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Abstract 

Land use land cover (LULC) changes affect the planet's energy balance and region's climate. 

Land Surface Temperature (LST) is a vital indicator of this change. Studies in Dar es Salaam 

Metropolitan City have investigated LST and its relationships with building heights and 

densities, urban heat islands, spectral indices, and urban morphological determinants. The 

present study used cross-sectional profiles, chord diagrams, and simple linear regression 

models to examine the influence of LULC changes on the LST in Dar es Salaam Metropolitan 

City (DMC). LST was extracted from Landsat 5 TM and 8 OLI/TIRS images for 1995, 2009, 

and 2017. LULC was identified via the supervised random forest classification algorithm. 

Between 1995 and 2017, built-up areas rose by 8%, vegetation fell 7%, and bare soil 3%. As a 

result, the average LST rose by 3 °C. Built-up areas had the highest temperatures (24–26.5 °C), 

followed by bare soil (22–25.5 °C). The lowest temperatures (21–25 °C) were on vegetation 

and water. Built-up area positively correlated with LST, while vegetation, water bodies, and 

bare soil negatively correlated. The study results can assist local authorities in enforcing urban 

planning regulations, raising public awareness, and guiding policymakers in creating 

sustainable planning and management strategies for the future. 

 

Keywords: Dar es Salaam, Land use land cover, simple linear regression model, land surface 

temperature, chord diagrams. 

 

Introduction 

Rapid urbanisation poses threats to the 

world, with more than half (about 57%) of 

the global population currently living in 

urban areas and an expected increase to 

approximately 68% by 2050, where Sub-

Saharan African countries are anticipated to 

have more than half the world's population by 

2050 (United Nations 2019b, Demographia 

2022). Additionally, it is projected that 

approximately half of the global population 

growth by 2050 will be concentrated in nine 

specific countries: India, Nigeria, Pakistan, 

Democratic Republic of Congo, Ethiopia, 

United Republic of Tanzania, United States 

of America, Uganda and Indonesia (United 

Nations 2019a). Due to rising urbanisation, 

people want additional land for housing and 

infrastructure. In addition, they need extra 

fuel, industrial minerals, and building 

materials. Consequently, impervious surfaces 

raise the land surface temperature (LST), 

significantly hurting people's livelihood as 

excess heat is stored and accelerates to high 

temperatures (Simwanda et al. 2019). 

Furthermore, the change in the land surface 

https://dx.doi.org/10.4314/tjs.v49i2.7


Tanz. J. Sci. Vol. 49(2) 2023 

357 

environment through activities such as 

construction and landscaping has had 

detrimental impacts on the environment's 

energy balance, boosting sensible heat 

instead of latent heat and making it hotter 

than it would be under natural conditions, 

where the energy balance remains 

undisturbed by these human activities 

(Ibrahim et al. 2016). Increased LST 

generates hot days and warm spells, 

worsening cities' urban heat island (UHI) 

impacts (Zhang and Sun 2019). UHI refers to 

the phenomenon in which urban areas 

experience higher temperatures than the 

surrounding rural or undeveloped areas 

(Sussman et al. 2019). Urban regions use 

artificial materials, mainly concrete and 

asphalt, for building, which contribute to 

temperature disparities, affect urban 

environment islands, and has local and global 

impacts (Mensah et al. 2020). UHI affects 

people's lives. High temperatures, especially 

in dry season, increase demands for air 

conditioning to cool buildings, increase 

energy consumption, increase air pollutants, 

impair thermal comfort, and harm the 

environment.  

Urbanisation has been rapidly 

transforming Tanzania's land use land cover, 

particularly in the city of Dar es Salaam 

(Mnyali and Materu 2021). Dar es Salaam is 

the fastest-growing city in Tanzania, with a 

population of 5.4 million residents, aiming to 

exceed 13 million by 2035 and 16 million by 

2040 and expected to become the fourth most 

populous city in Africa, with Luanda and 

Johannesburg being close behind (Bello-

Schünemann and Aucoin 2016, United 

Republic of Tanzania 2022). It is anticipated 

that, soon, it will rank as the fourth most 

populous city. Therefore, it is crucial to 

research the implications of land use land 

cover changes and their impacts on land 

surface temperature to make informed 

decisions for the city's future development. 

Extensive research has been conducted on 

the relationships between Land use Land 

cover (LULC) and Land Surface Temperature 

(LST) in various parts of the world. For 

instance, studies in Paço do Lumiar, Brazil 

(Serra et al. 2018), Botswana (Akinyemi et 

al. 2019), and Pune City, India (Gohain et al., 

2020) have investigated the effects of LULC 

changes on LST trends. In Gaborone, 

Botswana (Akinyemi et al. 2019) specifically 

examined the impact of  LULC changes on 

land surface temperature trends in an 

urbanising dryland region of Africa. Gohain 

et al. (2020) focused on Pune City, India, to 

assess the influence of LULC changes on 

land surface temperature. Similarly, 

researchers in Jordan and Raipur City, India, 

namely Jaber (2019) and Guha et al. (2020), 

respectively, utilised remote sensing (RS) 

data to explore how LULC changes affect 

LST. They employed remote sensing 

techniques to understand the relationships 

between LULC and surface temperature. 

Xiao et al. (2018) analysed both Vienna and 

Madrid, investigating the responses of LST to 

LULC changes. Their study utilised 

regression models to comprehend the 

interactions between these two cities' LULC 

and LST. Additionally, Naim and Kafy 

(2021) conducted research in Chattogram 

City, Bangladesh, using regression models to 

explore the relationships between LST and 

LULC. 

Geographic Information Systems (GIS) 

and Remote Sensing (RS) are effective and 

affordable tools for analysing LULC changes. 

Remote sensing data are widely used for 

detecting, measuring, and mapping LULC 

patterns due to their frequent data collection, 

processing suitability, and precise 

georeferencing (Tewabe and Fentahun 2020). 

In Dar es Salaam, GIS and RS were utilised 

to determine LULC (Kibassa and Shemdoe 

2016, Mzava et al. 2019, Manyama et al. 

2020). However, limited studies have 

examined the influence of LULC on LST 

using GIS and RS. Although these 

researchers examined the association between 

LULC and LST using geospatial technology 

in diverse places worldwide, there needs to 

be more understanding of urban LULC on 

LST and urban heat islands, notably in 

Tanzania. LULC with LST correlation helps 

comprehend the earth's biophysical makeup, 

analyse ramifications, and provide solutions 

to mitigate impacts for effective urban 

planning and management. This study 
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assessed the impacts of urban LULC 

alterations on urban LST in Dar es Salaam 

Metropolitan City (DMC). The study 

intended to answer the following questions: i) 

How has LULC changed over the past two 

decades? ii) What are the spatial patterns of 

LST?; iii) Which LULC has more significant 

effects on LST?; and iv) How does LULC 

correlate with LST? The findings help inform 

decision-makers, land managers and 

planners, and architects about managing 

natural resources sustainably and mitigating 

the effects of LST caused by the rapidly 

growing metropolitan cities such as Dar es 

Salaam. 

 

Materials and Methods 

Description of the study area 

The study was conducted in Dar es 

Salaam Metropolitan City (DMC), located 

between the latitudes of 6.36° and 7.0° South 

of the equator and the longitudes of 39.0° and 

33.33° East of Greenwich (Figure 1). The city 

has five districts (Kinondoni, Ubungo, Ilala, 

Temeke and Kigamboni), covering a total 

area of 1,393 km
2
. Due to its proximity to the 

equator and the warm Indian Ocean, the city 

is one of Tanzania's warmest regions, with 

annual mean maximum and minimum 

temperatures ranging from 29 to 32 °C 

(December–March) and 19 to 25 °C (June–

September), respectively (Simon et al. 2022). 

In addition, DMC is Tanzania's financial and 

port hub, "commercial capital", and a national 

hub for industry, education, and culture, 

creating huge job prospects and attracting 

rural immigration. 

Data collection 

Data types and sources 

This study used Landsat images acquired 

from the USGS website 

(https://earthexplorer.usgs.gov). The area is 

clouded almost throughout the year; as a 

result, obtaining clear sky images at regular 

intervals and the same month was 

challenging (cloud cover less than 10%). 

Therefore, the satellite imageries selected 

were for 1995, 2009 and 2017, falling within 

the same season (June to July) data 

acquisition window (Table 1). Two were 

images from the Landsat 5 TM sensor (1995 

and 2009), while the third was Landsat 8 

(2017). Landsat TM consists of seven 

spectral bands with a spatial resolution of 30 

metres for optical bands (Bands 1 to 5 and 7) 

and a thermal infrared band (Band 6) with a 

spatial resolution of 120 metres. While 

Landsat 8 consists of eleven bands from 

Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS). Whereby nine OLI 

spectral bands with a spatial resolution of 30 

metres for Bands 1 to 7 and Thermal Infrared 

Sensor (TIRS) Bands 10 and 11 (100 m 

resolution). The optical bands were used to 

classify the land use land cover in the study 

area, while the thermal infrared bands were 

used to generate land surface temperatures. 

However, for Landsat OLI, TIR band 10 was 

chosen as a single spectral band rather than a 

split window algorithm due to the more 

significant calibration uncertainty associated 

with TIR band 11 (Guha et al. 2018). 

 

Table 1: Attributes of satellite imageries used 

Sensor Path Row Date of acquisition 

Landsat 5 (TM) 166 65 25 June 1995 

Landsat 5 (TM) 166 65 01 July 2009 

Landsat 8 (OLI) 166 65 25 June 2017 

 

Image processing and classification 

Before image classification, Landsat 

images were preprocessed (atmospheric and 

radiometric correction, cloud filling, and 

masking) in Google Earth Engine's code 

editor to remove the sensor, atmospheric, and 

illumination artefacts (Young et al. 2017). 

Then, using R's Random Forest Classifier, 

supervised classification was performed. 

Random Forest (RF) is the most used 

machine-learning remote sensing (RS) land 

use land cover classification. RF is popular 

because it can handle outliers and noisy 

datasets; its accuracy with multi-source high-

https://earthexplorer.usgs.gov/
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dimensional datasets is higher than other 

popular classifiers (Noi Phan et al. 2020). 

Due to the limited spatial resolution of the 

images, we used higher resolution images 

from Planet, Bing Maps, Esri, and Google 

Earth using QGIS plugins to generate 

accurate training signatures for each LULC. 

Finally, the images were classified into four 

LULC categories: water (rivers, ponds, 

wetlands, and ocean), bare soil (sand, 

exposed soil, and un-vegetated areas), 

vegetation (forestlands, bushlands, 

agricultural lands, and other vegetative 

surfaces) and built-up (buildings, roads, and 

other impervious surfaces). Next, accuracy 

assessments were performed to assess the 

accuracy of the LULC classification. First, 

123 ground-truthing points were collected 

using historical Google Earth high-resolution 

images. Then, the confusion matrix and 

kappa coefficients were calculated to 

determine the accuracy of the classified 

images. The overall accuracy of the images 

varied between 90% and 94.55%, while the 

kappa coefficient varied between 0.902 and 

0.819, indicating excellent accuracy in 

classified images. Erdas Imagine 2014 

software was used to conduct the accuracy 

assessments.  

 

Retrieval of land surface temperature 

Landsat imageries' thermal band(s) were 

used to calculate the land surface 

temperature (LST). Band 6 (10.40–12.50 m) 

is the Landsat 5 (TM) thermal band. Band 

10 (10.6–11.19 m) and Band 11 (11.5–12.51 

m) are the thermal bands on the Landsat 8 

(OLI). The LST is obtained in two steps. 

The thermal band's Digital Number (DN) 

was first converted to spectral radiance. The 

second step was to convert the spectral 

value of radiance to degrees Celsius at-

satellite brightness temperature. For Landsat 

5 TM and Landsat 8 (OLI), the DN to 

radiance conversion was performed using 

equation (1) and equation (2), which are 

supplied in the corresponding sensor's 

handbook. 

 

𝐿𝜆 = (
𝐿𝑚𝑎𝑥𝜆−𝐿𝑚𝑖𝑛𝜆

𝑄𝐶𝑎𝑙𝑚𝑎𝑥−𝑄𝐶𝑎𝑙𝑚𝑖𝑛
) ∗ (𝑄𝐶𝑎𝑙 − 𝑄𝐶𝑎𝑙𝑚𝑖𝑛) + 𝐿𝑚𝑖𝑛𝜆  (1) 

 

Where; L𝜆 = sensor radiance, Lmax𝜆 = 

maximum radiance of thermal band, Lmin𝜆 = 

minimum radiance of thermal band, QCal = 

quantised calibrated pixel value in DN, 

QCalmax = maximum quantised calibrated 

pixel value in DN (DN=255), QCalmin = 

minimum quantised calibrated pixel value 

in DN (DN=0). 

 𝐿𝜆 = (𝑀𝐿 ∗ 𝑄𝐶𝑎𝑙) + 𝐴𝐿 (2) 

Where; ML = radiance multiplicative scaling 

factor, AL = radiance additive scaling factor 

for band (obtained from band 10 and 11 

metadata file), and QCal = pixel value in DN. 

The second step was to change the spectral 

value of radiance to at-sensor brightness 

temperature (BT; °Celsius) after converting 

DN to spectral radiance equation (3).  

𝐵𝑇 =
𝐾2

𝑙𝑛((
𝐾1
𝐿𝜆

) + 1)

 - 273.15 (3) 

where K1 and K2 are the calibration 

constants of thermal bands. However, the 

earth is not a black body and has different 

underlying surface conditions in different 

places. Land surface temperature (Ts), 

different from at-satellite brightness 

temperature (BT), is then calculated using 

equation (4).  

𝑇𝑠 =
𝐵𝑇

{1 +  ⌊(𝜆𝐵𝑇
𝑝 )𝑙𝑛𝜀ƛ⌋}

 (4) 

Where; 𝑇𝑠 is the LST in °Celsius, BT is the 

at-sensor BT (∘Celsius), λ (≈11.5 μm) is 

the effective wavelength of emitted 

radiance, 

 𝑝 = ℎ(𝑐

𝜎
) =1.438 × 10

−2 
mK (5) 

𝑤ℎ𝑒𝑟𝑒 σ is the Boltzmann constant 

(1.38 × 10
−23

 J K
−1

), h is Planck’s constant 

(6.626 × 10
−34

 J sec),  c is the light 

velocity of light (2.998 × 10
8
m/s), and 𝜀𝜆 

is the emissivity calculated in (Sekertekin 

and Bonafoni 2020) using equation (6).  

𝜀 = 0.004 ∗ 𝑃𝑉 + 0.986  (6)  

where; P𝑉 = proportion of vegetation, as 

calculated via equation 7. 

 𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

 (7) 
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NDVI is the Normalised Difference 

Vegetation Index calculated from Landsat 

images' Red and Near-Infrared bands. The 

methodological approach for this study is 

summarised in Figure 1. 

 
Figure 1: Flowchart of the methodology used in the study. 

 

Defining the relationships between LULC 

and LST 

The relationships between different 

variables can be determined in a variety of 

ways. First, a graph or a model can 

compare the relationships. For example, the 

mean, minimum, maximum, and standard 

deviation can create a graphical 

comparison, while a simple linear 

regression model (SLRM) can investigate 

the relationships between variables. The 

SLRM uses a straight line to measure the 

connection between two independent 

variables. According to Iqbal (2021), the 

main benefit of linear regression over more 

complex methods like machine learning is its 

ease of use as an optimisation algorithm, 

providing strong solutions and allowing for 

easy and efficient implementation, even on 

systems with low computational capacity. 

The mathematical equation of linear 

regression is easy to understand and has a 

lower time complexity than other machine 

learning algorithms. Linear regression is 

particularly useful for modelling datasets 

with linear separability, allowing for 

identifying and comprehending relationships 

between variables. Thus, the SLRM and 

graphical comparison were used to assess 

the relationships between LULC and LST 

from 1995 to 2017. The graphical 

comparison depicts changing mean, 

minimum, and maximum LST patterns. In 

addition, from 1995 to 2017, LST profiling 

was performed to delineate LST change 

spatially over time in the research area. In 

this context, the SLRM was used to 

compute the relationships between each 

independent variable, i.e., vegetation, built-

up area, bare soil and waterbody) against 

the dependent variable (LST) using the 

following equation:  

𝑦 = 𝛽0 + 𝛽1 𝑥 + 𝜀   (8)  

Where; y is the dependent variable, x is the 

independent variable, and ɛ is a random error.  
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Results and Discussion 

Land use land cover changes in the city. 

From Table 2, the results show that there 

have been significant changes in land use 

land cover (LULC) in the study area over 

time. In 1995, most of the land was covered 

by vegetation (91%), followed by built-up 

areas (6%), waterbodies (2%), and bare soil 

(1%). However, in 2009, there was a 

noticeable decrease in vegetation coverage by 

4%, accompanied by the expansion of built-

up areas by 3%. On the other hand, the 

coverage of waterbodies and bare soil 

remained relatively stable. The changes in 

land usage and coverage experienced a more 

striking shift in 2017 compared to previous 

years. During this time, vegetation coverage 

decreased to 84%, while built-up areas 

expanded to 13%. Bare soil coverage also 

reduced to 0%, which may indicate that more 

of the land is being developed or built. 

However, waterbody coverage remained 

stable.  

Urbanisation and economic growth may 

explain the increase in built-up areas at the 

expense of vegetation and bare soil in the 

Dar es Salaam Metropolitan City as 

reported in the previous studies by  Mzava 

et al. (2019) and Mnyali and Materu 

(2021). The changes in LULC can be 

visually represented over time through Figure 

2, which illustrates that the built-up area 

starts small and gradually increases, resulting 

in a redder colouration (since the built-up 

area is depicted in red). 

 

 

Table 2: Land use land cover (LULC) percentage in different years 

LULC class 1995   
 

2009     2017   

  Sq. km %   Sq. km %   Sq. km % 

Waterbody 25 2   28 2   26 2 

Vegetation 1,482 91   1,427 87   1,375 84 

Bare soil 18 1   22 1   7 0 

Built-up 92 6   151 9   217 13 

 
Figure 2: LULC map of Dar es Salaam Metropolitan City in (a) 1995; (b) 2009; and (c) 2017. 

 

Overall temporal and spatial patterns of 

land surface temperature (LST) of the city 

The mean LST in 1995 was 22.37 °C, 

while in 2009 was 22.43 °C, a 0.06 °C 

increase from 1995 to 2009. In contrast, mean 

LST rose by over 2.9 °C between 1995 and 

2017, from 22.43 °C to 25.32 °C (Table 3), a 

13% rise in the last decade. Similar results 

have also been found by Kabanda (2019), 

who investigated the urban heat island 

analysis in Dar es Salaam, Tanzania. 
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Table 3: Descriptive statistics of land surface temperature (LST) (°C) 

Year Min  Max  Mean  SD 

1995 16.55 27.95 22.37 1.11 

2009 16.56 50.29 22.43 1.33 

2017 17.25 31.85 25.32 1.34 

 

The LST is coloured grey, blue, and red on 

maps. The extent of the red region in the 

1995 LST map (Figure 3 a) is less than in 

2009 (Figure 3 b), showing that the area with 

high LST rose in 2009. The area with higher 

LST also increased considerably in 2017 

(Figure 3 c). 

 

 

 
Figure 3: LST map of Dar es Salaam Metropolitan City in (a) 1995; (b) 2009; (c) 2017. 

 

Further analysis by considering the area 

distribution of the studied city using various 

LST ranges of different years is shown in 

Table 4. In 1995, the percentage of land 

covered by the LST 22–24 °C was the highest 

(52.7%). While at the same LST interval, it 

fell to 35.31% and 23.27% for 2009 and 

2017, respectively. LST class 24–26 °C 

increased from 7.1% in 1995, 52.4% in 2009, 

and 64.6% in 2017. Even though the area 

with LST of 26–28 °C was higher in 2009 

than in 2017, the area with LST > 28 °C was 

higher in 2017 than in 2009.  

The average temperature in the city has 

continuously risen over the past 22 years, 

sending a message to residents, policymakers, 

and environmental experts to take mitigation 

measures to reverse the situation. Therefore, 

measuring the changing magnitude of the Dar 

es Salaam Metropolitan City area's mean LST 

over time can help understand how the LST 

pattern changes and make necessary decision-

making and associated actions.  

 

Table 4: Land Surface Temperature (LST) percentages for different years 

Year LST (°C) < 18 18–20 20–22 22–24 24–26 26–28 28–30 >30 

1995 Km
2
 0.01 8.17 608.38 818.54 110.95 7.25   

 % 0 0.53 39.17 52.7 7.14 0.47   

2009 Km
2
 0.08 0.56 33.26 548.49 814.12 228.92 3.65 0.02 

 % 0.01 0.04 2.14 35.31 52.41 14.74 0.23 0 

2017 Km
2
 0.01 0.03 1.63 363.08 1,003.34 203.81 14.63 0.08 

 % 0 0 0.1 23.37 64.59 13.12 0.94 0 
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Relationships between LULC patterns and 

LST  

The relationships between land use land 

cover (LULC) patterns and land surface 

temperature (LST) have been expressed in 

terms of graphical comparison (chord 

diagrams and cross-section profile) and 

simple linear regression models. 

 

Graphical comparison using chord 

diagrams 

Figure 4 shows analyses of LST changes 

by LULC class from 1995 to 2017. The chord 

diagrams show vegetation, built-up area, 

water, and bare soil in coverage order. The 

chord diagrams show that vegetation, water 

body, and bare-soil areas decreased from 

1995 to 2017 while built-up areas increased. 

The water body has the lowest LST, while 

built-up has the highest. In 2017, the area 

under 20–22 °C LST decreased, and high 

LST increased compared to prior years. LST 

for water bodies rose from 20 °C in 2009 to 

22–24 °C in 2017, and for vegetation, from 

20–24 °C to > 24 °C. This pattern suggests 

that LULC affects LST. More extensive 

vegetation and water regions lower LST, 

while built-up areas raise it. Hence, 

vegetation and bare soil correlate negatively 

with LST, while built-up cover correlates 

positively with LST. The findings correspond 

with those of Saha et al. (2020) in Asia. Open 

waste incineration, a prevalent practice in 

DMC, may cause extremely high 

temperatures in the land covered by 

vegetation (United Republic of Tanzania 

2018). Other factors include forest fires and 

charcoal (Mligo 2020). 

 

Graphical comparison (cross-sections 

profiles) 

The vertical and horizontal cross-sections 

have been generated to show the relationships 

between the study area's LULC and LST 

raster data for 1995, 2009, and 2017. The A–

B segment represents the horizontal cross-

section, while the C–D segment represents 

the vertical cross-section. The profiling tool 

extracted the LST pixel values beneath the 

sections, as shown in Figure 5. The LST is 

highest in places with more built-up areas and 

lowest in vegetated areas (Figure 5a), backing 

up the previous findings on the influence of 

LULC on LST in Dar es Salaam (Simon et al. 

2022). Similarly, the LST values from the 

horizontal section (A–B) reveal that the LST 

has risen over time (Figure 5b). The LST is 

highest in places with more densely built-up 

areas and lowest at the western and northern 

points, where the places are rich in woody 

vegetation, mainly the woodlands and 

bushlands. The land area with vegetation and 

bare soil was higher in the early years than in 

recent years. As a result, LST over the area in 

the early years was substantially lower than 

in recent years. However, as these LULC 

classes were replaced by built-up areas such 

as buildings, roads, and other impervious 

surfaces, the LST of these places began to 

rise drastically. As a result, the 2017 LST 

profile outperforms previous years' profiles 

(both in vertical and horizontal sections). The 

expansion of impervious areas has increased 

the land surface temperature (LST) in the 

study area, despite unchanged land use land 

cover (LULC) in some pixels. This rise in 

LST is primarily attributed to the increased 

percentage of impervious surfaces, leading to 

elevated LST levels in the surrounding areas 

and highlighting the significant microclimatic 

effects of LULC changes on temperature 

patterns (Mensah et al. 2020). 
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Figure 4: Chord diagrams showing LULC class-wise with LST in Dar es Salaam Metropolitan 

City (a) year 1995, (b) year 2009, and (c) year 2017. 
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Figure 5: LST and LST cross-section profiles of Dar es Salaam Metropolitan City over 

different years. 

 

Simple linear regression models  

This section describes the relationships 

between LULC and LST using linear 

regression models. Because there was only 

one independent variable and one dependent 

variable in this study, a Simple Linear 

Regression Model (SLRM) was used. Each 

model has an independent variable called 

LULC and a dependent variable called LST. 

The model's equations are presented below.  

LST = -12.776Xbsl + 28.08 (9) 

In equation (9), the independent variable 

"bare soil" is represented by Xbsl. The 

equation's coefficient is 12.77, and its 

negative sign indicates a negative correlation 

between bare soil and the recorded LST. The 

equation's constant value is 28.08. The 

model's correlation coefficient (R) value is 

0.992, which indicates a strong relationship 

between bare soil and LST. The coefficient of 

determination (R
2
) value demonstrates that 

the model can predict 99% of the observed 

variations. The model's standard error is 

0.034 (Table 5). This R-value is the highest 

among other LULC types, indicating a strong 

negative correlation with LST. Also, this 

number indicates that the LST relates to bare 

soil more strongly than any other LULC in 

the area.  

The independent variable "built-up area" 

is represented by Xbuilt in the equation (10). 

The equation's coefficient is 7.899, and its 

sign is positive. The positive sign indicates 

that the built-up area and LST have a positive 

association, meaning that as the built-up area 

increases, the LST also increase. 

LST = 10.866Xbuilt + 21.22 (10) 

The equation's constant value is 21.22. This 

model's R-value is 0.795, demonstrating a 

close correlation between built-up area and 

LST. Because the R
2
 score is 0.632 and the 

standard error is 0.117, the model can predict 

around 63% of the variations in the data 

(Table 5).  

The model of vegetation (independent 

variable) and LST (dependent variable) in 

equation (11), where Xveg denotes the 

independent variable "vegetation". The 

equation's coefficient is 88.18, and its sign is 

negative. The negative sign indicates that the 

amount of vegetation and LST correlate 

negatively. The negative correlation means 

that the LST decreases as vegetation grows. 

The equation's constant value is 52.424. This 

model's R-value is 0.774, indicating a strong 

correlation between vegetation and LST. The 

R
2
 value indicates the model can predict 
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around 67% of the data variations. In this 

model, the standard error is 0.014.  

LST = -88.18Xveg + 52.424 (11) 

In equation (12), the independent variable 

"waterbody" is represented by Xwater. The 

equation coefficient is 112.57, which has a 

negative sign implying a negative association 

between the water body area and LST. The 

constant value in the equation is 58.879. The 

R (correlation coefficient) value is 0.8252, 

showing a relatively significant association 

between the water body and LST. The 

model's coefficient of determination (R
2
) 

value implies that it can predict a data 

variability of 82%. The standard error of the 

model is 0.009 (See Table 5).  

LST = -112.57Xwater + 58.879 (12) 

 

The analysis of the relationship between 

LULC change and LST reveals a gradual rise 

in LST as the built-up area increases, 

indicating a positive correlation. The 

correlation coefficient for the built-up area is 

0.795, which signifies a significant 

correlation with LST. Therefore, as the built-

up area increases, so does the LST. In 

contrast, water bodies, vegetation, and bare 

soil negatively correlate with LST. The 

correlation coefficients for water bodies, bare 

soil, and vegetation are -0.908, -0.992, and -

0.819, respectively, implying that as the areas 

covered by water bodies, vegetation, and bare 

soil decrease, the LST increases, which also 

conforms with the earlier results and the 

results of Kabanda (2019) and Naim and 

Kafy (2021), but differs slightly in the bare 

soil relationship with LST with previous 

studies done by Simon et al. (2022). 

In conclusion, the regression models are 

viable because the models' confidence levels 

were significant (p < 0.05). Furthermore, the 

models' standard errors are tolerable, 

indicating that the data points are closer to 

the regression lines, attributing the models as 

significant. 

Table 5: Model summary for the SLRM of LULC and LST 

LULU R R
2
 Adjusted R

2
 Std. Error p-value 

Bare soil -0.992 0.987 0.967 0.034 < 0.05 

Water body -0.908 0.825 0.650 0.009 < 0.05 

Vegetation -0.819 0.671 0.341 0.010 < 0.05 

Built-up area 0.795 0.632 0.263 0.117 < 0.05 

 

Conclusion and recommendations 

This study used Landsat remote sensing 

data to investigate changes in land use land 

cover (LULC) and land surface temperature 

(LST) in Dar es Salaam Metropolitan City 

over 27 years. The results revealed that 

LULC changes in Dar es Salaam affect the 

city's land surface temperature. The study 

found that although vegetation presently 

covers most of the land in the study area 

(84%), there has been a significant increase 

in built-up areas at the cost of bare soil and 

vegetation. Specifically, built-up areas have 

increased by 8%, whereas vegetation has 

decreased by 7%, and bare soil has declined 

by 3%. LST correlates positively with 

correlation coefficient (R) = 0.795 with the 

built-up area and negatively with R = -819, -

0.908, and -0.992 with vegetation, water 

bodies, and bare soil, respectively. Water 

bodies exhibit the lowest, whereas built-up 

areas have the highest LST values. In 2017, 

the area under 20–22 °C LST decreased, and 

high LST increased compared to prior years. 

LST for water bodies rose from 20 °C in 

2009 to 22–24 °C in 2017, and for vegetation, 

from 20–24 °C to > 24 °C, implying that 

vegetation, bare soil, and water bodies help 

reduce LST. 

Therefore, land use cover changes are 

crucial in modern resource management and 

environmental monitoring systems. Thus, 

land managers and environmentalists should 

maintain vegetation greenness to reduce LST. 

In addition, urban green belts and green roofs 

could mitigate the effects of LST on cities 

and their surroundings, producing a more 

inclusive and resilient city. As a result of this 

research, future studies should focus on how 

urban residents adapt to rising LST and 

monitor current LST.  
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To enhance the comprehensiveness of 

future studies on land use land cover changes, 

it is crucial to consider several key factors, 

including population growth, rates of 

urbanisation, economic development, policy 

interventions, agricultural practices, climate 

change, land ownership patterns, 

infrastructure development, and the 

availability and utilisation of natural 

resources. Additionally, exploring the 

potential impacts of climatic conditions, 

demographic trends, and socioeconomic 

factors on land surface temperature (LST) 

values is advisable.  
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