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Abstract 

Malaria is a febrile illness affecting a large population worldwide. Even though malaria is 

curable and preventable it continues to pose a significant health risk, economic effects, and 

social effects in the population. This study formulates a mathematical model to study the 

transmission dynamics of malaria in a population with different immune status. By dividing the 

population based on immune status, the model provides insights into how immunity influences 

the interaction between hosts and malaria parasites, particularly in terms of infection rates, 

immune responses, and propose appropriate control for effective elimination. The basic 

reproduction number is computed using the next-generation matrix approach. The analysis 

shows that the model can undergo forward bifurcation when the basic reproduction number 

𝑅0 > 1, thus, the condition of 𝑅0 < 1 𝑖𝑠 necessary and sufficient for malaria elimination. The 

numerical simulation results indicate that non-immune individuals play a more significant role 

in malaria transmission compared to semi-immune individuals. This is because non-immune 

individuals, lacking strong immunity, are more susceptible to malaria infection. Moreover, the 

results highlight the effect of mosquito biting rates on the susceptible and infectious 

population. The findings underscore the importance of considering immune heterogeneity 

within the population when developing strategies to control and eventually eradicate malaria.  

Keywords: Non-immune, Semi-immune, Reproduction number, Bifurcation analysis. 

 

Introduction 

Malaria is the deadliest disease caused by 

the parasite of the genus Plasmodium which 

is transmitted between humans and 

mosquitoes through a bite from an infected 

female Anopheles mosquito. Despite the 

efforts to control, eradicate, and eliminate the 

disease, malaria remains a major health 

problem in sub-Saharan Africa. In 2021 there 

were approximately 247 million malaria 

cases and 619,000 malaria deaths worldwide 

(WHO 2022). In areas with high prevalence 

children below five years, pregnant women, 

and non-immune adults are more vulnerable 

to malaria infection and they are at high risk 

of malaria mortality (WHO 2022). 

 Several factors can affect malaria's 

transmission dynamics, including an 

individual's immune status. An individual's 

immune status helps determine the body's 

ability to fight against pathogens. To 

accurately study malaria transmission 

dynamics, it is essential to categorize the 

human host by immune status (Mwanga et al. 

2015). However, he did not include immune 

status in his age-structured model. The 

immune status of hosts, including their levels 

of innate, naturally, or artificially acquired 

immunity, significantly influences the spread 

https://dx.doi.org/10.4314/tjs.v50i4.9
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of infectious diseases within a population. As 

malaria parasites develop in the host, they 

trigger the activity of immune cells, leading 

to an immune response aimed at combating 

the infection. This response can either 

prevent the reinvasion of merozoites or 

increase the death rate of infected 

erythrocytes (Tumwiine et al. 2008, 

Woldegerima et al. 2018, Cai et al 2019). 

Therefore, designing effective control 

measures for malaria prevalence should be 

guided by a thorough understanding of 

human immune status, particularly for non-

immune individuals who are most vulnerable 

to malaria infection, where we have non-

immune and semi-immune individuals. Non-

immune individuals are those who have never 

got malaria infection and thus have not 

developed clinical immunity. Since they have 

not acquired immunity against malaria, they 

are at high risk of suffering from or dying of 

malaria (Keegan and Dushoff 2013). On the 

other hand, semi-immune individuals are 

those who have acquired immunity during 

their lifetime (Ducrot et al. 2009).  

Various mathematical models have been 

developed to assess the impact of immunity 

on malaria transmission dynamics, including 

Cai et al. (2019) formulated a compartmental 

whereby the human population is assumed to 

have a susceptible population, infectious 

humans with immune status and temporarily 

immune classes; Bakary et al. (2018), 

formulated a mathematical model of malaria 

transmission dynamics which considered 

immune status in human population, 

however, the focus of the study was in age 

structure for the vector population and a 

periodic biting rate of female anopheles 

mosquitoes. Ducrot et al. (2009) considered 

two types of hosts within the human 

population: non-immune individuals, who 

have never acquired immunity against 

malaria, and semi-immune individuals. An 

explicit expression for the reproduction 

number was derived as a function of the 

transmission weight between semi-immune 

individuals and mosquitoes, as well as 

between non-immune individuals and 

mosquitoes. However, neither of the studies 

considers the critical role that immune status 

plays in determining malaria prevalence and 

transmission. Therefore, this paper addresses 

an interesting question of how differences in 

host immune status affect the transmission of 

malaria in the absence of control.  

 

Materials and Methods  

The flow diagram (Figure 1), is used to 

describe the movement of human and 

mosquito populations from one class to 

another depending on their disease status. 

The model flow diagram is designed to 

facilitate the formulation of a mathematical 

model for populations with different immune 

status. 

Model Formulation 

A mathematical model for malaria 

transmission dynamics in the population with 

different immune status is formulated by 

modifying the model by Ducrot et al. (2009) 

which studied the dynamics of malaria in the 

presence of differential susceptibility, 

exposure, and infectivity of the human host. 

To study the transmission dynamics of 

malaria, we divide the human population into 

two major groups; the non-immune 

individuals who have never got malaria 

infection and are vulnerable to malaria 

infection (Ducrot et al. 2009), and semi-

immune individuals who already have 

immunity at least once in their lifetime 

(Ducrot et al., 2009). The classes are 

classified with subscript n for non-immune 

and s for semi-immune individuals 

respectively. The non-immune population is 

divided into susceptible class 𝑆𝑛, (those who 

are not infected but they are more vulnerable 

to malaria infection), exposed class 𝐸𝑛, (those 

already infected but not infectious because 

the infection is still at a dormant liver stage), 

and infectious class 𝐼𝑛, (those who can infect 

susceptible mosquitoes). Similarly, the semi-

immune population is divided into 

susceptible 𝑆𝑠, exposed 𝐸𝑠, and infectious 𝐼𝑠, 
classes respectively. Hence, the total human 

population at any time t is given by; 

𝑁ℎ = 𝑆𝑛 + 𝐸𝑛 + 𝐼𝑛 + 𝑆𝑠 + 𝐸𝑠 + 𝐼𝑠. 
The mosquito population is divided into 

two compartments which are the susceptible 

𝑆𝑚, and infectious 𝐼𝑚. Therefore, the total 

https://www.sciencedirect.com/topics/immunology-and-microbiology/host-susceptibility
https://www.sciencedirect.com/topics/immunology-and-microbiology/host-susceptibility


Tanz. J. Sci. Vol. 50(4) 

823 

mosquito population at any time 𝑡 is given 

by; 

𝑁𝑚 = 𝑆𝑚 + 𝐼𝑚. 

Non-immune and semi-immune individuals 

are recruited through birth at a rate 𝜃Λ and 

(1-𝜃)Λ respectively, for 𝜃 ∈[0,1]. The 

susceptible non-immune and semi-immune 

individuals get malaria infection when bitten 

by an infectious mosquito at rates 𝜆𝑛 and 𝜆𝑠 
respectively. The forces of infections 𝜆𝑛 and 

𝜆𝑠  are given as; 

𝜆𝑛 =
𝑎𝑏𝑚𝑛𝐼𝑚

𝑁ℎ
,   𝜆𝑠 =

𝑎𝑏𝑚𝑠𝐼𝑚

𝑁ℎ
 (1) 

where, 𝑏𝑚𝑛, and 𝑏𝑚𝑠 represent the average 

mosquito biting rate and the probability of 

infecting non-immune and semi-immune 

individuals respectively. After some period, 

exposed individuals 𝐸𝑛 and 𝐸𝑠 progress into 

infectious class 𝐼𝑛 and 𝐼𝑠  at rates 𝛽𝑛 and 𝛽𝑠, 
respectively. Individuals from every 

compartment suffer natural mortality at a rate 

𝜇ℎ and individuals from infectious class 

suffer disease-induced death at rates 𝛼𝑛 and 

𝛼𝑠 for non-immune and semi-immune 

individuals respectively. The mosquito 

population is considered to be recruited 

through birth at a per capita rate Λ𝑚. The 

susceptible mosquito gets malaria parasites 

when bites an infectious non-immune and 

semi-immune individual at a rate λ𝑚. The 

force of infection λ𝑚. is given as; 

𝜆𝑚 =
𝑎𝑐𝑛𝑚𝑖𝑛+𝑎𝑐𝑠𝑚𝑖𝑠

𝑁ℎ
 (2) 

where 𝑎, 𝑐𝑛𝑚,  and 𝑐𝑠𝑚 represent the 

mosquito biting rate, the probabilities of a 

mosquito to get an infection from an 

infectious non-immune and semi-immune 

individual respectively. Following infection, 

susceptible mosquitoes 𝑆𝑚 progress to 

infectious class 𝐼𝑚. Mosquitoes decrease 

from the population through natural mortality 

at a rate 𝜇𝑚. Moreover, throughout the study, 

we make the following assumptions: All new 

recruitment is susceptible to the malaria 

disease, and all women attend clinic hence, 

there is no vertical transmission of malaria 

infection from mother to the baby (Bakary et 

al., 2018). The disease does not confer 

immunity hence once an individual is 

infected with malaria will remain infected 

provided that there is no treatment. The 

dynamics of malaria in the population with 

different immune status is summarized in 

Figure 1.  

 

 
Figure 1: Model Flow Diagram for Malaria Dynamics in the Population with Different 

Immune Status 
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Table 1: Description of Model Parameters in the Model  

Parameter Description 

𝜃 
The proportion of the human population that joins the susceptible 

class 

Λ Per capita recruitment rate of the human population 

𝛽𝑛 
Progression rate of non-immune individuals from exposed class to 

an infectious class 

𝛽𝑠 
Progression rate of semi-immune individuals from exposed class to 

an infectious class 

𝑏𝑚𝑛 
Probability of malaria transmission from an infectious mosquito to 

susceptible non-immune 

𝑏𝑚𝑠 
Probability of malaria transmission from an infectious mosquito to 

susceptible semi-immune 

𝑐𝑛𝑚 
Probability of malaria transmission from an infectious non-immune 

to susceptible mosquito 

𝑐𝑠𝑚 
Probability of malaria transmission from an infectious semi-immune 

to susceptible mosquito 

𝛼𝑛 Decease-induced death in non-immune individuals 

𝛼𝑠 Decease-induced death in semi-immune individuals 

𝜆𝑖(𝑛, 𝑠,𝑚) 
The infection rate for susceptible non-immune, semi-immune and 

mosquito 

𝜇ℎ Natural mortality rate of the human population 

𝜇𝑚 Natural death rate mosquito population 

𝑔 Vector-human ratio 

𝑎 Average mosquito biting rate 

 

The associated system of ordinary differential equations that describes the transmission 

dynamics of malaria in humans and mosquitoes are given as follows 
𝑑𝑆𝑛

𝑑𝑡
= Λθ𝑁ℎ − (𝜆𝑛 + 𝜇ℎ)𝑆𝑛(𝑡),              

𝑑𝐸𝑛

𝑑𝑡
= 𝜆𝑛𝑆𝑛 − (𝛽𝑛 + 𝜇ℎ)𝐸𝑛(𝑡) ,               

𝑑𝐼𝑛

𝑑𝑡
= 𝛽𝑛𝐸𝑛 − (𝛼𝑛 + 𝜇ℎ)𝐼𝑛(𝑡) ,                 

𝑑𝑆𝑠

𝑑𝑡
= (1 − θ)Λ𝑁ℎ − (𝜆𝑠 + 𝜇ℎ)𝑆𝑠(𝑡),      

𝑑𝐸𝑠

𝑑𝑡
= 𝜆𝑠𝑆𝑠 − (𝛽𝑠 + 𝜇ℎ)𝐸𝑠(𝑡),                   

𝑑𝐼𝑠

𝑑𝑡
= 𝛽𝑠𝐸𝑠 − (𝛼𝑠 + 𝜇ℎ))𝐼𝑠(𝑡) ,                

𝑑𝑆𝑚

𝑑𝑡
= Λ𝑚𝑁𝑚 − (𝜆𝑚 + 𝜇𝑚)𝑆𝑚(𝑡),        

𝑑𝑆𝑚

𝑑𝑡
= λ𝑚𝑆𝑚(𝑡) − 𝜇𝑚𝐼𝑚(𝑡),                    }

 
 
 
 
 
 

 
 
 
 
 
 

,   (3) 

  subject to the initial conditions: 𝑆𝑛(0) > 0, 𝐸𝑛(0) ≥ 0, 𝐼𝑛(0) ≥ 0, 𝑆𝑠(0) > 0,   
𝐸𝑠(0) ≥ 0, 𝐼𝑠(0) ≥ 0,   𝑆𝑚(0) > 0, 𝐼𝑚(0) ≥ 0.  
Non-Dimensionalization of the Model 

We apply the method used by Kalula et al. (2021) and Chitnis et al. (2008) to rescale the model 

system (3) by dividing the population in each class by the total population that is 𝑠𝑛 =
𝑆𝑛

𝑁ℎ
, 𝑠𝑠 =

𝑆𝑠

𝑁ℎ
, 𝑠𝑚 =

𝑆𝑚

𝑁𝑚
, … , etc. Differentiating for t we obtain; 
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𝑑𝑠𝑛

𝑑𝑡
=

1

𝑁ℎ
[
𝑑𝑆𝑛

𝑑𝑡
−

𝑑𝑁ℎ

𝑑𝑡
] ,
𝑑𝑠𝑠

𝑑𝑡
=

1

𝑁ℎ
[
𝑑𝑆𝑠

𝑑𝑡
−

𝑑𝑁ℎ

𝑑𝑡
] ,
𝑑𝑠𝑚

𝑑𝑡
=

1

𝑁𝑚
[
𝑑𝑆𝑚

𝑑𝑡
−

𝑑𝑁𝑚

𝑑𝑡
]. The process is repeated for 

the remaining variable, 𝐸𝑛 ,  𝐼𝑛 , 𝐸𝑠, 𝐼𝑠,   𝐼𝑚. We apply the method used by Tumwiine et al. 

(2007) to solve the derivatives of rescaled variables so that  we can have, 

       
𝑑𝑠𝑛
𝑑𝑡

= Λ(θ − 𝑠𝑛) − (𝑎𝑔𝑏𝑚𝑛𝑖𝑚)𝑠𝑛 + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑠𝑛                  

 
𝑑𝑒𝑛
𝑑𝑡

= 𝑎𝑔𝑏𝑚𝑛𝑖𝑚𝑠𝑛 − (𝛽𝑛 + Λ)𝑒𝑛 + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠)𝑒𝑛              

𝑑𝑖𝑠
𝑑𝑡

= 𝛽𝑛𝑒𝑛 − (𝛼𝑛 + Λ))𝑖𝑛  + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑖𝑛                       
      

                
𝑑𝑠𝑠
𝑑𝑡

= ((1 − θ) − 𝑠𝑠)Λ − (𝑎𝑔𝑏𝑚𝑠𝑖𝑚)𝑠𝑠 + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠)𝑠𝑠                   

       
𝑑𝑒𝑠
𝑑𝑡

= 𝑎𝑔𝑏𝑚𝑠𝑖𝑚𝑠𝑠 − (𝛽𝑠 + Λ)𝑒𝑠 + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑒𝑠                    

𝑑𝑖𝑠
𝑑𝑡

= 𝛽𝑠𝑒𝑠 − (𝛼𝑠 + Λ))𝑖𝑠  + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑖𝑠                        

𝑑𝑠𝑚
𝑑𝑡

= Λ𝑚(1 − 𝑠𝑚) − (𝑎𝑐𝑛𝑚𝑖𝑛 + 𝑎𝑐𝑠𝑚𝑖𝑠)𝑠𝑚                         

𝑑𝑖𝑚
𝑑𝑡

= (𝑎𝑐𝑛𝑚𝑖𝑛 + 𝑎𝑐𝑠𝑚𝑖𝑠)𝑠𝑚 − Λ𝑚𝑖𝑚                                      }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 ,        (4) 

subject to the conditions;  𝑠𝑚 + 𝑖𝑚 = 1, and 𝑠𝑛 + 𝑒𝑛 + 𝑖𝑛 + 𝑠𝑠 + 𝑒𝑠 + 𝑖𝑠 = 1, where,  

𝑔 =
𝑁𝑚

𝑁ℎ
  is the vector-human ratio. 

Model Analysis 

For the model system (4) to be mathematically and epidemiologically meaningful, it is 

important to show that all model solutions are positive and bounded. 

 

 Positivity of Model Solutions 

From the first equation in the model system (4) for susceptible non-immune humans, we 

have:  
𝑑𝑠𝑛
𝑑𝑡

= Λθ − (𝑎𝑔𝑏𝑚𝑛𝑖𝑚 + Λ)𝑠𝑛 + (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑠𝑛(𝑡), 

⇒
𝑑𝑠𝑛
𝑑𝑡

≥ −(𝑎𝑏𝑚𝑛𝑖𝑚(𝑡) + Λ)𝑠𝑛(𝑡)  , 

                                      ⇒
𝑑𝑆𝑛

𝑆𝑛(𝑡) 
≥ −(𝑎𝑏𝑚𝑛𝑖𝑚(𝑡) + Λ)𝑑𝑡,                                                      (5) 

𝑠𝑛(𝑡) ≥ 𝑠𝑛(0)𝑒
∫ −(𝑎𝑏𝑚𝑛𝑖𝑚(𝑠)+Λ)𝑑𝑠
𝑡
0 ≥ 0, ∀𝑡 ≥ 0. 

Using the same approach for the remaining equations, it can be shown that, 

                                     𝑒𝑛 ≥ 0; 𝑖𝑛 ≥ 0; 𝑠𝑠 ≥ 0; 𝑒𝑠 ≥ 0; 𝑖𝑠 ≥ 0; 𝑠𝑚 ≥ 0; 𝑖𝑚 ≥ 0.  
Therefore, all solutions of model system (2) are positive for all 𝑡 ≥ 0. 
Invariant region 

To prove the boundedness of model solutions, we apply the method used by Irunde et al. 

(2016). By considering the total human population 

 𝑛ℎ(𝑡) = 𝑠𝑛(𝑡) + 𝑒𝑛(𝑡)+ 𝑖𝑛(𝑡) + 𝑠𝑠(𝑡) + 𝑒𝑠(𝑡) + 𝑖𝑠(𝑡), we have: 

                                                      
𝑑𝑛ℎ(𝑡)

𝑑𝑡
= Λ − Λ𝑛ℎ(𝑡) + 𝛼𝑛𝑖𝑛(𝑡) + 𝛼𝑠𝑖𝑠(𝑡), 

                                                      ⇒
𝑑𝑛(𝑡)

𝑑𝑡
≤ Λ − Λ𝑛ℎ(𝑡).   

Using integrating factors, it can be shown that: 

𝑛ℎ(𝑡) ≤ (𝑛ℎ(0))𝑒
−Λ𝑡 + (1 − 𝑒−Λ𝑡),         

Applying the limit as 𝑡 → ∞, it follows that:  
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                              lim
𝑡→∞

𝑠𝑢𝑝 𝑛ℎ ≤ 1  (6) 

where, 𝑛ℎ(0) = 𝑠𝑛(0) + 𝑒𝑛(0)+ 𝑖𝑛(0) + 𝑠𝑠(0) + 𝑒𝑠(0) + 𝑖𝑠(0).  
Using the same approach, it can be shown that the population of mosquitoes is given as 

                  𝑛𝑚(𝑡) ≤ 𝑛𝑚(0)𝑒
−Λ𝑚𝑡 + (1 − 𝑒−Λ𝑚𝑡),  (7) 

where, 𝑛𝑚(0) = 𝑠𝑚(0) + 𝑖𝑚(0).  
Hence, 

 𝜑𝑡 =   𝑚𝑎𝑥{1, 𝑛ℎ(0) }, (8) 

 𝜀𝑡 = 𝑚𝑎𝑥{1 , 𝑛𝑚(0) }. (9) 

Therefore, the model system (2) is positive invariant in the region 

Γ = {(𝑠𝑛 , 𝑒𝑛, 𝑖𝑛 , 𝑠𝑠 , 𝑒𝑠, 𝑖𝑠, 𝑠𝑚 , 𝑖𝑚)𝜖ℝ+
8 ∶ 0 ≤ 𝑛ℎ(𝑡) ≤  𝜑𝑡; 0 ≤ 𝑛𝑚(𝑡) ≤  𝜀𝑡  }, 

where, 𝜑𝑡 and 𝜀𝑡 are defined in equations (8) and (9) respectively. 

Therefore, the model system (4) is both mathematically, epidemiologically, and biologically 

meaningful, thus we can consider the flow generated by the model system (4) for the analysis. 

Malaria-Free Equilibrium and the Basic Reproduction Number 𝑹𝟎 

 Malaria-Free Equilibrium Point 

The malaria-free equilibrium point (MFE) is a point where the population is free from malaria 

disease.  As a result, at the malaria-free equilibrium point, all infectious classes within the 

model system (4) are set to zero, yielding the representation of the model system (4) as follows. 

Λ(𝜃 − 𝑠𝑛) = 0           

Λ((1 − 𝜃) − 𝑠𝑠) = 0

Λ𝑚(1 − 𝑠𝑚) = 0      

} (10) 

Solving for 𝑠𝑛 , 𝑠𝑠 , 𝑎𝑛𝑑, 𝑠𝑚 into equation (10) above, we have; 

              𝐸0(𝑠𝑛 , 𝑒𝑛, 𝑖𝑛 , 𝑠𝑠 , 𝑒𝑠, 𝑖𝑠 , 𝑠𝑚, 𝑖𝑚) = (θ, 0, 0, (1 − θ), 0, 0, 1, 0).    (11) 

 

Malaria Reproduction Number 𝑹𝟎 

The basic reproduction number 𝑅0 is an 

expected number of secondary infections that 

may occur as the result of introducing a 

single infected individual in the whole 

susceptible population (Diekmann et al., 

1990). It determines whether the disease 

persists or dies. The disease dies when 𝑅0 <1 

and persists when 𝑅0 >1. The next-

generation matrix method used in van den 

Driessche and Watmough (2002) is applied to 

compute the basic reproduction number 𝑅0. 

Using the infected classes in the model 

system (4), the vector for new infection in the 

compartment 𝑖 and the transfer terms in and 

out of the compartment 𝑖 are respectively 

given by: 

 ℱ𝑖 =

(

 
 

𝑎𝑔𝑏𝑚𝑛𝑖𝑚𝑠𝑛
0

𝑎𝑔𝑏𝑚𝑠𝑖𝑚𝑠𝑠
0

(𝑎𝑐𝑛𝑚𝑖𝑛 + 𝑎𝑐𝑠𝑚𝑖𝑠)𝑠𝑚)

 
 
, 𝜈𝑖 =

(

 
 

(𝛽𝑛 + Λ)𝑒𝑛 − (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑒𝑛
(𝛼𝑛 + Λ)𝑖𝑛 − 𝛽𝑛𝑒𝑛 − (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑖𝑛

(𝛽𝑠 + Λ)𝑒𝑠 − (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑒𝑠
(𝛼𝑠 + Λ)𝑖𝑠 − 𝛽𝑠𝑒𝑠 − (𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠) 𝑖𝑠

Λ𝑚𝑖𝑚 )

 
 
.  (12) 

So that the Jacobian matrices 𝐹and 𝑉 at MFE are given as: 

𝐹 =
𝜕ℱ𝑖

𝜕𝑥𝑗
(𝐸0), 𝑉 =

𝜕𝜈𝑖

𝜕𝑥𝑗
(𝐸0), (13) 

The malaria reproduction number 𝑅0 is given by: 

 𝑅0 = 𝜌(𝐹𝑉−1) .                                                                                              (14) 

Using equation (13), matrices 𝐹and 𝑉 can be written as; 

     𝐹 =

(

 
 

0
0
0
0
0

0
0
0
0
𝑎3

0
0
0
0
0

0
0
0
0
𝑎4

𝑎1
0
𝑎2
0
0 )

 
 

 and 𝑉 =

(

 
 

𝑏1
−𝛽𝑛
0
0
0

0
𝑏3
0
0
𝑎3

0
0
𝑏4
−𝛽𝑠
0

0
0
0
𝑏6
0

0
0
0
0
Λ𝑚)

 
 

, (15) 
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where,  𝑎1 = 𝑎𝑔𝑏𝑚𝑛θ,  𝑎2 = 𝑎𝑔𝑏𝑚𝑛(1 − θ),  𝑎3 = 𝑎𝑐𝑛𝑚 , 𝑎4 = 𝑎𝑐𝑠𝑚,  𝑏1 = (𝛽𝑛 + Λ),  𝑏3 =
(𝛼𝑛 + Λ),    𝑏4 = 𝛽𝑠 + Λ,  𝑏6 = 𝛼𝑠 + Λ.  

 The malaria reproduction number   𝑅0 of the model system (2) is given by; 

                                       𝑅0 = √𝑅0𝑛 + 𝑅0𝑠  (16) 

where; 𝑅0𝑠 =
𝑎2𝑔𝑏𝑚𝑠(1−𝜃)𝑐𝑠𝑚𝛽𝑠

Λ𝑚(𝛽𝑠+Λ)(𝛼𝑠+Λ)
,  𝑅0𝑛 =

𝑎2𝜃𝑔𝛽𝑛𝑏𝑚𝑛𝑐𝑛𝑚

Λ𝑚(𝛽𝑛+Λ)(𝛼𝑛+Λ)
 

𝑅0𝑛 is the partial reproduction number due to the interaction between non-immune individuals 

and mosquitoes, whereas 𝑅0𝑠 is the partial reproduction number due to the interaction between 

semi-immune and mosquitoes. 

The Endemic Equilibrium points 

The endemic equilibrium 𝐸∗ is a steady-state situation where the disease persists in the 

population. Solving the model system (4) when all infectious classes are not equal to zero, we 

obtain an endemic equilibrium point 𝐸∗ = (𝑠𝑛
∗ , 𝑒𝑛

∗ , 𝑖𝑛
∗ , 𝑠𝑠

∗, 𝑒𝑠
∗, 𝑖𝑠

∗, 𝑠𝑚
∗ , 𝑖𝑚

∗ )  where; 

𝑠𝑛
∗ =

Λ𝜃

𝑔𝑎𝑏𝑚𝑛𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ )
,  𝑒𝑛

∗ =
𝑔𝑎𝑏𝑚𝑛Λ𝜃𝜆𝑚

∗

(𝛽𝑛+Λ−N)(𝑔𝑎𝑏𝑚𝑛𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ ))
,  

   𝑖𝑛
∗ =

𝑔𝑎𝑏𝑚𝑛𝛽𝑛Λ𝜃𝜆𝑚
∗

(𝛼𝑛+Λ−N)(𝛽𝑛+Λ−N)(𝑔𝑎𝑏𝑚𝑛𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ ))
,    𝑠𝑠

∗ =
Λ(1−𝜃)𝜆𝑚

∗

𝑔𝑎𝑏𝑚𝑛𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ )
 , 

 𝑒𝑠
∗ =

𝑔𝑎𝑏𝑚𝑠Λ(1−𝜃)𝜆𝑚
∗

(𝛽𝑠+Λ−N)(𝑔𝑎𝑏𝑚𝑠𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ ))
,    𝑖𝑠

∗ =
𝛽𝑠𝑔𝑎𝑏𝑚𝑠Λ(1−𝜃)𝜆𝑚

∗

(𝛼𝑠+Λ−N)(𝛽𝑠+Λ−N)(𝑔𝑎𝑏𝑚𝑠𝜆𝑚
∗ +(Λ−N)(Λ𝑚+𝜆𝑚

∗ ))
,  

 𝑠𝑚
∗ =

Λ𝑚

Λ𝑚+𝜆𝑚
∗ ,  𝑖𝑚

∗ =
𝜆𝑚
∗

Λ𝑚+𝜆𝑚
∗ , where,  𝑁 = 𝛼𝑛𝑖𝑛 + 𝛼𝑠𝑖𝑠 . 

 

Existence of Forward Bifurcation 

Forward bifurcation occurs when malaria free 

equilibrium point loses its stability and a 

stable malaria equilibrium occurs as the basic 

reproduction number R0 increases through 

one (Chitnis et al., 2006). In this case, if 

R0 < 1, then the malaria-free equilibrium 

exists and it is stable, implying that malaria 

disease will die out. When R0 > 1, then the 

malaria-free equilibrium becomes unstable 

resulting in malaria equilibrium, which shows 

that malaria disease will persist. Normally, 

when forward bifurcation occurs, then the 

requirement R0 < 1 is necessary and 

sufficient for malaria control. Therefore, to 

prove the existence of forward bifurcation in 

the model system (4) we adopt the center 

Manifold theory as applied by Castillo  and 

Chavez et al. (2004). To do so, the state 

variables are renamed as  𝑦1 = 𝑠𝑛 , 𝑦2 =
𝑒𝑛,  𝑦3 = 𝑖𝑛 , 𝑦4 = 𝑠𝑠 ,  𝑦5 = 𝑒𝑠, 𝑦6 = 𝑖𝑠,
𝑦7 = 𝑠𝑚 , 𝑦8 = 𝑖𝑚 , such that 𝑦 =
(𝑦1,  𝑦2 ,  𝑦3, 𝑦4,  𝑦5 , 𝑦6,  𝑦7, 𝑦8)

𝑇 where 𝑇 

stands for transpose. The model system (2) 

can be written in the form of  
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦) with,  

𝐹 = (𝑓1,  𝑓2, … , 𝑓8). Thus, the model system 

(2) becomes 
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𝑑𝑦1
𝑑𝑡

= 𝑓1 = Λθ − (𝑎𝑔𝑏𝑚𝑛𝑦8 + Λ) 𝑦1 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦1                    

𝑑𝑦2
𝑑𝑡

= 𝑓2 = 𝑎𝑔𝑏𝑚𝑛𝑦8𝑦1 − (𝛽𝑛 + Λ)𝑦2 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦2                

𝑑𝑦3
𝑑𝑡

= 𝑓3 = 𝛽𝑛𝑦2 − (𝛼𝑛 + Λ)𝑦3 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦3                           

𝑑𝑦4
𝑑𝑡

= 𝑓4 = (1 − θ)Λ − (𝑎𝑔𝑏𝑚𝑠𝑦8 + Λ)𝑦4 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦4            

𝑑𝑦5
𝑑𝑡

= 𝑓5 = 𝑎𝑔𝑏𝑚𝑠𝑦8𝑦4 − (𝛽𝑠 + Λ)𝑦5 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦5                    

𝑑𝑦6
𝑑𝑡

= 𝑓6 = 𝛽𝑠𝑦5 − (𝛼𝑠 + Λ)𝑦6 + (𝛼𝑛𝑦3 + 𝛼𝑠𝑦6) 𝑦6                              

𝑑𝑦7
𝑑𝑡

= 𝑓7 = Λ𝑚 − (𝑎𝑐𝑛𝑚𝑦3 + 𝑎𝑐𝑠𝑚𝑦6 + Λ𝑚)𝑦7                                   

𝑑𝑦8
𝑑𝑡

= 𝑓8 = (𝑎𝑐𝑛𝑚𝑦3 + 𝑎𝑐𝑠𝑚𝑦6)𝑦7 − Λ𝑚𝑦8                                         }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

           (17), 

where,  𝑦 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 + 𝑦8. The Jacobian Matrix of Model system 

(17) at malaria-free equilibrium point is given as 

𝐽(𝐸0) =

(

 
 
 
 
 
 

−Λ 0 0 0 0 0 0 −𝑎𝑔𝑏𝑚𝑛𝜃
0 −(𝛽𝑛 + Λ) 0 0 0 0 0 𝑎𝑔𝑏𝑚𝑛𝜃

0 𝛽𝑛 −(𝛼𝑛 + Λ) 0 0 0 0 0

0 0 0 −Λ 0 0 0 −𝑎𝑔𝑏𝑚𝑠(1 − 𝜃)
0 0 0 0 −(𝛽𝑠 + Λ) 0 0 𝑎𝑔𝑏𝑚𝑠(1 − 𝜃)

0 0 0 0 𝛽𝑠 −(𝛼𝑠 + Λ) 0 0
0 0 −𝑎𝑐nm 0 0 −𝑎𝑐𝑠𝑚 −Λ𝑚 0
0 0 𝑎𝑐nm 0 0 𝑎𝑐𝑠𝑚 0 −Λ𝑚 )

 
 
 
 
 
 

 (18) 

Choosing 𝑎∗ as a bifurcation parameter when 𝑅0 = 1, we obtain, 

                         𝑎∗ =
Λ𝑚(𝛽𝑠 + Λ)(𝛼𝑠 + Λ)(𝛽𝑛 + Λ)(𝛼𝑛 + Λ)

𝑔𝛽𝑠𝑏𝑚𝑠(1 − 𝜃)𝑐𝑠𝑚(𝛽𝑛 + Λ)(𝛼𝑛 + Λ) + 𝑔𝛽𝑛𝑏𝑚𝑛𝜃𝑐𝑛𝑚(𝛽𝑠 + Λ)(𝛼𝑠 + Λ)
     

 (19) 

Therefore, the linearized system (18) is transformed by 𝑎 = 𝑎∗ which has a simple zero 

eigenvalue and center Manifold theory is used to analyze the dynamics of the system (18) near 

to by 𝑎 = 𝑎∗. Thus, the Jacobian matrix (18) at the malaria-free equilibrium point 𝐸0 denoted 

by 𝐽(𝑎∗) is given by: 

                  𝐽(𝑎∗) =

(

 
 
 
 
 

−Λ 0 0 0 0 0 0 −𝑛1
0 −𝑛2 0 0 0 0 0 𝑛1
0 𝛽𝑛 −𝑛3 0 0 0 0 0
0 0 0 −Λ 0 0 0 −𝑛6
0 0 0 0 −𝑛4 0 0 𝑛6
0 0 0 0 𝛽𝑠 −𝑛5 0 0
0 0 −𝑛7 0 0 −𝑛8 −Λ𝑚 0
0 0 𝑛7 0 0 𝑛8 0 −Λ𝑚)

 
 
 
 
 

,                          (20)  

 where 𝑛1 = 𝑎
∗𝑔𝑏𝑚𝑛𝜃,  𝑛2 = 𝛽𝑛 + Λ, 𝑛3 = 𝛼𝑛 + Λ,  𝑛4 = 𝛽𝑠 + Λ,  𝑛5 = 𝛼𝑠 + Λ,  

𝑛6 = 𝑎∗𝑔𝑏𝑚𝑛 (1 − 𝜃),  𝑛7 = 𝑎
∗𝑐nmΛ𝑚 ,  𝑛8 = 𝑎

∗𝑐𝑠𝑚Λ𝑚. 

The right eigenvectors associated with zero eigenvalues are given by; 

 𝜓 = (𝜓1,  𝜓2,  𝜓3, 𝜓4,  𝜓5, 𝜓6,  𝜓7, 𝜓8)
𝑇 and the following right eigenvectors are obtained, 

𝜓1 = −
𝑛1𝜓8

𝜇
,  𝜓2 =

𝑛1𝜓8

𝑛2
, 𝜓3 =

𝑛1𝛽𝑛𝜓8

𝑛2𝑛3
,  𝜓4 = −

𝑛6𝜓8

𝜇
,  𝜓5 =

𝑛6𝜓8

𝑛4
,  𝜓6 =

𝑛6𝛽𝑠𝜓8

𝑛4𝑛5
,   
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 𝜓7 = −
𝑛1𝑛4𝑛5𝑛7𝛽𝑠𝜓8+𝑛2𝑛3𝑛6𝑛8𝛽𝑠𝜓8

𝜇𝑚𝑛2𝑛3𝑛4𝑛5
,  𝜓8 =  𝜓8 > 0.  

The left eigenvectors are given by; 

𝜂1 = 0,  𝜂2 =
𝑛7𝛽𝑛𝜂8

𝑛2𝑛3
, 𝜂3 =

𝑛7𝜂8

𝑛3
,  𝜂4 = 0,  𝜂5 =

𝑛8𝛽𝑠𝜂8

𝑛4𝑛5
, 𝜂6 =

𝑛8𝜂8

𝑛5
,   𝜂7 = 0,  𝜂8 =  𝜂8 > 0.  

Theorem 4.1 in Castillo-Chavez and Song, (2004) is applied to establish conditions for the 

forward or backward bifurcation. For easy reference, the Theorem is established to demonstrate 

the regional stability of endemic equilibrium points near  𝑅0 = 1. 
Theorem 1 Consider the following general system of ordinary differential equations with a 

parameter 𝑎 such that  
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑎), 𝑓 ∈ ℝ𝑛 × ℝ and f ∈ℂ2 (ℝ𝑛 × ℝ ), where 0 is an 

equilibrium point of the model system (4) (that is 𝑓(𝑜, 𝑎) ≡ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎) 𝑎𝑛𝑑  

i. 𝑀 = 𝑁𝑥𝑓(0,0) =
𝜕𝑓

𝜕𝑥𝑖
𝑓(0,0)   is a linearization matrix of the system (16) around 

equilibrium 0 evaluated at 0. 

  Zero is a simple eigenvalue of M and all other eigenvalues of M have negative real parts. 

ii. Matrix M has a non-negative right eigenvector 𝜓 and a left eigenvector 𝜂 

corresponding to the zero eigenvalue. 

Let 𝑓𝑘 be the 𝑘𝑡ℎcomponent of f and 

𝑎 = ∑ 𝜂𝑘𝜓𝑖𝜓𝑗
𝑛
𝑖,𝑗,𝑘=1

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(0,0),  𝑏 = ∑ 𝜂𝑘𝜓𝑖𝜓𝑗

𝑛
𝑖,𝑗,𝑘=1

𝜕2𝑓

𝜕𝑥𝑖𝑎
(0,0). 

The local dynamics of the system around the equilibrium point is totally determined by the 

signs of a and b. 

iii. If a > 0 and b > 0, then equilibrium 0 is locally asymptotically stable, and there exists 

unstable positive equilibrium when β < 0 with |β| << 1. In this case, the direction of 

bifurcation at β = 0 is backward.  

iv.  If a < 0, b > 0 and β > 0 with |β| << 1, then equilibrium 0 becomes unstable, 

and there exists a stable positive equilibrium which is locally asymptotically stable. In this 

case, the direction of bifurcation at β = 0 is forward. 

The non-zero second partial derivatives of 𝑓𝑘 at disease-free equilibrium 𝐸0 are given as,  

  
𝜕2 𝑓2

𝜕𝑦1𝜕𝑦8
= 𝑔𝑎∗𝑏𝑚𝑛 ,

𝜕2 𝑓5

𝜕𝑦4𝜕𝑦8
= 𝑔𝑎∗𝑏𝑚𝑠 ,

𝜕2 𝑓8

𝜕𝑦7𝜕𝑦3
= 𝑎∗𝑐𝑛𝑚,

𝜕2 𝑓8

𝜕𝑦7𝜕𝑦6
= 𝑎∗𝑐𝑠𝑚 ,

𝜕2 𝑓2

𝜕𝑦1𝜕𝑎
= 𝑔𝑏𝑚𝑛𝜃,  

  
𝜕2 𝑓5

𝜕𝑦4𝜕𝑎
= 𝑔𝑏𝑚𝑠(1 − 𝜃),

𝜕2 𝑓8

𝜕𝑦7𝜕𝑎
= 𝑐𝑛𝑚,

𝜕2 𝑓8

𝜕𝑦7𝜕𝑎
= 𝑐𝑠𝑚 

Thus, we obtain 

𝑎 = −𝜂8𝜓8 (
𝛽𝑛𝑛1𝑛7𝑔𝑎

∗𝑏𝑚𝑛

𝑛2𝑛3
+

𝛽𝑠𝑛6𝑛8𝑔𝑎
∗𝑏𝑚𝑠

𝑛2𝑛3
+

𝛽𝑛𝑛1(𝑛1𝑛4𝑛5𝑛7𝛽𝑛+𝑛2𝑛3𝑛6𝑛8𝛽𝑠)

𝑛2
2𝑛3

2𝑛4𝑛4
+

  
𝛽𝑠𝑛6(𝑛1𝑛4𝑛5𝑛7𝛽𝑛+𝑛2𝑛3𝑛6𝑛8𝛽𝑠)

𝑛2𝑛3𝑛4
2𝑛5

2  ) < 0 , (21) 

𝑏 = 𝜂8𝜓8 (
𝛽𝑛𝑛7𝑔𝑏𝑚𝑛𝜃

𝑛2𝑛3
+

𝛽𝑠𝑛8𝑔𝑏𝑚𝑛(1−𝜃)

𝑛4𝑛5
+

𝛽𝑛𝑛1𝑐𝑚𝑛

𝑛2𝑛3
+

𝛽𝑠𝑛6𝑐𝑠𝑛

𝑛4𝑛6
) > 0. (22) 

Based on the signs of 𝑎, and 𝑏 above, the model system (4) undergoes forward bifurcation. 

Therefore, when forward bifurcation occurs, then the requirement of 𝑅0 < 1 is necessary and 

sufficient condition for effective disease control and elimination. 
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Figure 2: The plot of the basic reproduction number (𝑅0) against mosquito infection rate  

 

Results and Discussion 

The numerical simulation of the model 

system (4) is carried out to prove the 

analytical results obtained on the stability of 

equilibrium points. The model system is 

simulated using the fourth Runge Kutta in 

MATLAB. All figures are obtained using 

parameter values given in Table 2. 

 

Table 2: Parameter values used in the numerical simulations 

Parameters Values  Dimension Source 

𝛬   0.00129 Month Kalula et al. (2021) 

𝛬𝑚  0.0498 Month Mpeshe et al. (2017) 

𝛽𝑛  0.85 Month Assumed 

𝛽𝑠  0.61 Month Assumed 

𝑎  15 Month Kalula et al. (2021) 

𝛼𝑛  0.0054 Month Bakary et al. (2018) 

𝛼𝑠   0.0027 Month Bakary et al. (2018) 

𝑏𝑚𝑛  0.17 Dimensionless Ducrot et al. (2009) 

𝑏𝑚𝑠  0.12 Dimensionless Ducrot et al. (2009) 

𝑐𝑛𝑚  0.45 Dimensionless Ducrot et al. (2009) 

𝑐𝑠𝑚  0.35 Dimensionless Ducrot et al. (2009) 

𝑔  0.129 Dimensionless calculated 

In Figure 3(c), the proportion of infectious 

mosquito population 𝑖𝑚 exhibits an 

increasing trend with time until when they 

stabilize after the first 10 months whereas the 

proportions of infectious humans 𝑖𝑛, and  𝑖𝑠 
respond positively as a result of the increase 

in transmission rate and contact rate from 

infectious mosquitoes. Conversely, the 

proportion of susceptible mosquito 

population declines with time until the 10th 

month when it stabilizes. The proportion of 

susceptible non-immune individuals declines 

with time to zero after a 15th month whereas a 

small portion of semi-immune individuals 

remain uninfected. This reduction can be 

attributed to individuals transitioning from 

the susceptible class to the exposed class 

upon exposure to the infectious agent and 

subsequently progressing to the infectious 

class. 
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Figure 3: Dynamics of Malaria in Human and Mosquitoes Population 

 

In Figures 4 (a) and 4 (b) it is shown that, as 

the mosquito biting rate increases, the 

proportion of susceptible populations also 

decreases with time. This is expected, as a 

higher mosquito biting rate led to more 

frequent exposure to infected mosquitoes, 

resulting in a higher likelihood of malaria 

being transmitted. In Figure 4 (c) it can be 

observed that the proportion of susceptible 

mosquito population also exhibits a notable 

response to variations in mosquito biting 

rates. Susceptible mosquitoes decrease as the 

mosquito biting rate increases. This is 

because as mosquito biting rate increases 

malaria infection in mosquitoes also 

increases. This results in an elevated potential 

for malaria transmission to both susceptible 

non-immune and susceptible semi-immune 

human populations. 

 

a 

c 

b 
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Figure 4: Variation of biting rate in susceptible classes for human and mosquito population 

In Figures 5 (a) and 5 (b) it is shown that, as the mosquito biting rate increases, the 

proportion of infectious populations also increases with time. This is expected, as a higher 

mosquito biting rate led to more frequent exposure to infected mosquitoes, resulting in a higher 

likelihood of malaria to be transmitted.  
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Figure 5: Variation of biting rate in infectious classes for human and mosquito population 

 

Conclusion  

In this paper, a mathematical model for the 

transmission dynamics of malaria in 

populations with different immune status is 

formulated and analyzed. The model is well-

posed since all model solutions are positive 

and bounded. The basic reproduction number 

𝑅0 is computed using the next-generation 

matrix method. The malaria-free and endemic 

equilibrium points exist and their stability is 

analyzed. The existence of malaria-free and 

endemic equilibrium is analyzed numerically 

and indicates that the model incorporating 

immune status undergoes forward bifurcation 

which necessitates the requirement of 𝑅0 < 1 

to control malaria transmission. Furthermore, 

it can be seen that non-immune individuals 

are more affected by malaria parasites 

compared with semi-immune this is due to 

the differences in the immune status. 

Moreover, the results show that the mosquito 

biting rate is the key factor in malaria 

transmission. This result is more expected in 

the areas with high malaria transmission as 

reported by Ductrot et al. (2009). However, 

even in areas with low transmission non-

immune individuals are most vulnerable to 

malaria infections this is because they have 

no immunity built in their body. Therefore, to 

control malaria, individuals should emphasize 

the use of treated bed nets since the contact 

rate between humans and mosquitoes will be 

minimized and thus there will be minimal 

chance of malaria being transmitted, also the 

use of indoor residual spraying will increase 

mosquito mortality rate and result into the 

decrease of disease prevalence. 
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