix. 

 
 

 
Figure 4: Kernel estimates (surface and contour plots) of    smoothing matrix. 

Table 2 shows the asymptotic integrated 

variance (AIV), asymptotic integrated squared 

bias (AISB) and the asymptotic mean 

integrated squared error (AMISE) of the Old 

Faithful data. The analysis presented in Table 

2 clearly shows that the full smoothing matrix 

did better in performance than the diagonal 

smoothing matrix because it produced a 

smaller value of the asymptotic mean 

integrated squared error (AMISE). 
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Table 2: Variance, bias
2
 and AMISE for Old Faithful data set 

Bandwidths Variance Bias
2 

AMISE 

HD-AMISE 0.0016045116 0.0008023932 0.0024069048 

HF-AMISE 0.0012735059 0.0000960389 0.0013695448 

 

As generally known, one method is better 

than the other one when it gives a smaller 

value of the asymptotic mean integrated 

squared error (Jarnicka 2009, Siloko et al. 

2019). However; from the kernel estimates of 

both forms of parameterizations, the 

bimodality property of the distribution is 

retained and both parameterizations also 

exemplify the usefulness of the bivariate 

kernel density estimates for highlighting 

structures in a data set. 

Discussion 

The paper investigated the performance of 

smoothing parameterization of kernel density 

estimation with emphasis on bivariate kernel 

density estimator. The performance of the 

bivariate kernel density estimator is primarily 

determined by the smoothing parameter and 

the form of parameterization employed unlike 

its univariate counterpart whose performance 

determinant is the smoothing parameter. 

The performance of kernel density 

estimator in relation with smoothing 

parameter and forms of parametrization 

employed is best determined by the production 

of minimum error value using an error 

criterion function. The error criterion function 

used in this paper is the asymptotic mean 

integration squared error. The full 

parameterization produced the minimum 

asymptotic mean integration squared error 

value when compared with the diagonal 

parameterization, although the two approaches 

produced kernel estimates whose statistical 

properties of the data like bimodality were 

retained. The smaller AMISE value of the full 

parameterization indicates a better choice of 

smoothing parameter than the diagonal 

parameterization. 

 

 

Conclusions 
The full smoothing parameterization of 

the bivariate kernel estimator outperformed 

the diagonal parameterization with the AMISE 

as error criterion function. However, the 

kernel estimates of both forms of 

parameterization retained the inherent feature 

of bimodality of the bivariate data examined 

for exploratory and visualization purposes. 

The full smoothing parameterization is 

therefore recommended for higher dimensions 

although with difficulty as the dimensions of 

the kernel function increases. The complexity 

associated with higher dimensions known as 

curse of dimensionality is mainly a problem 

with nonparametric statistics. 
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