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Abstract

The study presents a novel mathematical framework for addressing Ebola and malaria concerns
in Sub-Saharan Africa that combines Laplace transformation with Caputo fractional order
derivative. It takes into account socioeconomic aspects that influence disease dynamics and uses
the basic reproduction number to quantify transmission dynamics. Extensive numerical
simulations using Maple 18 software are used to investigate the effect of fractional order
derivatives on disease dynamics. It shows how the Laplace-Adomian decomposition approach
simplifies nonlinear equations and generates control solutions. It emphasizes the necessity of
turning discoveries into concrete plans and encourages stakeholders to be proactive in
implementing them. Overall, the study emphasizes the importance of proactive disease
management measures and the promise of novel approaches to treating infectious
diseases. Stakeholders may create a more resilient response to these health emergencies by
working together to adopt these measures.

Keywords: Co infection Malaria -Ebola; Caputo's fractional derivative; Laplace-Adomian
Decomposition Method

Introduction

The mathematical model utilizes symbols,
equations, and notation to model real-world
phenomena, aiding understanding, research,
and drawing conclusions. Epidemiology
employs mathematical models to study,
forecast, and manage disease outbreaks, such
as the malaria-Ebola coinfection. Fractional-
order modeling, incorporating Caputo
derivatives and Laplace transformations, is
increasingly  significant. The Laplace-
Adomian approach, used in previous studies
Ahmed et al. (2020), Bahaa (2017), Dokuyucu
and Dutta (2020), Hassan et al. (2019), Haq et
al. (2018), Yunus et al. (2022) provides
convergent solutions. Pandemics, affecting
large populations across continents, have been

extensively studied Abdilraze and Pelinosky
(2011), Ali et al. (2021), Ndairou et al. (2021),
Amir et al. (2018), Muhammad et al. (2020),
The field of modeling infectious disease in the
early 1990 by Reiner Jr et al. (2013). Hassan
et al. (2019) experimented with the model's
findings to better understand parameter
behavior. Mtisi et al. (2009) studied
HIV/AIDS and malaria co-evolution with
differential equations, focusing on female
Anopheles mosquitoes transmitting  the
Plasmodium falciparum parasite.Yunus et al.
(2023) simulated Lassa fever, suggesting
controlling contact rates with alpha 1 as the
most effective strategy, showcasing the
model's  reliability.  Ebola  modeling
incorporates fractional derivatives (Caputo
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and Fabrizio) and perturbation methods Sinan
and Khan (2020). Another study by Mahdy
(2022), Mahdy et al. (2021), Amir et al.
(2018), and Pinto et al. (2013) estimates a
nonlinear model representing physiological
responses. Chakraverty et al. (2020)
categorized uncertainties into interval or fuzzy
types, aiding management by researchers.
Matsebula and Nyabadza (2022) explored LF
and malaria burdens in Sub-Saharan Africa,
using the Mittag-Leffler kernel to model their
co-infection. Alaje et al. (2022), Arqub and
Ajou (2013) evaluate the homotopy analysis
method (HAM) for solving fractional order
Preliminaries

problems, enabling straightforward
adjustment of the convergence region using an
auxiliary parameter. Mukandavire, Z et al.
(2009) deterministic model analyzes HIV-
malaria interaction with stable equilibria and
backward bifurcation. Mathematical models
inform co-epidemic management Mutua et al.
(2015), Oguntolu et al. (2022). Ongoing
research seeks to improve interventions for
Malaria and Ebola Omoloye and Adewale
(2021). The coinfection model bears
significant biological implications, guiding
public health policies globally.

We provide some fundamental definitions of characteristics used in the work in this section.
Definition 1:[ Yunus et al (2023)] Fractional integration of order Riemann-Liouville

a =0 positive real function f(y)eQ, ,

u>-1y=>0 isdefined as:

D“ f(y)=%'|.(y—t)“1 f(y)dy Such that D° f(y)= f(y).

Definition 2: [Yunus et al (2023)] A positive real function's fractional Caputo derivative

£ (X) given as D f (X) is given by

D“f(x)zr(

n-l<a<nneN, t>0,(peQil.

1 t
— | (x=t)" O (t)dt
h Ty 0 (Ot For

Definition 3: [Yunus et al (2023)] Laplace Transform Let f(t) be a function defined for all

positive real number t =0 F(8) : f(s)= J‘e"st f(y)dy
0

LLf“(y)1=s"LLf(y)] -s*"f(0)—s"* £ (0)—s"f"(0)--

f(s)

S

The inverse Laplace transforms of

Laplace transform of the fractional integral and derivatives for

1 d"
I'(h—a) dx

LD ()] = L{

Definition 4: [Yunus et al. (2023)] The Adomian polynomials writing as Aor Ay
consists in the decomposition the unknown function

is L™ ) j[ f(y)dy
s

0
a >0ijs defined as:

- [oc=uyre f(x)dx}

An

y(t)in a series of the form

1 dn n )
y(t) =Y, + Y, + Y, +---Y, can be expressed as: A, = nda {G(t)z yj’lj}
A=0

j=0
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Model Formulation and Analysis

The new fractional Caputo derivative model is established as follows: by formulating the system
that develops fractional ordinary differential equations and replacing the traditional derivative
with the Caputo derivative, as presented by Omoloye and Adewale (2021).

D18, = L{m, — A Sy — Aoy S — Aen S — S, + 4R, + a0},
°pv: LE =g AS, — (K +0,+ 1)L + 1 + (1)@ — (- p)dyl o 1
‘D¥2 1, = L{L-£)AS, + oK Lp — (e + 1+ 6,e) 1o}

D"y = {Q- )KLl — (5, + 4+ S + )l + 7ely +7,Een h

‘DI, ={zl, - (4, +w)l;}, L{D"I}=o,l: +0,ly—(u+6,)d —63},
‘D" Ey = e Ay Sy — (Ky + 1)Ey —1,Ey + ol ey 3,

‘D", = L{l-&,) A4Sy + KyEy = (z3+ 1+ + ) lew

‘DR, = L{¢&,E, — 7,1y + 11y, — (4 + )Ry}

D", = L{eyhey Sy + (Key + Oy + 1)Eey — 7,E}

D"y, = LE )4 Suy + Ky ey = (s + Sy + 1)l

DS, = Lz, — A4Sy A}, LED™E}= LAS, — (o, + 4)E,
‘D1, = {o,E, — 14,1, }-

Wwith given initial condition Sy, =my,Le =m, Iy =mg,lp =m,, | =mg,J,=m;

@

’EMO = m7’IM0 = ms’RMO = r‘nQ7EEM0 = rnlO’IEM0 = m11’SV0 = m127EV0 = m137|V0 = m14'
Figure 1 below Shows the schematic flow transmission dynamics described in Equation (1).
S

o s
|

Figure 1: Schematic diagram of the Ebola-Malaria co-infection model.

D represents the fractional order Caputo's derivative and psi (¥ ) represents the fractional time
derivative. The model parameters in the biological context are examined alongside
comprehensive explanations, including the recruitment rate of human 7, and vectors A
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is the force of infection for malaria transmission, A is the force of infection for the Ebola virus,
Agw s the force of infection of Ebola- malaria, g is the human death rate, z4, is the vector
(mosquitoes) death rate, 7, is the treatment rate for Ebola, 7, is the malaria infected rate, 7,
denotes Ebola virus detected, 7,Ebola virus exposed malaria individual, ¢,,¢, ,&; are

fraction of individual with Ebola and malaria low immunity rate and Ebola-malaria low
immunity rate respectively, 7, is the detection rate of unknown Ebola virus, O isthe malaria

induced death rate for E,, , 0}y is the malaria induced death rate for |, , 0, and o, arethe
isolation rate for L,; and |, respectively. K¢, &), ,Kgy are the progression rate for malaria,
Ebola, and Ebola-malaria, respectively, O¢ is Ebola induced death rate o, isthe progression
rate vectors, and ¢ is the rate of loss of immunity. Sz and Sy are the effective contact rate
for Ebola virus and Ebola-malaria, I is the recovery rate of malaria, 4,; and Ay are the force
of infection from vector-human and human-mosquito, respectively, ¢3 is the active rate of
Ebola-malaria after treatment, B, is the transmission rate from mosquito to human, £, is the
transmission rate from human to mosquito, ¢2 is the progression rate from |T to the latent
stage, b is the number of vector bites per unit time, @; is the rate at which latent infected moves
to Ebola undetected class, © is the rate at which treated Ebola-malaria individuals move to E,,

, o is the modification parameter of | in relationto Lz 777 is the modification parameter
of I; ,17; is the modification parameter of J, 77, and 77, are the modification parameters of

Eov andlgy , respectively, 77, is the modification parameter of | iy, ,and @ is the rate at

which J individuals are discharged from the treatment centers. The human population is divided
into eleven classes,
Sy (), Le (1), 1y (1), 15 (1), 17 (1), I(1), Eyy (1), 1y (1), Ry (1), By (1), Ty (1), Sy, (1), Ey (1), 1y (1)
are susceptible individuals, Ebola virus disease latently infected individuals, Ebola virus disease
infected undetected Individuals, infected detected Ebola virus disease individuals , individuals
under treatment for Ebola virus disease , individuals isolated for Ebola virus disease, individuals
exposed to malaria disease only, individuals infected with malaria, individuals that recovered
from malaria , Ebola virus disease exposed malaria Individuals, active or infected Ebola- malaria
individuals, Similarly, the total vector (mosquito) population is sub-divided into susceptible
mosquitoes , exposed mosquitoes and the infected mosquitoes respectively

Model Analysis
Disease-Free Equilibrium

E, — [”H,o,o,o,o,o,o,o,o,o,o,”vj
M Ay

Basic Reproduction Number

The basic reproduction number is calculated using the principles of the next-generation matrix,

on Equation (1) above. This equation facilitates the separation of the non-negative matrix F

(which represents new infection terms) and the non-singular matrix V (representing other
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transmission terms). This allows for the determination of the basic reproduction number, denoted
asR,=FV ™.

_ Be (B + 0y + )5 + (kg + 0y + 14T )My —Exllgw Kenm + Exllen (Key + 0y + 1+7,)

(KEM + 0w T H+T,)(P5+ Oy "'/U)

An overview of the procedure of the Laplace-Adomian decomposition method.
[Olayiwola et al.(2023)] Consider a Caputo-fractional order system of differential equation
given by

Dy ) =L (as Xor X X)) ¥ NG (s X0 Xa X))

R,

Subjectto y" (0) =c, for n=123..K,and k, , <a <K, .
From (2)§ D“ x, (t) is the Caputo-differential of N numbers of determinable functions y (t)

,and L, , N, respectively denotes the linear and nonlinear operators.

As illustrated in [Olayiwola et al. (2023)], the Laplace-Adomian decomposition method can be
utilized to derive the solution of system by initiating the process with the Laplace
transformation of equation.

LD 7, |= LI LyCr 20 250 20) + No Gt 2 20 2) )
By definition 4, yields:
m-1 .
s Ly ]2 5! =L Ly (zas 200 23 20) + No (s 2 250 20) 1.

i=0
Applying the Adomian decomposition method, the unknown functions y, (t) is decomposed

as: y, ()= Zan (t), and the nonlinear terms N, (%1, %) = Zan (t), n=12,..m.
i

j=0
Where an is the Adomian polynomial. yields:
: 1 i, 1 S S 1%
L zxnj(t) ZTZS e +—L| L, Zle(t)'--uzlmj ®||+—L an(t) .
=0 ST % st =0 j=0 ST =0
By linearity property of Laplace transform, the following recursive formula is obtained

m-1
L[Zno]:S%ZS“"”ci”, n=123..,m and
j=0

Ly 0]= Si {L”[i/“ (t),...,izmj (t)ﬂ +S% L[Z X, <t)] .

Applying the inverse Laplace transform to both sides of (8) yields £;,& ;.- j» J = 0such
that

m-1 .
ZnO (t) = L_l£%25anllcinj ’ n :11213---1m .and
ST =
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Zn(j+1) (t) Lﬁl _L (lej (t) ilmj (t)J +S%L|:ixnj (t):|

Application of the Laplace Adomain inverse, along with assuming infinite series
Decomposition Method to the model. solutions, is used to derive the general model
Applying the Laplace transform to Equation  formula. This process is repeated for each
(1) establishes a generic process with specific ~ component to yield Equation (2).

initial conditions. Subsequently, the Laplace

SHM(t)=L’1[S—tL{ﬂ'H Pe (A1+77DBH+77J V)= ﬂmh(P) ﬁEM (G +mH, +1,K) - S, +4R, +abl }]

v

M(t) = I-_l[% L{Slﬁi(Aw +15B, +1,C,) - (K + 03 +/U)LE,, +ol + (1-a)&l, _(1_p)¢3IEM”}]x

H

g 1
LO=L 1[573 L{(1_51)51£7E(An +7pB, +17,C) + oKL, — (e + 1+ 0e) 15, 3,

H

a1
b, 0= Ll[—q/4 Hl-@)Kele, = (7 + g1+ 6 + ) g, +70ely, +7.Een, H

—
m

=

IT (t)—L[ - Hanlo, - (4, + )15 3,

Joa® = L_l[ L{O'1 +O‘2|Dn —(u+6,)d, -1,

Eu, 0= UL 22 (R) = (K, + 1By, B 1,

v

., (=L

L) P () 1B (a0

v

SW&

R M(t) = L71[STQ L{EZEMn _T3|Mn + rIMn _(¢1+N)Rmn}]r

SN EM8 L A B B B A 2L B B 2

o, =L B (G, M, + 1K) + (Kew + 0 + 0By, —7iEen 1,
o, (0 = L [SW L 6 {2, o, + 7K + Ko B, (6 + 401 )
\,A(t):L’l ﬁb(M +mN, +7,0,) - 08, },

0= N, +7,0,) - (¥ + ®)E, },

Sl (0 = L LOYE , — 01, )],

g
By solving equation (2) and using initial condition .we obtain the following:
SH0 =m, LEO =m,, IUO =m,, IDo =m,, ITO =mg,J,=mg, EMO =m,,

El
I
o

IMO =mg, RMO =mg, EEMO =My, IEMO = mn’svo = le'EVO =my, Iv0 =my. (3)
= Pe + + B Peu m, +#,m,,m, +7,m,;m
Hl_(_N (mym, +npm,m, +n,mgm; ) — N (m,m,)- N (Mgm, +7,m,m; +n,m;m, )
H v H

(4)

v

—um, +o.m, +abm, ) ———.
pmy T ¢ My 6)1-,((//1_'_1)
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vy
LEl =(g N—E(m3m1 +npm,m, +,mem, ) —(Kg + 0, + wm, +,mg +(1-0)0ms —(1- p)p;m,, )

—0 ()
H Iy, +1)
_ Be t"
Iu1 =(1-¢ )N_(m3m1 +pm,m +7;memy )+, Kem, —(pye +p+ e )M, Ttw. +1)
H Iy, +1)
"
I, =(1-w, ) Kcm, —(z, + u+6é., +o, ) m, +y,c.m,+z,m, )——. 7
D, (( 1 )KeM, — (7, + 1+ 6 2 )M, +y5em, ALLT) Iy, +1) (7)
¥s
I =(@m, —(p, +wWms)———. 8
! Iy +1)

( W+3,) . ©
J,=(e,m, +o,m, —(u+0, )M, —Omg ) ———. 9
Iy, +1)

ﬁmh tW7
Ev, =&, Tv(mAml)_(KM +wm, —t,m, )m- (10)
ﬂmb "
IM1 =((1-¢,) N, (m,m, )+ Kym; —(z; +1r+6,, +wmg )m (1
Vg
Ry, =(e,m; —z5mg +rmg — (g, + ), )m- 12)
iy t"10
EEMl = (e, W(msml MMy + MMy )+ (Kgy + 35y + wimy, —7,My )m 13
Bew "
IEM1 =(1-¢;) N, (mgm, +nmym, +n,myuym, )+ Key My — (@5 +0 gy + Wiy, )m (14
"2
Svl = (my — K (mgmy, +mmyem,, +n,m,m,, ) — dmy, )m (15)
t'/’13
E, =(K + + —(v+o, _ 16
vy (K4 ((mgmy, +5,myemy, +17,my;;my, )—( )m13)F(l//13 +1) (16)
_, Pe ~ Be
SH2 =( N ((my )z, N (mym, +npym,m, +7,mm, )
H H
- B (m,m, )— Peu (mgm, +nymyem, +5,Mym, ) — pm, + @My +almg )L)
N, N, T2y, +1)
Be N tV’3+V’1
+(m )((1-& )TH(m3m1 +npm,m, +i;mgm, )+, Kem, —(yge + 1+, )M, m)
1 K 5 t“’4+l/’1
+ - —(z, + u+ + + + -
75 (M) (11— 0, )Kem, — (7, + 1 eo + 0, )M, +yeM, +7,my )F(l//4+l/’1+l))
+(m, ) (7, _ﬁi(m3m1 +npm,m, +5;mgm, ) — /;)\lmb (m,m, ) @n
H v
20,
—ﬂﬂ(m m, +n,m,om, +n,m,;m, )— wm, + @My +oOm )ti)
N, My +77,My M, 2My My 1 T oMy 6 T2y, +1)
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+
Ve Y B
+n, (M )(e,M; +o,m, —(u+35, )Ms —Om, )m"'(ms Wy *ﬁ(msml +npm,m, +n;mem, ))
2y
- ﬁimb(mztml )_ﬁﬂ(maml +a, MM, +7,Myy My ) — pmy + o.My + aOmg )é))
N, N, I'(2y, +1)
Bew t"’10+l//1
N, (Mmgm, +n,mm, +7,mum; )+ (Kgy + 3,5y + Wy, —7,My, )m)

Pe P

B
+(my )((zy — N (mym, +nom,m, +z,mgm, ) — N (m,m,)— NEM (mgmy +n,mym; +z7,m;m, )
H v H

+a,.((My )((e4

2
—um; +p,myg +amg ) ———
My @My G)F(2W1+l))
Be

pe
N ()G

LE2 =& (mym, +»ym,m, +5,msm, )

Bo Bewm th-H/IZ

mi
I (mam, )= (Mo, + Mg M, + 1My, ) g, + M + 06y ) =)

Be tu’3+l//2

+(m)((1-¢ )m(m3m1+,7t,m4ml+;7J mMeM, )+, Kem, —(yye + 1+ )wm
Be v
——(mgm, +p,m;ym, +»n,m;;m, ) — um, +p,my +0bmy ) ———

NH( M, + 7, MMy +27,Myy M, ) — gomy + Mg G)F(‘//1+'//2+1))

tWG-H//Z Be
+i, (M, ) (@M, +o,m, —(u+3, )ms _0m6)r(l//e+l//z +1))_(KE +o,+ (e E(m3m1+’7Dm4m1+’71 mem, )
Zl//z
—(Kg +0,+wm, +p,m, +(1-a)0m, —(1- p)p,m,, )m)
vs T, t'//e""//z
+ m, —(p, + —)+(1-a)0((o;m, +o,m, —(u+3J, )Mg —Omg ) ———
o,((z;m, — (¢, ﬂ)mS)F(V/s"'Wz"'l)) (1-a)0((o,m, +o,m, —(u+J, )M, ms)r(W6+W2+1))
+

ﬂmb twa WZ

(m,m )+K, m, —(z,+r+d,, +wmy)————).
N )

(18)

~(1-pos(((1-¢,)

qu =(1-¢)s ﬁi(((ms )y *ﬁi(msml +npmM,m; +n;mem, ) — If\lmb (m,m, )— f\lEM
H H v H

(mgm, +2,m;om,

v Y.
" Ys B
+7,MyM, ) — pmy + My + abmy )m)"’(ml )((1731)Ni (mym, +n,m,m, +n;mgm, )
123
' T2y, +1)
Y.
Vs Be B B
+7,m +(m - m,m, +n,m,m, +»,mgm, )— -~ (m,m, )— M
Ty 10)F(W4+V/3+1)) (m, )((z, NH( M, +7p,M,m, +17;,mgm, ) Nv( ,m; ) N,
Y,
+ MM, +7,MyM, ) — pmy + My +abmg ) ———— )+, (M, )((e,M, +o,M, —(u+35, )mg
Iy, +y,y+1)

+o,Kem, —(yue + 1+ 3y )M )+ 75 (M )(((L— 0, )Kem, — (7, + g+ S +0, )M, +yem,

(mgm,

t vty B t vty
— 6, _)— mgm, +7,m,m, +»n,m;m, )— + p,my + 0.6, _
me)r((//6+w3 +1)) N, (mgm, + MM, +7,m;;m, ) — pum, + Mg +o me)F(W1+W3+1))))

+ oK (e ﬁi (Mam, + 75 mm, + 7, mem, )~ (K + 0, + s, + p,my + (1= )ms —(1— p)o,
12"V

my )W))*(Vue*'#"'(jus (-, )Kem, — (7, + pu+0gp +0, )M, +yem, +

T,m )ﬂ 19)

0 My, s +1)
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+
t'/’A Ws
IT2 =0,((1- o, )Kem, — (7, + p+6gp +0, )M, +yem, +7,My, )m
(20)
t*'s
—(p, + W((t;m, — (@, + Wmg ) ————).
(9, + W((xm, —(p, + S)F(2W5+1))

3, =0,((e £7E(m3m1 +npm,m, +5,mem, )= (K¢ +0, + wm, +¢,m,
H
v tg
+(1_a)9me_(1_P)¢3m11)m)"’”z(((l_wl)KEmz_(71+/‘+5ED+‘72)m4
t‘/’4+% t2e
+y,em, +,my ) ————)—(u+o m, +o,m, —(u+d, )mg —my ) ———
YueMy T 7,Myy F(W4+‘//6+1)) (+9, YoM, +o,m, —(u+6,)m; 6)r(2W6+1))
£

—0(c,m,+o,m, —(u+o, )m, — 6O _ 21

(oM, +o,m, —(u+3, )M mG)F(2W6+l)) (29)
B t'4’14+‘/’7 Be
EM2 =& va (((m)((ey My, — g5, My, )m)"'(mu )@y _W(m3m1+

ﬁmb

npm,m; +7,mgm, ) — N

(m,m, )— f\lﬂ(msml + MM, +7,m;,m, )
v H

tt//1+V/7 B (22)
— pmy, + @My + almg )m)))_(KM + 1) ((e, Nm: (m,m;)—(Ky +wm,

t2y17 ﬁ . t2y/7
—7,m, ) —— £Zm m,m, ) —(K,, + —r,m, ) ————
.My )F(Zl//7 +1) 7,(e; N, (m,m,)—(Ky +wm, —z,m, )F(2W7 +1))

ﬁmh (((m )((O‘ m — W m )&)'F(m )((77: _ﬁiE(m m
N\, 1 v it12 v 14 r(l//14+l//8 +l) 14 H NH 371
ﬂmb (m4m1)_ﬁEM

+npm,m; +7,mem, )— N
\ H

IM2 =(1-¢,)

(mgm, +n,myym, +»,m, M, ) — wm, +p,m,

t‘/’1+‘//8 B
+abmg ) —————— )N+ Ky (e,
Iy, +yg+1)

. t“’7+l//8

mi

(m,m,)—(K,, +wm, —z,m, )———) (23)
N, T T T 4y +1)

B e

va (m,m )+ Ky,m; —(z;+r+d,, +/1)m3)1_,(2w8 +1)

—(r3+r+oy +w((l-g,)

232



Tanz. J. Sci. Vol. 50(2) 2024

P
Bro(mm, ) — (Kyy + my — ey Yoty (@) P (mum,)
N 4 1 M 7 2 7 F(l//7+l//g +l) 3 2 NV 4 1

Ru, = g,(g,
e B
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Results

Numerical simulations in this section use the

Laplace Adomian Decomposition Method

(LADM) to analyze a fractional-order model

with  the  Caputo-derivative  operator.
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Simulations consider predetermined initial
conditions and parameter values specified, we
achieve the subsequent series solution with
flexibility in choosing the order of
approximation;
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Taking the ¥ =0.65 w =0.85and ¥ =1in above expressions to obtain the graphs and

table 1 below, showcasing numerical values.
Tablel: Presenting numerical values.

Class | t=0 t=0.1 =02 =03 =04 =05

S, (t) | 13800 | 16037701 | 605809.63 Lasx 10° | 230% 10° | a74x 10°
L (t) | 104303 | 55380.04 | -21533181 | 48089833 | 85207960 | g 106
I, (t) | 200 400103.29 | 1 5% 10° 3.6x 10° 6.40% 10° | 9.99x 10°
() | 3% 299.22 278.26 23711 175.78 94.26

I (t) | 350 362.00 374.25 386.73 399.47 412.44

IO | 180 269.78 251.00 123.92 11173 45586

E, ()] 2000 | 402255 10188.32 20497.37 3494952 53544.96
I, () | 9000 | 10849.15 17041.61 27277.38 41656.46 60178.85
R, () | 7500 | 7584.73 7667.26 774759 782572 7901.66
Egy (t] 700 142% 10° | 567x 10° | -128x 107 | 227% 107 | 36X 10
gy (t)| 100 L3X0 | sagx 10° | a28x 107 | 219x 107 | 343X 10
S, (1) | 1304.00 | 5096131 199891 41 44800431 | 79557001 | 4 pux 10°
E, (t) | 700 355871 716342.99 37652.87 67483.33 7105849.38
I, (t) | 500 506.03 511.13 515.29 518,51 520.79
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== .

IFigure 2: Behavior of Susceptible SH(t) at different
values of fractional order Psi

IFigure 3: Behavior of Latently L[E](t) values of fractional
order Psi

IFigure 4: Behavior of Ebola affected unnoticed I[U](t)
at different values of fractional order Psi

IFigure 5: Behavior of Infected detected I[D](t) at different

values of fractional order Psi
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IFigure 6: Behavior of Treatment [T](t) at different IFigure 7: Behavior of Isolated [J](t) at different values of

values of fractional order Psi fractional order Psi
[Figure 8: Behavior of Exposed malaria E[M](t) at IFigure 9: Behavior of infected with malaria [[M](t) at
different values of fractional order Psi different values of fractional order Psi
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—~

P
.

IFigure 10: Behavior of Recovered from malaria R[M](t)
at different values of fractional order Psi

IFigure 11: Behavior of Exposed Ebola Malaria E[EM](t) at
different values of fractional order Psi

IFigure 12: Behavior of Infected Ebola Malaria [[EM](t)
at different values of fractional order Psi

IFigure 13: Behavior of Susceptible mosquito S[V](t) at
different values of fractional order Psi
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IFigure 14: Behavior of Exposed Mosquito E[V](t) at IFigure 15: Behavior of Exposed mosquito E[V](t) at
Different Values of Fractional order Psi different values of fractional order Psi
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Graph analysis

The behavior of a fractional-order Ebola-
malaria model is represented in Figures 2 te
15. This model incorporates fractional
derivatives, allowing for a more flexible and
accurate representation of the dynamics of the
disease compared to traditional derivative-
based models.

Figures 2 and 3: These figures show how the
fractional order affects the decline in
susceptible and latent dynamics. Highes
values of the fractional order (psi) result in
slower declines in susceptibility, mainly due
to the transmission rate (psi). Similarly, latent
dynamics show that higher psi values lead to
slower dynamics at integer order and faster
dynamics at fractional order.

Figures 4 to 9: These figures illustrate the
conversion from exposure to infection and
how it varies with different fractional orders.
Slower rates are observed at lower fractional
orders, while faster rates are observed at
higher fractional orders. The model examines
various populations related to Ebola and
malaria, all showing growth in integer order,
highlighting the effectiveness of contact
interventions.

Figures 10 and 11: Figure 10 demonstrates
how recovery from malaria increases with
treatment, particularly showing a fractional
increase corresponding to a higher number of
individuals recovering. Figure 11 indicates
that the exposed population of Ebola-malaria
Convergence analysis.

grows faster in integer order, suggesting rapid
protection.

Figures 12 and 13: Figure 12 analyzes the
impact of contact rates on infected cases of
Ebola-malaria, showing that a higher rate of
infection occurs as the fractional order
increases. Figure 13 reveals a decrease in
mosquito susceptibility as the fractional order
increases, indicating higher  treatment
effectiveness.

Figures 14 and 15: These figures show the
dynamic effects of fractional orders on the
behavior of exposed and infected mosquitoes.
They indicate a reduction in infected
mosquitoes as the fractional value increases,
emphasizing the importance of fractional
modeling in capturing the intricacies of
mosquito behavior in the context of the
disease.

In summary, the use of fractional order
modeling allows for a more nuanced
understanding of the dynamics of the Ebola-
malaria model. Different figures highlight
how changing the fractional order (psi)
impacts various aspects of the disease,
including susceptibility, latency, conversion
from exposure to infection, recovery, contact
rates, and mosquito behavior. These insights
are essential for fine-tuning disease control
strategies and understanding the effects of
treatment and interventions on disease
dynamics.

The result is a series that converges quickly and reliably to the given answer. We assess the
convergence of the series employing conventional techniques with reference to the framework

proposed by Yunus et al. (2023).

Theorem 1.LetY be a Banach space and P :Y — Y be a contractive nonlinear operator such
that for all ¥, Y €Y, /T) =T ) <k//y—y'//,0<k <L Then T has a unique
point Y such that TY = Y.where ¥ = (S, L,T,J,R)- The series given in (14) can be

ym :Tymfl' ym—l = Zyl m:l=2!31"'

and assume that Yo € B (¥) B, (y)=

written by applying Adomian

decomposition method as:

Proof. For (1) , using mathematical induction for ™ =1 we have

Yo = Y[ =T (Yo) =T = K|Yo — Y|

Let the result is true for N = L. then [Yo — Y| < k" [yo — v
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We have yn - y = T(yn—l )_T(y) <k yn—l - y < kn yn - y i.e.
Iyn = Y[ <k"lyo = Y| <K"r < F\which implies that Ym € B

(i) Since

limly, ~y|=0=> limy, =y

Discussion

The Laplace-Adomian  decomposition
method has proven itself to be an invaluable
tool in the realm of public health research,
particularly when tackling fractional-order
models and augmenting the Ebola-Malaria
model. This methodology offers a means of
generating adaptable solutions for
epidemiological models that incorporate
fractional orders. While it's important to note
that the study predominantly employs shorter
time periods to prevent the occurrence of
negative population figures, the potential for
enhanced accuracy looms large when dealing
with extended temporal scopes and original
datasets. Additionally, one of the notable
advantages of this method is its ability to
validate singular solutions within the model.
This validation is not to be underestimated, as
it plays a pivotal role in bolstering the
management of disease outbreaks. In essence,
the Laplace-Adomian decomposition method
shows remarkable promise when it comes to
delivering precise solutions for fractional-
order mathematical models in the context of
public health research. Now, let's delve into
the fractional-order Ebola-Malaria model,
meticulously depicted across Figures 1 to 14.
These figures embrace fractional derivatives,
thereby endowing the model with enhanced
flexibility and accuracy compared to its
traditional counterparts. The key findings
extracted from these graphical representations
are truly enlightening. Figures 1 and 2
conspicuously illustrate how elevating the
fractional order results in a deceleration of the
decline in susceptibility and latent dynamics.
This phenomenon can be predominantly
attributed to transmission rates (commonly
represented as psi). Turning our attention to
Figures 3 to 8, they unveil how the shift from
exposure to infection is subject to variations
based on fractional orders. Slower rates

[ya =yl =<Kk"[lyo =Yl

limk" =0

and  as ' therefore, we have

prevail at lower fractional orders, while higher
fractional orders engender a hastening effect.
Notably, contact interventions exhibit their
effectiveness  in  influencing  various
population segments tied to Ebola and
malaria. Figures 9 and 10 bring to light the fact
that recovery from malaria experiences an
upswing in  response to  treatment.
Furthermore, the exposed population within
the context of Ebola-Malaria grows at an
accelerated pace in integer-order settings,
indicating swift protection. Figures 11 and 12
offer a profound analysis of how contact rates
impact the number of infected cases and the
susceptibility of mosquitoes. These figures
reveal that higher fractional orders correlate
with increased infection rates and heightened
treatment efficacy. Finally, Figures 13 and 14
underscore the dynamic consequences that
fractional orders have on exposed and infected
mosquitoes. As the fractional value increases,
there's a noticeable reduction in the number of
infected mosquitoes. This underscores the
critical role of fractional modeling in our quest
to comprehend mosquito behavior within the
broader spectrum of disease dynamics. In
summary, fractional-order modeling offers a
nuanced and multifaceted lens through which
we can understand the intricate dynamics of
the Ebola-Malaria model. These figures
collectively illustrate the profound impact of
adjusting the fractional order (psi) on
susceptibility, latency, exposure-to-infection
conversion, recovery, contact rates, and
mosquito behavior. These insights are of
paramount importance when it comes to
refining disease control strategies and
comprehending the ramifications of treatment
and interventions within the complex
landscape of disease dynamics.

Conclusion
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The Laplace-Adomian decomposition method
plays a crucial role in infectious disease
studies, particularly in the context of the
Ebola-Malaria model. It allows for a more in-
depth analysis of disease dynamics through
fractional-order modeling. The flexibility and
precision of this method are valuable for
understanding diseases influenced by various
factors like population density, climate, and
demographics. The fractional-order Ebola-
Malaria model, as represented in Figures 1 to
14, demonstrates the significance of using
fractional derivatives in epidemiological
models. These figures provide valuable
insights into the behavior of the disease
dynamics under different fractional orders
(psi). They show that the choice of psi affects
susceptibility, latent dynamics, and exposure
to infection conversion, recovery rates,
contact rates, and mosquito behavior. This
nuanced understanding can help in tailoring
disease control strategies and assessing the
impact of treatments and interventions.
Overall, the Laplace-Adomian decomposition
method and fractional order modeling are
promising tools in public health research.
However, researchers should exercise caution,
especially when working with short periods, to
avoid negative population numbers. Longer
periods and original data can enhance the
accuracy of the models, making them more
applicable in real-world scenarios. These tools
contribute to our understanding of infectious
diseases and aid in the development of
effective prevention and treatment strategies.
Recommendations

Additional fractional derivatives, like the
variational iteration approach, expand
fractional calculus in infectious disease
studies. Computational assessments improve
our understanding of complex systems.
Incorporating numerical methods such as the
homotopy perturbation method and homotopy
analysis method with real data enhances
precision. While the Caputo fractional order
derivative and Laplace Adomian
decomposition methods are effective, further
improvement is possible. Real-world data
increases accuracy and validity by refining
parameters and validating predictions. These
approaches enhance our understanding of

infectious diseases and assist in prevention

and treatment strategies.  Continuous

exploration and refinement are necessary for
advancing infectious disease modeling.
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