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Abstract 

This study has investigated the impact of temperature and rainfall on the transmission 

dynamics of malaria using an age-structured population model, with a class of pregnant 

women.  The equilibrium solutions have been analyzed, and numerical simulations carried out. 

The results show that there are significantly high rates of malaria infections for the temperature 

and rainfall ranging between (23.53 0C − 39.80 0C) and (14.82 mm − 38.44 mm) respectively. 

The results have shown that, the most affected populations are children up to five years old and 

pregnant women, and that decreasing the rate of transplacental transmission increases the 

number of children born free of malaria infections. Therefore, this work recommends human 

individuals to be aware of the variations of temperature, rainfall, and their corresponding 

ranges at which malaria transmission occurs most, so that they can take precautions. 

Keywords: Age-structure; Pregnant women; Temperature and rainfall; Malaria dynamics; 

Transplacental transmission. 

Introduction 

Malaria is a mosquito-borne disease caused 

by parasites of the genus plasmodium. The 

parasites are of five species namely; 

Plasmodium falciparum, plasmodium vivax, 

plasmodium knowlesi, plasmodium ovale and 

plasmodium malariae. Plasmodium 

falciparum and plasmodium vivax are the 

most virulent and potentially lethal to humans 

(Yang 2000). Malaria parasites are 

transmitted to human via the bites of 

infectious female anopheles mosquitoes. An 

infected human can experience fever, 

headache, vomiting, stomachache and 

sometimes diarrhea. Another way in which 

malaria can be transmitted is from an infected 

pregnant mother to a baby before or during 

delivery (Kipkirui et al. 2020). 

In areas with high rates of malaria 

transmission, pregnant women and children 

up to five years represent the most vulnerable 

groups to malaria infections (Bakary et al. 

2018). High rates of malaria infections during 

pregnancy can cause transplacental 

transmission of the malaria parasites to the 

foetus (Uneke 2011, Ou´edraogo et al. 2012, 

Schumacher and Spinelli 2012). This 

situation increases the rate of maternal 

morbidity and mortality, high fever, severe 

anemia, miscarriage and stillbirth (Uneke 

2011). Moreover, Malaria infections in 

children under five years, increase the risk of 

morbidity and mortality for the children as 

they have not yet developed sufficient 

immunity to fight against malaria 

(Schumacher and Spinelli 2012). However, it 

is realized that in areas of low and unstable 

transmission, people of all groups are at risk 

of malaria infections (Schumacher and 

Spinelli 2012). 

The dynamics of malaria are influenced by 

some non-weather and weather factors. Non-

weather factors include population 

movements, urbanization and interruption of 
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control and preventive measures, capacity of 

health care systems, herd immunity and 

social behavior of the population (Kumar and 

Reddy 2014, Bakare and Abolarin 2018). 

Floods, droughts, temperature, rainfall or 

relative humidity are weather conditions that 

influence parasites life cycle (Kumar and 

Reddy 2014). 

 

According to estimates by World Health 

Organization (WHO), there were 229 million 

new malaria cases and 409,000 deaths due to 

malaria in 2019 globally. Moreover, 67% of 

these mortality cases being among children 

under five years of age, and 822,000 children 

born with low weight. Furthermore, in the 

year 2020, there were 241 million new 

malaria cases and 627,000 deaths due to the 

disease worldwide (World malaria report 

2022). Likewise, in 2021 the estimates 

showed 247 million new malaria cases and 

619,000 mortality cases globally. In addition, 

95% of these cases were from Africa; infants, 

children under five years and pregnant 

women were the most affected than other 

human individuals (World malaria report 

2023). In Tanzania, malaria burden in some 

of the regions is still high. The study 

conducted by Mwaiswelo et al. (2021) in 

Mtwara region reported 15.9% prevalence in 

2340 children and 53.9% anemia in 2218 

children. They also mentioned that education 

and socioeconomic were sources of the 

infections.  

Different studies have been extensively 

conducted to explore the effects of climatic 

change on the dynamics of malaria and 

measures that can be taken to prevent its 

devastating effect on human population as 

pointed out by studies of Blanford et al. 

(2013), Ngarakana-Gwasira et al. (2016), 

Gumel and Okuneye (2017), Bakare and 

Abolarin (2018), Abiodun et al. (2018), Azu-

Tungmah et al. (2019) and Yiga et al. (2020). 

The work by, Azu-Tungmah et al. (2019) 

proposed an age-structured mathematical 

malaria model incorporating pregnant 

women. However, in their work, 

transplacental transmission, temperature and 

rainfall were not considered. In particular, the 

work by Gumel and Okuneye (2017) 

explored the effect of temperature and rainfall 

in malaria transmission dynamics for an age-

structured human and mosquito populations. 

Nevertheless, in their work, pregnant women 

and transplacental transmission were not 

considered. Thus, this study intends to 

investigate the transmission dynamics of 

malaria infections in pregnant women, 

transplacental transmission of infection to the 

new born child, age-structured human 

population, and the influence of temperature 

and rainfall on the survival and biting rate of 

the malaria causing female anopheles 

mosquitoes.  

 

Materials and Methods 

The Model 

A basic mathematical model for malaria 

that is considered here comprises of mosquito 

population ( )vN t and human population 

( )hN t . The human population is divided 

into the sub-populations of pregnant women, 

children up to five years old and individuals 

above five years old (excluding pregnant 

women). The sub-populations are further sub-

divided into susceptible iS  and infected, iI  

groups for , ,i p c a= , where p  represents 

pregnant women, c stands for children up to 

five years old and  a  denotes individuals 

above five years old (excluding pregnant 

women), and they all recover to the hR (t). 

The total size of mosquito and human 

populations at any time 0t  is given by

( ) ( ) ( )v v vN t S t I t= + and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h p c a p c a hN t S t S t S t I t I t I t R t= + + + + + +

 respectively. We assume that the rate at 

which individuals are recruited by 

immigration into the susceptible class of over 

five years old is a . The rate at which 

women become pregnant is 1 , while 

susceptible children up to five years are 

recruited by birth from either susceptible 

pregnant women at a rate 
p or from 

infected pregnant women at a rate (1 ) − . 
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All susceptible human individuals become 

infected after being bitten by infectious 

mosquitoes, according to the force of 

infection; 
( )

( )
( ; ) ( ) v

h

I t

i i N t
t T b T =  for 

, ,i p c a= , and with usual notation of p , c  

and a  .Here i  is the probability that 

mosquito bite transmits malaria parasites, and 

( )b T is the mosquito temperature-dependent 

biting rate.  

We assume that all infected human 

individuals recover naturally and join the 

class hR (t) at the rates p , c  and  a  for 

pregnant women, children up to five years old 

and individuals above five years (excluding 

pregnant women) respectively.  A susceptible 

pregnant woman in 
pS  can deliver a baby 

and join the class aS at the rate 2 . The 

susceptible child can grow and join the 

susceptible class aS  at the rate s . 

Similarly, an infectious pregnant 
pI  can give 

birth to a baby and join infectious aI  at the 

rate 2 . Also, an infectious adult woman 

from aI  can become pregnant and join the 

class, 
pI  at 1 . An infectious child in cI

can grow and join the infectious class of 

individuals above five years, aI  at the rate 

c . It is supposed that a fraction of children 

is born with malaria parasites. It is assumed 

that   is a total rate at which babies are born 

from infected pregnant women. The 

possibility that a baby delivered by an 

infectious pregnant woman is infected is 

 0,1   (that is,  is the fraction of 

babies born with malaria infections). All 

human individuals experience natural death at 

the per capita rate h . Infected individuals 

suffer from the malaria induced death rates 

p , c  and a for pregnant women, 

children up to five years and those above five 

years respectively.  Mosquitoes are recruited 

into the susceptible class vS , by birth at a 

temperature-rainfall dependent per capita 

birth rate of ( , )mT R . A susceptible 

mosquito becomes infected based on a force 

of infection; 

( )1
( )

( ; ) ( ) ( ) ( ) ( )
hv v p c aN t

t T b T I t I t I t = + +

, with v  being the probability at which a 

mosquito gets infected. Mosquitoes leave the 

population through natural death at a rate v . 

Figure 1 shows a schematic presentation of 

the transmission dynamics of malaria for a 

population with age-structure and pregnant 

women. 

 

 



Tanz. J. Sci. Vol. 50(3) 2024 

695 

 
Figure 1: Schematic presentation of the transmission dynamics of malaria for a population 

with age-structure and pregnant women 

Model Equations 

 

 

(2.1) 
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The initial conditions of model system (2.1) are (0) 0pS  , (0) 0cS  , (0) 0aS  ,

(0) 0pI  , (0) 0cI  , (0) 0aI  , (0) 0hR  , (0) 0vS  , (0) 0vI  . 

 

Invariant region 

The model (2.1) is biologically meaningful in the invariant region h v =     

where       

 , , , , , , 0 : a

hh p c a p c a h p c a p c a hS S S I I I R S S S I I I R



 =  + + + + + +   

and  
( ) ,

, 0 : m

v

T R

v v v v vS I S I



 =  +   is any solution of the system of equations in (2.1) 

and with all variables non-negative. So; a

hhN



  and

( ), m

v

T R

vN



 . 

Therefore, the solution for human and mosquito populations enter the invariant region Ω. 

This means that the region is bounded and attracts all solutions of (2.1) in it. Thus, the 

solutions of model system (2.1) are positive and bounded for all 0t  . 

 

Disease-Free Equilibrium and its Stability 

Disease free equilibrium (DFE) is the steady state solution where there is no disease in the 

population. The disease will not exist in the two populations if the classes

0p c a vI I I I= = = = . The disease-free equilibrium of the model system (2.1) is given by 

( )0 , , ,0,0,0,0, ,0p c a vE S S S S   =  ,      (2.2) 

where, 
( )

( )( )( ) ( )( )
1

1 2 1 2

s h a

s h h p h s p s h
pS

   

            

+

+ + + + − + +
= ,     

( )

( ) ( )( )( ) ( )( )
1

1 2 1 2

p s h a

s h s h h p h s p s h
cS

    

              

+

 + + + + + − + +
 

= , 

( )( )

( ) ( )( )( ) ( )( )
2

1 2 1 2

p h s h a

s h s h h p h s p s h
aS

     

              

+ + +

 + + + + + − + +
 

=  and 
( ),

( )
.m

v

T R

v T
S





 =  

The stability of E0 is governed by the basic reproduction number. The reproduction number is 

evaluated using the next generation matrix method as below. 

 

Reproduction Number 

The basic reproduction number denoted by 0R , is the expected number of secondary 

infections produced by a single infected individual in a susceptible population during the entire 

period of infectiousness. So, in order to investigate stability of E0 we need to compute the basic 

reproduction number 0R . Here, the next generation matrix technique is used, where 0R  is 

obtained by taking the largest eigenvalue (spectral radius) of the matrix 
1

1 0 0( ) ( )i i

j j

f E v E
FV

x x

−

−     
=        

. Here if  is the rate of appearance of new 

infections in compartment i , and iv  is the transfer of infections from one compartment to 
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another and 0E  is the DFE given in equation (2.2). From model system (2.1), we write the 

equations with infections classes
pI ,

cI ,
aI and 

vI , which results into the following system 

1 2

2 1

( ; ) ( ) ,

( ; ) ( ) ,

( ; ) ( ) ,

( ; ) ( ) .

p

p p a p p h p

c
c c p c c c h c

a
a a p c c a a h a

v
v v v v

dI
t T S I I

dt

dI
t T S I I

dt

dI
t T S I I I

dt

dI
t T S T I

dt

      

     

      

 

= + − + + + +

= + − + + +

= + + − + + +

= −

 

Using the notations in Van den Driessche and Watmough (2002), the matrices F and V for the 

new infections’ terms and the remaining terms of equation (2.1) are respectively, given by 

0 0 0

0 0 0

0 0 0

0

p p

p c a

c c

p c a

a a

p c a

v v v v v v

p c a p c a p c a

b S

S S S

b S

S S S

b S

S S S

b S b S b S

S S S S S S S S S

F







  



  



  



  

  

        

+ +

+ +

+ +

+ + + + + +

 
 
 
 

=  
 
 
  
 

  

and  

2 1

2 1

0 0

0 0

0

0 0 0

p p h

c c c h

c a a h

v

V

     

    

     



+ + + + − 
 

− + + +
 =
 − − + + +
 
 

. 

 

Thus, the reproduction number is the largest (dominant) eigenvalue (spectral radius) of the 

next generation matrix
1FV −

. Hence,  

( ) ( ) ( )
1

( )1

0 1 ,
p c a v

b T

v v v p p p c c c a a aS S S R
R FV S R S R S R S R


     

  

−    

+ +
= = + +                         

where  
  is the spectral radius and 
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( )1 1 2

1 2

2

1 1 2 1 2

( ) ( )

,

p a a c a a h

a c c h c a h a c

c h c c h h h h h

R           

            

             

= − − + + − + + + + + +

+ − + + + + + + + + +

+ + + + − + + + +

2 1

2 1 1 2 1 2

2

1

( ) ( )

( )

,

c a a h a h p p p a h a p

a c h p p h h h

h p h p

R               

              

    

= + + + + + + + + + +

+ + + + + + + + + + +

+ + +

1 1 1 2

1 2 1

2

2 1 2

( )

( ) ( )

,

a c c h c h p p

c h p p p c h c p c

c h h h h p h

R            

             

         

= − + + + + + + + + +

+ + + + + + + + + +

+ + + + + +

( ) ( )( )

2

1 1 2 3 1 2 1

2

2 3 1 2 1 1

( ( ) )

,

c a h a a p p a a h p

c c h a h a a p p a a h p

R R R

R R

              

                

= + + + + + + + + +

+ + + + + + + + + + + +

2 1 2p a pR      = + + + + +  and
3 2h p pR     = + + + + .  

Thus, the effect of temperature and rainfall on the reproduction number 0R , is in 
vS 

and biting 

rate ( )b T  of mosquito. 

 

Local Stability of the Disease-Free Equilibrium 

Here we establish the stability of the DFE that is obtained in equation (2.2). 

Theorem 1. The disease-free equilibrium of model (2.1) is a locally asymptotically stable if R0 

< 1 and unstable otherwise. 

Proof: 

We evaluate the Jacobian matrix at the disease-free equilibrium to get 
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( )

*

*

*

*

*

*

*

*

*

*

*

*

* * *

* * *

*

*

1 1

2

2 3

4 1

0
5

2 6

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

p

h

c

h

a

h

p

h

c

h

a

h

v v v

h h h

v

h

S

p N

S

p c N

S

s a N

S

p N

S

c N

S

c a N

p c a h

S S S

v v v vN N N

S

v N

D b

D b

D b

D b

J E D b

D b

b b b

b b

 

   

  

 

 

  

   

   

 

− −

− − −

− −

−

= −

−

−

− − − −

* *

* *

,

0 0v v

h h

S S

v v vN N
b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

                                                                                                                                                                                                                                                            

     (2.3)       

where  

1 2p hD   = + + , 2 s hD  = + , 3 1 hD  = + , 
4 2 p p hD     = + + + + , 

5 c c c hD    = + + + , 6 1a a hD    = + + + , 

From (2.3), it can be easily seen that − h   and − v   are eigenvalues of the Jacobian matrix. 

After obtaining the two eigenvalues, (2.3) reduces to 

( )

*

*

*

*

*

*

*

*

*

*

*

* * *

* * *

1 1

2

2 3

1 4 1

5

2 6

0 0 0 0

0 1 0 0

0 0 0

.0 0 0 0

0 0 0 0

0 0 0

0 0 0

p

h

c

h

a

h

p

h

c

h

a

h

v v v

h h h

S

p N

S

p c N

S

s a N

S

p N

S

c N

S

c a N

S S S

v v v vN N N

D b

D b

D b

J D b

D b

D b

b b b

 

   

  

 

 

  

   



 − −
 
 

− − − 
 

− − 
 
 = −
 
 −
 
 

− 
 
 −
 

 (2.4) 

The matrix (2.4) can be written as 
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1 ,
A B

J
C D

 
=  
 

  with,

1 1

2

2 3

0

0 ,p

s

D

A D

D





 

− 
 

= − 
 − 

( )

0 0 0

1 0 0 ,

0 0 0

p

h

c

h

a

h

S

p N

S

c N

S

a N

b

B b

b



  















 −
 
 

= − − 
 

− 
 

 

0 0 0

0 0 0

0 0 0

0 0 0

C

 
 
 =
 
 
 

  and 

*

*

*

*

*

*

* * *

* * *

4 1

5

2 6

0

0
.

p

h

c

h

a

h

v v v

h h h

S

p N

S

c N

S

c a N

S S S

v v v vN N N

D b

D b
D

D b

b b b

 

 

  

   

 −
 
 

− 
=  

− 
 
 −
 

 

Applying determinant of block matrices 
1

1det( ) det(A)det(D ),J CA B−= −  (2.5) 

since matrix C is zero, (2.5) reduces to 

1det( ) det( )det( ).J A D=   (2.6) 

The corresponding characteristic polynomials of matrix A and D  are given by 
3 2

2 1 0 0A A A  + + + =  and 
4 3 2

3 2 1 0 0B B B B   + + + + =   respectively, where 

2 1 2 3 ,A D D D= + +  

1 1 2 1 3 2 3 1 2 ,A D D D D D D  = + + −  

0 1 2 3 2 1 2 1 ,p sA D D D D    = − −  

3 4 5 6 ,vB D D D = + + +  

( ) ( ) ( )
( )( )

( )( ) ( )

( )( ) ( )
( )

2 * *2 * * 2 * *

2 2 2
* * * * * * * * *2 1

2

1 2 2

1 1 2

a p v va a v v a c v v

c p a c p a c p a

b S Sb S S b S S

h a a c c c h
S S S S S S S S S

c c c h h p p v c c c h

h a a h p p v h p p

v h a a

B
    

       

             

              

      

+ + + + + +
= − − − + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + − ,
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( )

( )

( )

( )

( )

( )

( )

( )

( )

2 * *2 * * 2 * *2 * *
2

2 2 2 2
* * * * * * * * * * * *

2 * *2 * *
22

2
* * * * *

1

a a v v p p hp p v v p p v v c c c ha a v v c c c h

c p a c p a c p a c p a

c c v v p p hp p v v

c p a c p

b S Sb S S b S Sb S S

S S S S S S S S S S S S

b S Sb S S

S S S S S

B
                   

        

+ + + ++ + ++ + +

+ + + + + + + +

+ + + +

+ + +

= − − − −

− −
( ) ( ) ( )

( )

( )

( )

( )( )( )

( )( )

2 * *2 * * 2 * *
11

2 2 2 2
* * * * * * * * * *

1 1 2 1 2

1 2

2

c c v v h a ac c v v c a a v v

a c p a c p a c p a

b S Sb S S b S S

S S S S S S S S S S

c c c c h v

h a a c c c h p p h

v c c c h p p h

v h a a

          

          

            

         

   

+ + +

+ + + + + + +
− − −

− − + + + −

+ + + + + + + + + + +

+ + + + + + + +

+ + + +( )( )

( )( )
1

1 2 ,

c c c h

v h a a p p h

    

         

+ + +

+ + + + + + + +

 

( )

( )

( )

( )

( )

( )

( )

( )

2 * *2 * *2 * *2 * *
2211

2 2 2 2
* * * * * * * * * * * *

2 * *2 * *

2
* * *

0

c c v v c p p hp p v v c c c ha a v v c c c ha a v v

c p a c p a c p a c p a

c c v v h a ap p v v c

c p a

b S Sb S Sb S Sb S S

S S S S S S S S S S S S

b S Sb S S

S S S

B
                     

       

+ + + ++ + ++ + +

+ + + + + + + +

+ + +

+ +

= − − − −

− −
( )( )

( ) ( ) ( )

( )

( )

( )( )

( )

( )

2 * * 2 * *
1 2 1 1 2

2 2 2
* * * * * * * * *

2 * * 2 * *
1 1

2 2
* * * * * *

2 * *

p p h c c v v c c c v v

c p a c p a c p a

p p v v h a a p p v v h a a c c c h

c p a c p a

a a v v c c c h p p

b S S b S S

S S S S S S S S S

b S S b S S

S S S S S S

b S S

            

               

         

+ + + +

+ + + + + +

+ + + + + + + + +

+ + + +

+ + + + + +

− −

− −

−
( )

( )
( )

( )( )( )

2

2
* * * 1 1 2

1 2 .

h

c p a

c v v c c c h
S S S

v h a a c c c h p p h


         

             

+

+ +
− − + + +

+ + + + + + + + + + +

 

Therefore, by Routh array, we obtain the tables below whereby first and second rows are 

filled using the coefficients of the given characteristic polynomials and the remaining rows are 

filled with corresponding determinants. 

 
3 2

2 1 0 0,A A A  + + + =  

 

 

 

and 

4 3 2

3 2 1 0 0.B B B B   + + + + =  

4  1 
2B  0B  

3  3B  1B  0 

2  2w  0B   

1  3w  0   

0  0B    

3  1 
1A  0 

2  2A  0A  0 

1  1w  0   

0  0A    
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For the model system to be stable, values in the first column of the tables obtained above 

must be all non-neagative. So, using the Mathematica package, it is observed that, 2 0A  ,

1 2 0

21 0
A A A

A
w

−
=  and 0 0A  . Moreover, 3 0B  , and 3 2 1

32

B B B

B
w

−
= , 

2 2
3 2 1 1 3 0

3 2 13

B B B B B B

B B B
w

− −

−
=

and 0B  are positive if 0 1R  . Therefore, the disease-free equilibrium is locally 

asymptotically stable. # 

 

Global Stability of the Disease-Free Equilibrium 

In this sub-section, we want to show that the Disease-free equilibrium will be globally 

asymptotically stable if 0 1R  , by analyzing the condition for global stability of the disease-

free equilibrium of the model. The theorem by Castillo-Chavez (2002) is used to analyze the 

global stability of the disease-free equilibrium. From the theorem, the model system (2.1) can 

be written as: 

1
1 1 2

2
2 1 2 2 1

( , ),

( , ), ( ,0) 0.

dX
Y X X

dt

dX
Y X X Y X

dt

=

= =

 (2.7) 

Where 
5

1X R+  is a column-vector comprises of uninfected compartments, and 
4

2X R+

consists of infected compartments. ( )0 1 ,0E X =   is the disease-free equilibrium of (2.1), and 

is globally asymptotically stable for 0 1R  , and if it satisfies the following assumptions. 

( )1
1 1 1: ,0

dX
K Y X

dt
= , 

1X 
 is globally asymptotically 

stable, and ( )1 1,0Y X  is the disease-free of model 

equations (2.1). 

2 2 1 2 2 2 1 2: ( , ) ( , )K Y X X MX Y X X= − , 
2 1 2( , ) 0Y X X   for 

11 2( , ) .YX X   

( )2

2 1 ,0
Y

X
M X

 


= is a Metzler-matrix with non-negative off diagonal elements. 

( )1 , , , ,p c a h vX S S S R S=  and 
2 ( , , , ).p c a vX I I I I=  

Theorem 2. The disease-free equilibrium of the model (2.1) is a globally asymptotically stable 

if 0 1R  , and satisfies the conditions 1K and 2K . 

Proof: 

Consider the model system (2.1) 

1 2

1 1

2 1

( )

( )
( ,0)

( )

( , )

a p h p

p p s h c

a s c p h a

m v v

S S

S S
Y X

S S S

T R S

   

  

    

 

− + + 
 

− + =
 + + − +
 

− 

,    (2.8) 

2 1 2 2 2 1 2( , ) ( , ),Y X X MX Y X X= −  but 
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1 4

5

2 1 2

2 6

( , )

p

h

c

h

a

h

p c a

h h h

S

p v a pN

S

c v p cN

S

a v p c c aN

I I I

v v v v v v v vN N N

b I I D I

b I I D I
Y X X

b I I I D I

b S b S b S I

 

 

  

   

 + −
 
 + −
 =
 + + −
 
 + + − 

    

and                                                      
*

*

*

*

*

*

* * *

* * *

4 1

5

2 6

0

0

p

h

c

h

a

h

v v v

h h h

S

p N

S

c N

S

c a N

S S S

v v v vN N N

D b

D b
M

D b

b b b

 

 

  

   

 −
 
 

− 
=  

− 
 
 −
 

.  

  Hence, 
2 1 2

0

0
( , ) .

0

0

Y X X

 
 
 =
 
 
 

  (2.9) 

Since matrix (2.8) satisfies the disease-free of model system (2.1), then the condition 1K is 

met and from matrix (2.9), the condition 2K   is also satisfied. Therefore, the disease-free 

equilibrium E0 is globally asymptotically stable. # 

 

Existence of Endemic Equilibrium 

The model system (2.1) has at least one possible unique endemic equilibrium point 
* * * * * * * * *( , , , , , , , , )p c a p c a h v vE S S S I I I R S I

 if 0 1R   and must satisfy 

 
*

1

2

* a

p p h

S

pS


   + + +
= , 

* *(1 )* p p p

c s h

I S

cS
  

  

− +

+ +
=    ,    

* *
2

1

* a s p p

a h

S S

aS
  

  

+ +

+ +
=  ,    

* *
1

2

* p p a

p p h

S I

pI
 

    

+

+ + + +
=  

* *
* p c p

c c c h

S I

cI
 

   

+

+ + +
= ,  

* *
2

1 2

* a a p c p

a h

S I I

aI
  

   

+ +

+ + +
= ,      

* * *
* p p c p a p

h

I I I

hR
  



+ +
= ,      

( , )* m

v v

T R

vS


 +
=  , (2.10)  

( , )*

( )
.v m

v v v

T R

vI
 

  +
=                                          

The solutions in (2.10) are too complex to show the existence and nature of the endemic 

equilibrium explicitly. However, at endemic 
*

pI , 
*

cI , 
*

aI  and
*

vI  are all greater than zero, 

hence the endemic equilibrium exists. 

 

Global Stability of the Endemic Equilibrium 

This section presents global stability of the endemic equilibrium of model system (2.1) using 

the Lyapunov function. 

Theorem 3. The endemic equilibrium of the model system (2.1) is globally asymptotically 

stable if 0 1R   and unstable otherwise. 

Proof: 
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We consider the Lyapunov function basing on the composite quadratic function as used by 

Vargas-De-Le´on (2009). 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
* * * * * * *1

2

2
* *1

2

p p c c a a p p c c a a h h

v v v v

W S S S S S S I I I I I I R R

S S I I

 = − + − + − + − + − + − + −
 

 + − + −
 

        

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * * * * *

* * .

p p c c a a p p c c a a h h

p c a p c a h v v v v v v

dW
S S S S S S I I I I I I R R

dt

d d
S S S I I I R S S I I S I

dt dt

 = − + − + − + − + − + − + −
 

  + + + + + + + − + −  +
 

   

(2.11) 

Substituting model system (2.1) into equation (2.11) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

* * * * * * *

* * ( , ) .

p p c c a a p p c c a a h h

a h p c a p c a h p p c c a a

v v v v m v v v

dW
S S S S S S I I I I I I R R

dt

S S S I I I R I I I

S S I I T R S I

    

 

 = − + − + − + − + − + − + −
 

  − + + + + + + − − −
 

 + − + −  − +   

 

(2.12) 

Applying ( )a h p c a p c a hS S S I I I R        = + + + + + +  and 

( , ) ( )m v v vT R S I   = +  into (2.12) yields,  

( ) ( ) ( ) ( )

( ) ( )

2
* * * *

* 2 * 2 * 2

2
* *

( )( ) ( )( ) ( )( )

.

h p p c c a a h h

p h p p c h c p a h a p

v v v v v

dW
S S S S S S R R

dt

I I I I I I

S S I I



     



 = − − + − + − + −
 

 − + − + + − + + − 

 − − + −
 

      (2.13) 

From equation (2.13), it is observed that 0
dW

dt
   in 

 , , , , , , , ,p c a p c a h v vS S S I I I R S I    

and the condition 0
dW

dt
=  holds if  

( ) ( )* * * * * * * * *, , , , , , , , , , , , , , , , .p c a p c a h v v p c a p c a h v vS S S I I I R S I S S S I I I R S I=   

 

Hence, by LaSalle’s invariant principle (LaSalle 1976), the endemic equilibrium of model 

system (2.1) is globally asymptotically stable.  

 

Temperature and Rainfall Dependent Variables 

In this subsection, temperature and rainfall variables incorporated in model system (2.1) are 

defined. It is assumed that, mosquito recruitment rate ( , )mT R depends on temperature and 

rainfall. According to Yiga et al. (2020) mosquito natural death rate is defined by  

( )2( ) ln 0.522 0.000828 0.0367v T T T = − − +  and the study by Ngarakana-

Gwasira et al. (2016) expressed mosquito birth rate as 
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( ) ( , ) ( )

( )
( , ) ,e e m l m p m

e l p

n R T R R

m d d T d
T R

  


+ +
=  (2.14) 

with 

2

4 2 (0.00554 0.06757)( , ) ( ) ,m

l

T

l m m l mR
T R R R R e


 − += −  (2.15) 

2

4 2( ) ( ) ( ),m

l
e m p m m l mR

R R R R R


 = = −  (2.16) 

1( ) (0.00554 0.06757) ,ld T T −= −  (2.17) 

 0.9,0.25,0.75,m =  (2.18) 

1ed = Month,  (2.19) 

1pd = Month (2.20) 

and 

6000.en =  (2.21)  

 

where, en  is the number of eggs a mosquito 

can lay per month, lR  is the threshold 

rainfall beyond which there is no survival for 

immature mosquitoes as it is noted that 

excessive rainfall may flush out breading 

sites. Moreover, ( , , )m m e l p =  is the 

maximum survival probability at optimum 

rainfall for mosquito breeding, while

( )e mR ,  ( , )l mT R  and ( )p mR  are 

survival probabilities for eggs, larvae and 

pupae respectively. Further, ed , ( )ld T  and 

pd  are corresponding development duration 

for each stage. Substituting (2.15), (2.16), 

(2.17), (2.18), (2.19), (2.20) and (2.21) into 

(2.14) gives adult mosquitoes recruited per 

month. That is, 

( )( )
( )

3
2 0.00554 0.06757

6

33.24 405.42

0.01108 0.86486
( , )

T
m l m

l

T R R R e

m R T
T R

− −− −

+
=

. Following the work by Parham and Michael 

(2010), the mosquito-biting rate is expressed 

by min( )
T T

D
b T

−
= . Where, minT  is the 

minimum temperature that favors mosquito 

biting, and D  is the number of days in 

which temperature was favorable for 

mosquito activities, known as degree days. 

 

Numerical Results and Discussion 

In this section, model (2.1) involving 

temperature dependent parameter ( )v T and   

temperature and rainfall dependent parameter 

( , )mT R  is solved numerically by using 

Runge-Kutta technique. The values of these 

parameters are obtained numerically using 

their corresponding formulas as described in 

the section of temperature and rainfall 

dependent variables. The aim is to validate 

the analytical solutions obtained in the 

previous sections. The implementation of the 

method/scheme was done using MATLAB 

package. Plots of numerical solutions are 

used to investigate the effects of temperature 

and rainfall on dynamics of malaria 

transmission in the structured population of 

pregnant women, children up to five years 

and individuals above five years old. The 

parameters used for simulation are as shown 

in Table 1, while the initial values for the 

subpopulations are given as follows: 

40pS = , 120cS = , 60aS =  

8pI = , 25cI = , 20aI = , 

30hR = , 80000vS =  and 

5000.vI =  

 

Table 1: Parameter Description and Values 
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Parameter Description Value (Month−1) Source 

a  Recruitment rate in aS  0.028 Ngarakana-

Gwasira et al. 

(2016) 

h  Human natural death rate 0.019 Traor´e et al. 

(2017) 

p  Induced death rate in  
pI  0.49273 Azu-Tungmah et 

al. (2019) 

c  Induced death rate in  cI  0.50605 Assumed 

a  Induced death rate in  aI  0.0028 Traor´e et al. 

(2017) 

p  Recovery rate in   
pI  0.14154 Azu-Tungmah et 

al. (2019) 

c  Recovery rate in   cI  0.07 (0025/Day) Gumel and 

Okuneye  (2017) 

a  Recovery rate in  aI  0.0159 Traor´e et al. 

(2017) 

p  Infection rate in 
pS  0.32150 Assumed 

c  Infection rate in cS  0.33575 Azu-Tungmah et 

al. (2019) 

a  Infection rate in aS  0.16246 Kalula et al. 

(2023) 

v  Infection rate in  vS  0.616(0.022/Day) Gumel and 

Okuneye  (2017) 

1  The rate at which individual 

from aI move to  
pI  

0.016744 Azu-Tungmah et 

al. (2019) 

2  The rate at which individual 

from
pI  move to  aI  

0.691 Ou´edraogo et al. 

(2012) 

s  Progression rate from cS   

into  aS  

0.00092732 Kalula et al. 

(2023) 

c  Progression rate from  cI  to  

aI  

0.00092732 Kalula et al. 

(2023) 

p  Delivery rate of babies in  

pS  

0.691 Ou´edraogo et al. 

(2012) 

  Delivery rate of babies in  

pI  

0.691 Ou´edraogo et al. 

(2012) 

  Proportion of babies born 

with infections   

0.0549 Ou´edraogo et al. 

(2012) 

1  The rate at which individuals 

from   aS  move to 
pS  after 

conceiving 

0.094735852 Assumed 

2  The rate at which individuals 0.20232 Assumed 



Tanz. J. Sci. Vol. 50(3) 2024 

707 

from   
pS  move to aS   

after delivery 

lR  Threshold rainfall beyond 

which no survival of 

immature mosquito 

50 Ngarakana-

Gwasira et al. 

(2016) 

D  Temperature days 111 Parham and 

Michael (2010) 

minT  Minimum temperature 16 Parham and 

Michael (2010) 

 

 
Figure 2: The impact of Temperature and Rainfall on R0 

 

From Figure 2, it is observed that malaria 

transmission occurs at temperature between 

(20 0C −40 0C) and rainfall range (0−50 mm), 

and the optimal temperature and rainfall are 

28.940C and 26.88 mm respectively. 

Moreover, the result indicates that 0 1R  at 

temperature and rainfall ranging between 

(23.53 0C − 39.80 0C) and (14.82 mm − 38.44 

mm) respectively. The temperature range at 

which malaria transmission occurs is similar 

to the findings of (Ngarakana-Gwasira et al. 

(2016), Parham and Michael (2010)) which 

are (20 0C – 40 0C) and (20 0C – 39 0C). 

Furthermore, the temperature range at which 

0 1R  and the optimal temperature 

correspond to the results by Abiodun et al. 

(2018) which are (18 0C −38 0C) and 30 0C 

respectively. The rainfall range is in line with 

Ngarakana-Gwasira et al. (2016), Yiga et al. 

(2020) which is 0 – 50 mm, and the optimal 

rainfall is closer to the result by Yiga et al. 

(2020) which is 30 mm. 
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(a) (b) 

 
(c) 

Figure 3: The impact of Temperature and Rainfall on Malaria Infections in (a) Pregnant 

women, (b) Children up to five years and (c) Individuals above five years. 

 

From Figure 3, it is observed that, the 

lowest number of infected individuals occurs 

at temperature T = 20 0C and rainfall Rm = 45 

mm. These results are due to the fact that 

malaria infections increase ( 0 1R  ) with 

increasing temperature and decreasing 

rainfall or vice versa. Moreover, the results 

show a rapid increase of infections in 

pregnant women and children up to five 

years. The rapid increase of infections in the 

two groups is due to the weak immunity as 

compared to individuals above five years. 

Furthermore, the infections drop down as 

time goes on due to deaths and recovery. 

These results agree with that by Yiga et al. 

(2020). 

 

 

 
 

(a) (b) 

 

Figure 4: The effects of transplacental transmission when α = 1 on (a) susceptible Children 

up to five years and (b) Infected children up to five years. 
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(a) (b) 

 

Figure 5: The effects of transplacental transmission when α = 0 on (a) susceptible Children 

up to five years and (b) Infected children up to five years. 

 

The numerical simulation for Figures 4 and 

5 was carried out using 30pI = . So, it was 

expected at least 30 babies to be born from 

infected pregnant women. We assumed that 

among these babies, some were born with 

infections. From the result in Figures 4 and 5, 

it is observed that decreasing the rate of 

transplacental transmission, α from 1 to 0, 

increases the number of individuals born free 

of malaria. 

 

Sensitivity Analysis 

Sensitivity analysis explains how 

parameters of the model system contribute to 

the model output. There are two major ways 

of performing sensitivity analysis, that is 

local and global sensitivity analyses. This 

sub-section performs local sensitivity 

analysis. 

Local sensitivity analysis determines how 

each of the parameters affects the 

reproduction number R0 as the model output. 

In this approach only one parameter is varied 

and fix the others. We compute sensitivity 

indices of 0R  with respect to a parameter(s) 

using the forward normalized sensitive index 

of a variable as applied by Chitnis et al. 

(2008). That is if ℓ is a variable, w is a 

parameter and r is the reproduction number 

then the sensitivity index of a variable  is 

given as:
w r w
r w r




=  . The sensitivity indices 

are generated using parameter values in Table 

1 and presented in Table 2. The numerical 

result for the local sensitivity is shown in 

Figure 6. 

 

Table 2: Sensitivity indices 

 Parameter Sensitivity index Parameter Sensitivity index 

( )b T  1 
a  -0.5 

h  -0.542 
c  0.554 

p  -0.0204 
a  0.048 

c  -0.426 
v  0.500 

a  -0.00347 
1  -0.00105 

p  -0.000367 
2  0.000085 
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c  -0.0156 
c  0.0014 

a  -0.0153   -0.0038 

p  0.255   -0.069 

( , )mT R  0.5 ( )v T  -1 

 
Figure 6: Numerical local sensitivity analysis of most sensitive parameters on R0 

 

From Table 2, the parameters, ( ( )b T , 

( , )mT R , 
p , c , a , v , 2 , c ) are 

all positive and ( a , h , 
p , c , a , 

( )v T , 1 , a , 
p , c ) are all negative. 

The positive sensitivity index indicates that 

the parameter is directly proportional to the 

reproduction number while the negative 

sensitivity index shows that the parameter is 

inversely proportional to the reproduction 

number. That is, increasing or decreasing one 

of these positive parameters cause the 

increase or decrease of the reproduction 

number while increasing or decreasing one of 

the negative parameters lead to decrease or 

increase of the reproduction number. The 

magnitude of the sensitivity index indicates 

how 0R  is sensitive to the parameter. That is, 

the bigger the sensitivity index the more 

sensitive the reproduction number is, to the 

parameter and vice versa. For instance, the 

results in Table 2 and Figure 6 show that 

biting rate ( )b T  is the most sensitive 

parameter since it has the highest positive 

value, which is, +1. This outcome is in line 

with the previous studies conducted by 

Chitnis et al. (2008) and Kalula et al. (2021). 

This result implies that, increasing or 

decreasing mosquito-biting rate, results into 

increase or decrease of malaria infections of 

malaria by exactly the same amount. Natural 

death rate of mosquitoes is another more 

sensitive parameter. It has the highest 

negative value that is, -1. Thus, increasing or 

decreasing death of mosquitoes will result 

into decrease or increase of malaria infections 

by exactly the same number. The results 

indicate that the next parameters with great 

effects are ( , a c , v , h , c , 
p ,

p  , a a ).  

 

Conclusion 

The aim of this study was to investigate the 

effects of temperature and rainfall on the 

transmission dynamics of malaria in an age-

structured population.  This was done by 

formulating a mathematical model for 

malaria using ordinary differential equations. 
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The numerical results show that at 

temperature and rainfall ranges between 

(23.53 0C − 39.80 0C) and (14.82 mm − 

38.44 mm) respectively, there are high rates 

of malaria infections especially to pregnant 

women and children up to five years. 

Moreover, decreasing the rate of 

transplacental transmission increases the 

number of children born without infections. 

Thus, in order to minimize malaria 

transmission, human individuals should be 

aware of the variations of temperature, 

rainfall, and their corresponding ranges at 

which malaria transmission occurs most, so 

that they can take precautions. 
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