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Abstract 

The study presents a novel mathematical framework for addressing Ebola and malaria concerns 

in Sub-Saharan Africa that combines Laplace transformation with Caputo fractional order 

derivative. It takes into account socioeconomic aspects that influence disease dynamics and uses 

the basic reproduction number to quantify transmission dynamics. Extensive numerical 

simulations using Maple 18 software are used to investigate the effect of fractional order 

derivatives on disease dynamics. It shows how the Laplace-Adomian decomposition approach 

simplifies nonlinear equations and generates control solutions. It emphasizes the necessity of 

turning discoveries into concrete plans and encourages stakeholders to be proactive in 

implementing them. Overall, the study emphasizes the importance of proactive disease 

management measures and the promise of novel approaches to treating infectious 

diseases.  Stakeholders may create a more resilient response to these health emergencies by 

working together to adopt these measures. 

Keywords: Co infection Malaria -Ebola; Caputo's fractional derivative; Laplace-Adomian 

Decomposition Method 

 

Introduction 

The mathematical model utilizes symbols, 

equations, and notation to model real-world 

phenomena, aiding understanding, research, 

and drawing conclusions. Epidemiology 

employs mathematical models to study, 

forecast, and manage disease outbreaks, such 

as the malaria-Ebola coinfection. Fractional-

order modeling, incorporating Caputo 

derivatives and Laplace transformations, is 

increasingly significant. The Laplace-

Adomian approach, used in previous studies 

Ahmed et al. (2020), Bahaa (2017), Dokuyucu 

and Dutta (2020), Hassan et al. (2019), Haq et 

al. (2018), Yunus et al. (2022) provides 

convergent solutions. Pandemics, affecting 

large populations across continents, have been 

extensively studied Abdilraze and Pelinosky 

(2011), Ali et al. (2021), Ndairou et al. (2021), 

Amir et al. (2018), Muhammad et al. (2020), 

The field of modeling infectious disease in the 

early 1990 by Reiner Jr et al. (2013). Hassan 

et al. (2019) experimented with the model's 

findings to better understand parameter 

behavior. Mtisi et al. (2009) studied 

HIV/AIDS and malaria co-evolution with 

differential equations, focusing on female 

Anopheles mosquitoes transmitting the 

Plasmodium falciparum parasite.Yunus et al. 

(2023) simulated Lassa fever, suggesting 

controlling contact rates with alpha 1 as the 

most effective strategy, showcasing the 

model's reliability. Ebola modeling 

incorporates fractional derivatives (Caputo 

mailto:akeem.yunus@oscotechesaoke.edu.ng
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and Fabrizio) and perturbation methods Sinan 

and Khan (2020). Another study by Mahdy 

(2022), Mahdy et al. (2021), Amir et al. 

(2018), and Pinto et al. (2013) estimates a 

nonlinear model representing physiological 

responses. Chakraverty et al. (2020) 

categorized uncertainties into interval or fuzzy 

types, aiding management by researchers. 

Matsebula and Nyabadza (2022) explored LF 

and malaria burdens in Sub-Saharan Africa, 

using the Mittag-Leffler kernel to model their 

co-infection. Alaje et al. (2022), Arqub and 

Ajou (2013) evaluate the homotopy analysis 

method (HAM) for solving fractional order 

problems, enabling straightforward 

adjustment of the convergence region using an 

auxiliary parameter. Mukandavire, Z et al. 

(2009) deterministic model analyzes HIV-

malaria interaction with stable equilibria and 

backward bifurcation. Mathematical models 

inform co-epidemic management Mutua et al. 

(2015), Oguntolu et al. (2022). Ongoing 

research seeks to improve interventions for 

Malaria and Ebola Omoloye and Adewale 

(2021). The coinfection model bears 

significant biological implications, guiding 

public health policies globally. 

Preliminaries 

We provide some fundamental definitions of characteristics used in the work in this section. 

Definition 1:[ Yunus et al (2023)] Fractional integration of order Riemann-Liouville 

  positive real function  is defined as: 

 Such that  

Definition 2: [Yunus et al (2023)] A positive real function's fractional Caputo derivative 

 given as is given by  

For 

 

Definition 3: [Yunus et al (2023)] Laplace Transform Let be a function defined for all 

positive real number   

 

The inverse Laplace transforms of is  

Laplace transform of the fractional integral and derivatives for is defined as:

 

Definition 4: [Yunus et al. (2023)] The Adomian polynomials writing as , 

consists in the decomposition the unknown function in a series of the form 

can be expressed as:  
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Model Formulation and Analysis 

The new fractional Caputo derivative model is established as follows: by formulating the system 

that develops fractional ordinary differential equations and replacing the traditional derivative 

with the Caputo derivative, as presented by Omoloye and Adewale (2021). 

 

With given initial condition  

 

 Figure 1 below Shows the schematic flow transmission dynamics described in Equation (1). 

 

Figure 1: Schematic diagram of the Ebola-Malaria co-infection model. 

 

D represents the fractional order Caputo's derivative and psi ( ) represents the fractional time 

derivative. The model parameters in the biological context are examined alongside 

comprehensive explanations, including  the recruitment rate of human  and vectors ,  
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is the force of infection for malaria transmission, is the force of infection for the Ebola virus, 

 is the force of infection of Ebola- malaria,  is the human death rate, is the vector 

(mosquitoes) death rate,  is the treatment rate for Ebola,  is the malaria infected rate, 

denotes Ebola virus detected, Ebola virus exposed malaria individual,  are 

fraction of individual with Ebola and malaria low immunity rate and Ebola-malaria low 

immunity rate respectively,  is the detection rate of unknown Ebola virus,  is the malaria 

induced death rate for  ,  is the malaria induced death rate for ,  and  are the 

isolation rate for  and , respectively.   are the progression rate for malaria, 

Ebola, and Ebola-malaria, respectively,  is Ebola induced death rate    is the progression 

rate vectors, and  is the rate of loss of immunity.  and  are the effective contact rate 

for Ebola virus and Ebola-malaria,  is the recovery rate of malaria,  and  are the force 

of infection from vector-human and human-mosquito, respectively,  is the active rate of 

Ebola-malaria after treatment,  is the transmission rate from mosquito to human,  is the 

transmission rate from human to mosquito,  is the progression rate from  to the latent 

stage, is the number of vector bites per unit time, is the rate at which latent infected moves 

to Ebola undetected class,  is the rate at which treated Ebola-malaria individuals move to

,  is the modification parameter of  in relation to   is the modification parameter 

of ,  is the modification parameter of ,  and are the modification parameters of

 and , respectively,  is the modification parameter of ,and
 

 is the rate at 

which  individuals are discharged from the treatment centers. The human population is divided 

into eleven classes, 

are susceptible individuals, Ebola virus disease latently infected individuals, Ebola virus disease 

infected undetected Individuals, infected detected Ebola virus disease individuals , individuals 

under treatment for Ebola virus disease , individuals isolated for Ebola virus disease, individuals 

exposed to malaria disease only, individuals infected with malaria, individuals that recovered 

from malaria , Ebola virus disease exposed malaria Individuals, active or infected Ebola- malaria 

individuals, Similarly, the total vector (mosquito) population is sub-divided into susceptible 

mosquitoes  , exposed mosquitoes and the infected mosquitoes respectively 

 

Model Analysis 

Disease-Free Equilibrium   

 
 Basic Reproduction Number  

The basic reproduction number is calculated using the principles of the next-generation matrix, 

on Equation (1) above. This equation facilitates the separation of the non-negative matrix F 

(which represents new infection terms) and the non-singular matrix V (representing other 
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transmission terms). This allows for the determination of the basic reproduction number, denoted 

as . 

 

An overview of the procedure of the Laplace-Adomian decomposition method. 

[Olayiwola et al.(2023)] Consider a Caputo-fractional order system of differential equation 

given by 

,    

  

Subject to , for and .  

From (2)  is the Caputo-differential of  numbers of determinable functions

, and , respectively denotes the linear and nonlinear operators. 

As illustrated in [Olayiwola et al. (2023)], the Laplace-Adomian decomposition method can be 

utilized to derive the solution of system by initiating the process with the Laplace 

transformation of equation. 

.  

  

By definition 4, yields: 

. 

  

Applying the Adomian decomposition method, the unknown functions is decomposed 

as: and the nonlinear terms  .

   

Where is the Adomian polynomial. yields:  

.  

By linearity property of Laplace transform, the following recursive formula is obtained 

, ,and 

.  

  

Applying the inverse Laplace transform to both sides of (8) yields such 
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. 

Application of the Laplace Adomain 

Decomposition Method to the model. 

Applying the Laplace transform to Equation 

(1) establishes a generic process with specific 

initial conditions. Subsequently, the Laplace 

inverse, along with assuming infinite series 

solutions, is used to derive the general model 

formula. This process is repeated for each 

component to yield Equation (2). 

 

 

 By solving equation (2) and using initial condition .we obtain the following: 
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Results 

 Numerical simulations in this section use the 

Laplace Adomian Decomposition Method 

(LADM) to analyze a fractional-order model 

with the Caputo-derivative operator. 

Simulations consider predetermined initial 

conditions and parameter values specified, we 

achieve the subsequent series solution with 

flexibility in choosing the order of 
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Taking the  and in above expressions to obtain the graphs and 

table 1 below, showcasing numerical values. 

Table1: Presenting numerical values. 

 
Class t=0 t=0.1 t=0.2 t=0.3 t=0.4 t=0.5 

 13800 160377.01 605809.63 
1.35  10  2.39  10  3.74  10  

 1043.03 -55380.04 -215331.81 -480898.33 -852079.60 
-1.33  10  

 200 400103.29 
1.6  10  3.6  10  6.40  10  9.99  10  

 300 299.22 278.26 237.11 175.78 94.26 

 350 362.00 374.25 386.73 399.47 412.44 

 180 269.78 251.09 123.92 -111.73 -455.86 

 2000 4022.55 10188.32 20497.37 34949.52 53544.96 

 9000 10949.15 17041.61 27277.38 41656.46 60178.85 

 7500 7584.73 7667.26 7747.59 7825.72 7901.66 

 700 
-1.42  10  -5.67  10  -1.28  10  -2.27  10  

-3.55  10

 

 100 -1.34  10 
-5.48  10  -1.23  10  -2.19  10  

-3.43  10

 

 1304.00 50961.31 199891.41 448094.31 795570.01 
1.24  10  

 700 -3558.71 -16342.99 -37652.87 -67488.33 -105849.38 

 500 506.03 511.13 515.29 518.51 520.79 
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Figure 2: Behavior of Susceptible SH(t) at different 

values of fractional order Psi 

Figure 3: Behavior of Latently L[E](t) values of fractional 

order Psi  

  

Figure 4: Behavior of Ebola affected unnoticed I[U](t) 

at different values of fractional order Psi 

Figure 5: Behavior of Infected detected I[D](t) at different 

values of fractional order Psi 
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Figure 6: Behavior of Treatment [T](t) at different 

values of fractional order Psi 

Figure 7: Behavior of Isolated [J](t) at different values of 

fractional order Psi 

 

 

Figure 8: Behavior of Exposed malaria E[M](t) at 

different values of fractional order Psi 

Figure 9: Behavior of infected with malaria I[M](t) at 

different values of fractional order Psi 
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Figure 10: Behavior of Recovered from malaria R[M](t) 

at different values of fractional order Psi 

Figure 11: Behavior of Exposed Ebola Malaria E[EM](t) at 

different values of fractional order Psi 

 
 

Figure 12: Behavior of Infected Ebola Malaria I[EM](t) 

at different values of fractional order Psi 

Figure 13: Behavior of Susceptible mosquito S[V](t) at 

different values of fractional order Psi 
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Figure 14: Behavior of Exposed Mosquito E[V](t) at 

Different Values of Fractional order Psi 

Figure 15: Behavior of Exposed mosquito E[V](t) at 

different values of fractional order Psi 
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Graph analysis  

The behavior of a fractional-order Ebola-

malaria model is represented in Figures 2 to 

15. This model incorporates fractional 

derivatives, allowing for a more flexible and 

accurate representation of the dynamics of the 

disease compared to traditional derivative-

based models.  

• Figures 2 and 3: These figures show how the 

fractional order affects the decline in 

susceptible and latent dynamics. Higher 

values of the fractional order (psi) result in 

slower declines in susceptibility, mainly due 

to the transmission rate (psi). Similarly, latent 

dynamics show that higher psi values lead to 

slower dynamics at integer order and faster 

dynamics at fractional order.  

• Figures 4 to 9: These figures illustrate the 

conversion from exposure to infection and 

how it varies with different fractional orders. 

Slower rates are observed at lower fractional 

orders, while faster rates are observed at 

higher fractional orders. The model examines 

various populations related to Ebola and 

malaria, all showing growth in integer order, 

highlighting the effectiveness of contact 

interventions.  

• Figures 10 and 11: Figure 10 demonstrates 

how recovery from malaria increases with 

treatment, particularly showing a fractional 

increase corresponding to a higher number of 

individuals recovering. Figure 11 indicates 

that the exposed population of Ebola-malaria 

grows faster in integer order, suggesting rapid 

protection.  

• Figures 12 and 13: Figure 12 analyzes the 

impact of contact rates on infected cases of 

Ebola-malaria, showing that a higher rate of 

infection occurs as the fractional order 

increases. Figure 13 reveals a decrease in 

mosquito susceptibility as the fractional order 

increases, indicating higher treatment 

effectiveness.  

• Figures 14 and 15: These figures show the 

dynamic effects of fractional orders on the 

behavior of exposed and infected mosquitoes. 

They indicate a reduction in infected 

mosquitoes as the fractional value increases, 

emphasizing the importance of fractional 

modeling in capturing the intricacies of 

mosquito behavior in the context of the 

disease. 

In summary, the use of fractional order 

modeling allows for a more nuanced 

understanding of the dynamics of the Ebola-

malaria model. Different figures highlight 

how changing the fractional order (psi) 

impacts various aspects of the disease, 

including susceptibility, latency, conversion 

from exposure to infection, recovery, contact 

rates, and mosquito behavior. These insights 

are essential for fine-tuning disease control 

strategies and understanding the effects of 

treatment and interventions on disease 

dynamics. 

 

Convergence analysis.  

 

The result is a series that converges quickly and reliably to the given answer. We assess the 

convergence of the series employing conventional techniques with reference to the framework 

proposed by Yunus et al. (2023). 

Theorem 1.Let be a Banach space and  be a contractive nonlinear operator such 

that for all Then has a unique 

point such that  where The series given in (14) can be 

written by applying Adomian 

decomposition method as: 

 

and assume that   

Proof. For , using mathematical induction for ,we have 

 

Let the result is true for then  
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 We have i.e. 

Which implies that  . 

(ii)  Since   and as therefore, we have

 

 

Discussion   

 
The Laplace-Adomian decomposition 

method has proven itself to be an invaluable 

tool in the realm of public health research, 

particularly when tackling fractional-order 

models and augmenting the Ebola-Malaria 

model. This methodology offers a means of 

generating adaptable solutions for 

epidemiological models that incorporate 

fractional orders. While it's important to note 

that the study predominantly employs shorter 

time periods to prevent the occurrence of 

negative population figures, the potential for 

enhanced accuracy looms large when dealing 

with extended temporal scopes and original 

datasets. Additionally, one of the notable 

advantages of this method is its ability to 

validate singular solutions within the model. 

This validation is not to be underestimated, as 

it plays a pivotal role in bolstering the 

management of disease outbreaks. In essence, 

the Laplace-Adomian decomposition method 

shows remarkable promise when it comes to 

delivering precise solutions for fractional-

order mathematical models in the context of 

public health research. Now, let's delve into 

the fractional-order Ebola-Malaria model, 

meticulously depicted across Figures 1 to 14. 

These figures embrace fractional derivatives, 

thereby endowing the model with enhanced 

flexibility and accuracy compared to its 

traditional counterparts. The key findings 

extracted from these graphical representations 

are truly enlightening. Figures 1 and 2 

conspicuously illustrate how elevating the 

fractional order results in a deceleration of the 

decline in susceptibility and latent dynamics. 

This phenomenon can be predominantly 

attributed to transmission rates (commonly 

represented as psi). Turning our attention to 

Figures 3 to 8, they unveil how the shift from 

exposure to infection is subject to variations 

based on fractional orders. Slower rates 

prevail at lower fractional orders, while higher 

fractional orders engender a hastening effect. 

Notably, contact interventions exhibit their 

effectiveness in influencing various 

population segments tied to Ebola and 

malaria. Figures 9 and 10 bring to light the fact 

that recovery from malaria experiences an 

upswing in response to treatment. 

Furthermore, the exposed population within 

the context of Ebola-Malaria grows at an 

accelerated pace in integer-order settings, 

indicating swift protection. Figures 11 and 12 

offer a profound analysis of how contact rates 

impact the number of infected cases and the 

susceptibility of mosquitoes. These figures 

reveal that higher fractional orders correlate 

with increased infection rates and heightened 

treatment efficacy. Finally, Figures 13 and 14 

underscore the dynamic consequences that 

fractional orders have on exposed and infected 

mosquitoes. As the fractional value increases, 

there's a noticeable reduction in the number of 

infected mosquitoes. This underscores the 

critical role of fractional modeling in our quest 

to comprehend mosquito behavior within the 

broader spectrum of disease dynamics. In 

summary, fractional-order modeling offers a 

nuanced and multifaceted lens through which 

we can understand the intricate dynamics of 

the Ebola-Malaria model. These figures 

collectively illustrate the profound impact of 

adjusting the fractional order (psi) on 

susceptibility, latency, exposure-to-infection 

conversion, recovery, contact rates, and 

mosquito behavior. These insights are of 

paramount importance when it comes to 

refining disease control strategies and 

comprehending the ramifications of treatment 

and interventions within the complex 

landscape of disease dynamics. 
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The Laplace-Adomian decomposition method 

plays a crucial role in infectious disease 

studies, particularly in the context of the 

Ebola-Malaria model. It allows for a more in-

depth analysis of disease dynamics through 

fractional-order modeling. The flexibility and 

precision of this method are valuable for 

understanding diseases influenced by various 

factors like population density, climate, and 

demographics. The fractional-order Ebola-

Malaria model, as represented in Figures 1 to 

14, demonstrates the significance of using 

fractional derivatives in epidemiological 

models. These figures provide valuable 

insights into the behavior of the disease 

dynamics under different fractional orders 

(psi). They show that the choice of psi affects 

susceptibility, latent dynamics, and exposure 

to infection conversion, recovery rates, 

contact rates, and mosquito behavior. This 

nuanced understanding can help in tailoring 

disease control strategies and assessing the 

impact of treatments and interventions. 

Overall, the Laplace-Adomian decomposition 

method and fractional order modeling are 

promising tools in public health research. 

However, researchers should exercise caution, 

especially when working with short periods, to 

avoid negative population numbers. Longer 

periods and original data can enhance the 

accuracy of the models, making them more 

applicable in real-world scenarios. These tools 

contribute to our understanding of infectious 

diseases and aid in the development of 

effective prevention and treatment strategies. 

Recommendations  

  Additional fractional derivatives, like the 

variational iteration approach, expand 

fractional calculus in infectious disease 

studies. Computational assessments improve 

our understanding of complex systems. 

Incorporating numerical methods such as the 

homotopy perturbation method and homotopy 

analysis method with real data enhances 

precision. While the Caputo fractional order 

derivative and Laplace Adomian 

decomposition methods are effective, further 

improvement is possible. Real-world data 

increases accuracy and validity by refining 

parameters and validating predictions. These 

approaches enhance our understanding of 

infectious diseases and assist in prevention 

and treatment strategies. Continuous 

exploration and refinement are necessary for 

advancing infectious disease modeling. 
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