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Abstract 

Recent researches have shown a great interest in developing novel numerical methods for 

solving nonlinear equations of the form 𝑓(𝑦) = 0  arising from real world phenomena.  

However, very little attention has been given to the study of condition numbers which is an 

important aspect in measuring the sensitivity of the problem in response to slight perturbations 

in the input data. In this article, we present an efficient free derivative iterative scheme 

constructed by refining Newton-Raphson method standard form in which the derivative term 

is approximated by using finite difference scheme; hence making it derivative free. We also 

conducted an in-depth analysis of the condition numbers to explore sensitivity and efficiency 

comparisons between the proposed algorithm and existing methods for the given problems. 

Our investigation focused on iteration numbers, residuals, and convergence under mild error 

tolerances. Based on five numerical case studies, results revealed that the proposed Algorithm 

2 outperforms the existing Algorithm 1 in terms of accuracy of the approximate solution. The 

results for the condition numbers indicated that all problems considered were ill-conditioned, 

highlighting the significance of studying condition numbers in the context of solving nonlinear 

equations. 
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Introduction 
An iterative method (ITM) refers to a 

mathematical technique that starts with an 

initial value and generates a series of 

improved approximations for certain 

problems, each of which is derived from the 

one before. Even with the most powerful 

processing power available, iterative 

methods are usually the only options in 

dealing with nonlinear equations (NLE) 

because direct methods would be too 

expensive or even impossible to apply 

(Amritkar et al. 2015). Condition numbers 

(CN) of NLE measure the sensitivity of the 

solution to slight perturbation ( 𝜎  ) in the 

input data. A problem is said to be well-

structured or well-conditioned when the CN 

is small and ill-structured when the CN is 

large (Rice 1966). The expression's input 

should be continuous in order to prevent 

differing results from minor changes in the 

input and increase of confidence in the 

solution. The problem is well-posed when 

the CN is less than 1, and it is ill-posed if the 

CN is arbitrarily large, which implies that it 

is challenging to discover the right answer. 

The solution to NLE is one of the most 

significant and difficult problems in real 

world phenomena.  Newton’s method (NM) 

is one of the most predominant methods in 

numerical analysis (Abbasbandy 2003) for 
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obtaining  𝛼 of the function  𝑓(𝛼) = 0.  NM for finding 𝛼 is given by  

𝑦𝑚+1 = 𝑦𝑚 −
𝑓(𝑦𝑚)

𝑓′(𝑦𝑚)
, where    𝑦𝑚+1 converges to 𝛼 as 𝑚 tends to infinity and 𝑓′(𝑦𝑚) ≠ 0. 

NM is the most prevalent and elegant algorithm, which uses the derivative of the function. On 

the other hand, Steffensen’s method (Jain 2007, Jain and Chand 2020) 

𝑦𝑚+1 = 𝑦𝑚 − (𝑓(𝑦𝑚))
2

/(𝑓(𝑦𝑚 + 𝑓(𝑦𝑚)) − 𝑓(𝑦𝑚 + 𝑓(𝑥𝑚)), 𝑚 = 0, 1, 2, 3, ⋯, 

 

is the NM variant which does not employ 

derivative of the function. Steffensen’s 

strategy has the same order of convergence 

as NM based on the approximation of the 

first derivative. Solaiman and Hashim (2019) 

constructed some novel optimal ITM with 

higher convergence and validated the 

applicability of the proposed ITM by finding 

the root of problems from engineering 

perspective. Recently, Chu et al. (2020) 

suggested a new family of ITM and explored 

the dynamics of the presented methods. 

Nevertheless, most of the works in the 

literature such as Chen (1990), Amat et al. 

(2003) and Azam and Rhoades (2012), 

among others have concentrated much in 

finding a better technique to solve NLE. 

However, to the best of our knowledge, none 

of the works highlighted above have studied 

the stability of the problems arising from real 

world phenomena. 

This research work, therefore, aimed to 

make the following contributions to the field. 

Firstly, it proposes Algorithm 2, which is a 

non-derivative ITM, as one of the most 

efficient method for solving NLE when 

compared to its variant method presented by 

Bahgat (2021). Secondly, the notion of CN 

of NLE arising from real world phenomena 

is introduced. Finally, dynamical comparison 

of the Algorithm 1 and Algorithm 2 and 

computation of CN are presented.  

 

Methods and Materials 

In this section, two algorithms are 

presented. Algorithm 1 is briefly presented 

and Algorithm 2 is presented in details. Both 

algorithms are constructed by refining 

Newton-Raphson method standard form in 

which the derivative term is approximated by 

using finite difference schemes; hence 

making those derivative free.  

 

Algorithm 1: Derivative Free Iterative Method 

This is a derivative free iterative scheme for obtaining the solution of the NLE by using the 

approximation version of the first derivative of  𝑓′(𝑦𝑖)  given by:   

     𝑓′(𝑦𝑖) ≈ (𝑓(𝑦𝑖 + 𝛽𝑓(𝑦𝑖)) − 𝑓(𝑦𝑖 − 𝛽𝑓(𝑦𝑖)))/2𝛽𝑓(𝑦𝑖),  (1) 

where 𝛽 𝜖 ℝ  and not equal to zero. Consider the following method: 

                              ℎ𝑖 = 𝑦𝑖 −
𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)
 ,  

                             𝑔𝑖 = 𝑦𝑖 − (1 +
𝑓(ℎ𝑖)

𝑓(𝑦𝑖)−2𝑓(ℎ𝑖)
)

𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)
 , 

                           𝑦𝑖+1 = 𝑔𝑖 − (1 +
2𝑓(ℎ𝑖)

𝑓(𝑦𝑖)−2𝑓(ℎ𝑖)
)

𝑓(𝑔𝑖)

𝑓′(𝑦𝑖)
 . (2) 

Substituting the approximation of the derivative  𝑓′(𝑦𝑖) in equation (2) by equation (1) and 

obtain Algorithm 1, non-derivative iterative method work as follows: 

 ℎ𝑖 = 𝑦𝑖 −
2𝛽𝑓2(𝑦𝑖)

𝑓(𝑦𝑖 + 𝛽𝑓(𝑦𝑖)) − 𝑓(𝑦𝑖 − 𝛽𝑓(𝑦𝑖))
  , 

                            𝑔𝑖 = 𝑦𝑖 − (
𝑓2(𝑦𝑖)−𝑓(𝑦𝑖)𝑓(ℎ𝑖)+𝑓2(ℎ𝑖)

𝑓2(𝑦𝑖)−2𝑓(𝑦𝑖)𝑓(ℎ𝑖)+𝑓2(ℎ𝑖)
)

2𝛽𝑓2(𝑦𝑖)

𝑓(𝑦𝑖+𝛽𝑓(𝑦𝑖))−𝑓(𝑦𝑖−𝛽𝑓(𝑦𝑖))
 ,  (3) 

                           𝑦𝑖+1 = 𝑔𝑖 −
2𝛽𝑓2(𝑔𝑖)

𝑓(𝑔𝑖+𝛽𝑓(𝑦𝑖))−𝑓(𝑔𝑖−𝛽𝑓(𝑔𝑖))
 . 

 

The convergence analysis of Algorithm 1 

closely aligns with the findings of Bahgat 

(2021). Numerical experiments conducted by 

Bahgat (2021) demonstrate that Algorithm 1 

yields commendable performance, exhibiting 

minimal error when 𝛽 = 1 . This level of 
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accuracy is well within our prescribed 

tolerance and comparable to the results 

obtained with 𝛽 = −1  or 𝛽 = −0.5 . As a 

result, we focus exclusively on Algorithm 1 

with 𝛽 = 1 in this article, streamlining our 

investigation. 

 

Description of Algorithm 2: Derivative 

free iterative method 

Let us consider the nonlinear 

problem 𝑓(𝑦) = 0.                                   (4) 

Assume that 𝛼 is a zero of equation (4) with 

initial value 𝑦0  close to the actual zero 𝛼 , 

then Taylor’s series in the neighbourhood of 

𝑦0 for the equation (4) gives; 

𝑓(𝑦0) −
(𝑦−𝑦0)𝑓′(𝑦0)

1!
+

(𝑦−𝑦0)2𝑓′′(𝑦0)

2!
= 0.  (5) 

When   𝑓′(𝑦0) ≠ 0, then (5) implies  

    𝑦𝑖+1 = 𝑦𝑖 −
𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)
                                  (6) 

This refers to Newton’s algorithm for 

obtaining the root for scalar nonlinear 

functions (Kincaid and Cheney 1990, Chun 

2006). Two iterative steps are given by: 

            ℎ𝑖 = 𝑦𝑖 −
𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)
 ,  and 

         𝑦𝑖+1 = ℎ𝑖 −
𝑓(ℎ𝑖)𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)[𝑓(𝑦𝑖)−2𝑓(ℎ𝑖)]
 .      (7) 

Incorporating Newton’s algorithm, the two 

iterative steps method is transformed into 

three stages as follows: 

               ℎ𝑖 = 𝑦𝑖 −
𝑓(𝑦𝑖)

𝑓′(𝑦𝑖)
 , 

               𝑔𝑖 = ℎ𝑖 −
𝑓(ℎ𝑖)

𝑓′(ℎ𝑖)
 , 

           𝑦𝑖+1 = 𝑔𝑖 −
𝑓(𝑔𝑖)𝑓(ℎ𝑖)

𝑓′(ℎ𝑖)[𝑓(ℎ𝑖)−2𝑓(𝑔𝑖)]
       (8) 

To reduce the computational cost and create 

it to be more effective, the first derivative is 

estimated and made it derivative free with 

the intention of simple application to solve 

NLE arising from real world problems whose 

first derivative come to be unbounded or 

does not exist. Then the forward difference 

approximation  

          𝑓′(𝑦𝑖) =
𝑓(𝑦𝑖+𝑓(𝑦𝑖))

𝑓(𝑦𝑖)
= 𝑚(𝑦𝑖)          (9) 

is employed to approximate  𝑓′(ℎ)  and 

exploit the finite difference scheme as 

        𝑓′(ℎ𝑖) =
𝑓(ℎ𝑖)−𝑓(𝑦𝑖)

ℎ𝑖−𝑦𝑖
= 𝑣(𝑦𝑖 , ℎ𝑖)      (10) 

When given the initial guess 𝑦0 , estimated 

solution  𝑦𝑖+1  is found as follows: 

           ℎ𝑖 =  𝑦𝑖 −
𝑓(𝑦𝑖)

𝑚(𝑦𝑖)
 ,     𝑖 = 0, 1, 2,  

           𝑔𝑖 =  ℎ𝑖 −
𝑓(ℎ𝑖)

𝑣(𝑦𝑖,ℎ𝑖)
 , 

        𝑦𝑖+1 = 𝑔𝑖 −
𝑓(𝑔𝑖)𝑓(ℎ𝑖)

𝑣(𝑦𝑖,ℎ𝑖)[𝑓(ℎ𝑖)−2𝑓(𝑔𝑖)]
 . 

The suggested algorithm’s calculating cost is 

low resulting to a higher efficacy. 

To find  𝛼 of NLE of the form  𝑓(𝑦) =
0 , 𝑓: ℝ → ℝ  , the following steps are 

followed:  

1: State the function  𝑓(𝑦) 

2: Suggest an initial guess 𝑦0 

 3: Compute the next estimate of the root 

𝑦𝑖+1, (𝑖 = 0, 1, 2 … ) 

 4: While |𝑦𝑖+1 − 𝛼| < 𝜀,  where 𝜀  denotes 

the tolerance to the error; repeat step 3 until 

the intended approximate solution is found. 

 

Convergence of Algorithm 2 

Lemma 1: Suppose 𝛼 is a zero of 𝑓(𝑦) = 0. 

When 𝑓(𝑦)  is adequately smooth in the 

vicinity of 𝛼, then, the convergence order for 

Algorithm 2 is at least four. 

Proof: To investigate the convergence, let 𝛼 

be a zero of  𝑓(𝑦) = 0  and 𝑒𝑖  denote the 

error at 𝑖𝑡ℎ  iterative step; then 𝑒𝑖 = 𝑦𝑖 − 𝛼. 
Employing Taylor’s series expansion, it 

follows that, 

          𝑓(𝑦𝑖) = 𝑓′(𝛼)𝑒𝑖 +
𝑓′′(𝛼)𝑒𝑖

2

2!
+

𝑓′′′(𝛼)𝑒𝑖
3

3!
+

𝑓(𝑖𝑣)(𝛼)𝑒𝑖
4

4!
+ 𝑂(𝑒𝑖

5), 

                   = 𝑓′(𝛼)[𝑒𝑖 + 𝑐2𝑒𝑖
2 + 𝑐3𝑒𝑖

3 + 𝑐4𝑒𝑖
4 + 𝑂(𝑒𝑖

5)],  (11) 

where  𝑐𝑖 =
1

𝑖!

𝑓(𝑖)(𝛼)

𝑓′(𝛼)
   and 

   𝑚(𝑦𝑖) = 𝑓′(𝛼)[1 + 3𝑐2𝑒𝑖 + [7𝑐3 + 𝑐2
2]𝑒𝑖

2 + (6𝑐2𝑐3 + 15𝑐2
4)𝑒𝑖

3 + (18𝑐2𝑐4 + 31𝑐5 + 𝑐3𝑐2
2 +

5𝑐𝑖
4)𝑒𝑖

4 + 𝑂(𝑒𝑖
5)].  (12) 

By using equations (11) and (12) you can obtain; 

       ℎ𝑖 = 𝛼 + 2𝑐2𝑒𝑖
2 + (6𝑐3 − 5𝑐2

2)𝑒𝑖
3 + (14𝑐4 − 26𝑐3𝑐2 + 13𝑐2

2)𝑒𝑖
4 + 𝑂(𝑒𝑖

5) (13) 

 𝑓(ℎ𝑖) = 𝑓′(𝛼)[2𝑐2𝑒𝑖
2 + (6𝑐3 − 5𝑐2

2)𝑒𝑖
3 + (14𝑐4 − 26𝑐3𝑐2 + 13𝑐2

2)𝑒𝑖
4 + 𝑂(𝑒𝑖

5)] (14) 
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v(yi, hi) = 𝑓′(α)[1 + c2ei + (c3 + c2
2)ei

2 + (8c2c3 − 5c2
3 + c4)ei

3 + (13c2
4 − 27c3c2

2 +

16c4c2 + c5 + 6c3
2)ei

4 + O(ei
5)], (15) 

𝑔𝑖 = 𝛼 + 2𝑐2𝑒𝑖
3 + (8𝑐2𝑐3 − 17𝑐2

3)𝑒𝑖
4 + O(𝑒𝑖

5), (16) 

 𝑓(𝑔𝑖) = 𝑓′(α)[2𝑐2𝑒𝑖
3 + (8𝑐2𝑐3 − 7𝑐2

3)𝑒𝑖
4 + 𝑂(𝑒𝑖

5)].  (17) 

 Exploiting equations (11)−(17) in Algorithm 2 yields equality: 

   𝑦𝑖+1 =  𝛼 − 2c2
3𝑒𝑖

4 + 𝑂(𝑒5).  (18) 

This implies that 

       𝑒𝑖+1 =  −2c2
3𝑒𝑖

4 + 𝑂(𝑒5). (19) 

Equation (19) illustrates that Algorithm 2 has convergence of fourth-order. 

 

Condition Number of Nonlinear Equations 
Condition number of a function measures 

how much the output value of the function 

can change for a small change in the input 

argument. Each problem we attempt to solve 

is dependent on an expression in some way. 

To be confident in our solution, we must first 

be aware that the expression's inputs are 

continuous which prevent us from getting 

drastically different results from minute 

changes in the input, although it falls short. 

Furthermore, we require the knowledge of 

the expression's sound conditioning. If the 

expression is well-conditioned, slight 

changes in the input will result into small 

changes in the outcomes. We refer to a 

problem as being ill-conditioned if modest 

changes in the input cause significant 

changes in the result. 

To derive the formula for the condition 

number, we consider a function  𝑓(𝑦)  

evaluated at a point 𝑦 = 𝑦0.  When the input 

is perturbed to  𝑦 = 𝑦0 + 𝜎 , the output 

becomes  𝑓(𝑦0 + 𝜎) . By using the Mean 

Value Theorem, then it follows that: 

 
𝑓(𝑦0 + 𝜎)

𝑓(𝑦0)⁄ =
𝜎𝑓′(𝛿)

𝑓(𝑦0)⁄ ≈ [
𝑦0𝑓′(𝑦0)

𝑓(𝑦0)⁄ ] (𝜎
𝑦0⁄ ),  where  𝛿 ∈ (𝑦0 ,   𝑦0 + 𝜎 ).  

So, the condition number that indicates magnification of changes of  𝑓 at 𝑦0 is roughly given 

by  𝐶𝑓(𝑦0) = [
𝑦0𝑓′(𝑦0)

𝑓(𝑦0)⁄ ].    If    𝐶𝑓(𝑦0) < 1   then the equation is well conditioned. 

If 𝐶𝑓(𝑦0) is arbitrarily large, then the equation is ill-conditioned. More details on condition 

numbers can be found in the articles by Chacha and Naqvi (2018) and Chacha (2022). 

 

Results and Discussion 
This part consists of two sections. The 

first section shows numerical experiment that 

was carried out to illustrate the efficiency of 

Algorithm 2 in comparison with Algorithm 

1. The second section shows the computation 

of condition number. Seven real world 

problems in the form of nonlinear equations 

were tested via MATLAB R2018a. The 

loops exited when |𝑓(𝑦𝑖+1)| <  10−5. 

 

Numerical experiment 

Equation 1: (The depth of embedment 𝑦 in a 

sheet-pile wall (Hafiz and Al-Goria 2012) 

 𝑓(𝑦) =
1

4.62
(𝑦3 + 2.87𝑦2 − 10.28) − 𝑦 , 

initial point 𝑦0 = 2.5. 

 

Table 1: Results summary for Equation 1 

Method Iteration 𝑦𝑖+1 |𝑓(𝑦𝑖+1)| 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| 
Algorithm 1 (β = 1) 3 2.002118 8.829506e−16 2.731050e−09 

Algorithm 2 3 2.002118 4.440892e−16 2.629598e−09  
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Based on Table 1, both Algorithm 1 and 

Algorithm 2 converge at the 3
rd

 iteration. The 

results demonstrate that Algorithm 2 

consistently produces improved results 

 ( 𝑦𝑖+1  ) at each iteration stage with a 

minimum error (𝜀 = |𝑦𝑖+1 − 𝑦𝑖|) compared 

to Algorithm 1. Furthermore, Algorithm 2 

exhibits smaller residuals |𝑓(𝑦𝑖+1)|  than 

Algorithm 1, indicating its faster approach 

towards zero. 

 

Equation 2: Consider the beam scheming 

problem (Shams et al. 2020) concerning the 

embedment 𝑦  of a sheep pile wall is 

governed by the equation: 

𝑓(𝑦) =
1

4.62
(𝑦3 + 2.87𝑦2 − 4.62𝑦 − 10.28)  

with an initial point  𝑦0 = 3.0 . We use 

Algorithms 1 and 2 to obtain the approximate 

solution and the results summary is recorded 

in Table 2. 

Based on Table 2, both Algorithm 1 and 

Algorithm 2 converge at the 3
rd

 iteration. 

However, Algorithm 2 consistently produces 

superior results ( 𝑦𝑖+1 ) at each iteration with 

a minimum error (𝜀 = |𝑦𝑖+1 − 𝑦𝑖|) compared 

to Algorithm 1. Additionally, Algorithm 2 

exhibits smaller residuals |𝑓(𝑦𝑖+1)|  than 

Algorithm 1, indicating its faster approach 

towards zero. 

 

Table 2: Results summary for Equation 2 

Method Iteration 𝑦𝑖+1 |𝑓(𝑦𝑖+1)| 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| 
Algorithm 1 (β = 1) 3 2.002118 8.829506e−16 3.815893e−09 

Algorithm 2 3 2.002118 3.844928e−16 1.073091e−09 

 

Equation 3: The Planck’s radiance law 

problem appearing in Bradie (2006) and Jain 

(2013) is given by: 

               𝜙(𝜇) =
8𝜋ℎ𝑐𝑢−5

𝑒ℎ𝑐 𝜇𝑇𝐾⁄ −1
. 

This equation computes the density of energy 

in an isothermal blackbody. The equation is 

re-written as (𝑦) = 1 − 0.2𝑦 − 𝑒−𝑦  . We 

apply Algorithm 1 and Algorithm 2 with an 

initial point  𝑦0 = 4.1  for solving the 

approximate solution 𝑦  and a summary of 

results is recorded in Table 3. 

According to Table 3, both Algorithm 1 and 

Algorithm 2 converge at the 2
nd

 iteration. 

However, it is noteworthy that Algorithm 2 

consistently produces improved results ( 𝑦𝑖+1 

) at each iteration stage with a minimum 

error ( 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| ) when compared to 

Algorithm 1. Additionally, Algorithm 2 

exhibits smaller residuals |𝑓(𝑦𝑖+1)|  than 

Algorithm 1, signifying its faster approach 

towards zero. 

 

Table 3: Results summary for Equation 3 

Method Iteration 𝑦𝑖+1 |𝑓(𝑦𝑖+1)| 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| 
Algorithm 1 (β = 1) 2 4.965114 5.464379e−17 3.525123e−04 

Algorithm 2 2 4.965114 3.382711e−17 1.1524331e−04 

 

Equation 4: Blood rheology model 

(Fournier 2017). The caisson fluid model 

demonstrates that the flow of basic fluids in a 

tube is such that the centre core of the fluids 

will move as a plug with slight deformation 

and pace gradient will take place close to the 

wall. The blood is a non-Newtonian fluid and 

is assumed as caisson fluid. For example, 

consider the following function as a NLE to 

explore the plug flow of caisson fluids: 

H = 1 −
16

7
√𝑦 +

4

3
𝑦 −

1

21
𝑦4  , where flow 

pace reduction is calculated by H. Setting 

H = 0.40 which yields: 

𝑓(𝑦) =
1

441
𝑦8 −

8

63
𝑦5 − 0.05714285714𝑦4 +

16

9
𝑦2 − 3.624489796𝑦 + 0.3.  

Algorithm 1 and Algorithm 2 are employed 

with an initial point  𝑦0 = 0.9  to solve the 

approximate solution 𝑦  and a summary of 

results is recorded in Table 4. 

Referring to the data in Table 4, it is evident 

that Algorithm 2 achieves convergence at the 

3
rd

 iteration, while Algorithm 1 diverges. 

This clearly demonstrates the faster 
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convergence of Algorithm 2 compared to 

Algorithm 1. The results vividly illustrate the 

considerable improvement at each iteration 

step in Algorithm 2 when compared to 

Algorithm 1. 

 

Table 4: Results summary for Equation 4 

Method Iteration 𝑦𝑖+1 |𝑓(𝑦𝑖+1)| 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| 
Algorithm 1 (β = 1) - Diverged - - 

Algorithm 2 3 8.643355e−02 5.551115e−17 3.210544e−06 

 

Equation 5: Hydraulic permeability, which 

is a problem with fluid permeability, is 

essentially a measurement of flow resistance.  

It can be expressed as;  

  𝑘 =
𝑟𝑒𝑦3

20(1−𝑦)2  ,  𝑟𝑒𝑦3 − 20(1 − 𝑦)2 = 0 , 

where 𝑘  stands for specific hydraulic 

permeability  𝑟𝑒  denoting the radius of the 

tube, and 0 ≤ 𝑦 ≤ 1  is the porosity. For  

𝑘 = 0.4655  and  𝑟𝑒 = 100, we get the NLE: 

𝑓(𝑦) = 100𝑦3 − 9.31(1 − 𝑦)2  . Algorithm 

1 and Algorithm 2 are employed with an 

initial point  𝑦0 = 2.0  to solve the 

approximate solution 𝑦  and a summary of 

results is recorded in Table 5.  

 

Table 5: Results summary for Equation 5 

Method Iteration 𝑦𝑖+1 |𝑓(𝑦𝑖+1)| 𝜀 = |𝑦𝑖+1 − 𝑦𝑖| 
Algorithm 1 (β = 1) - Diverged - - 

Algorithm 2 4 3.426482e−01 0 1.131404e−06 

 

Based on the data presented in Table 5, it 

is evident that Algorithm 2 achieves 

convergence at the 4
th

 iteration, whereas 

Algorithm 1 diverges. This highlights the 

faster convergence of Algorithm 2 in 

comparison to Algorithm 1. These results 

clearly demonstrate the significant 

improvement at each iteration step of 

Algorithm 2 when compared to Algorithm 1. 

Numerical results for the considered five 

real world problems demonstrate the 

efficiency of Algorithm 2. This is to say that 

Algorithm 2 is also appropriate in solving 

NLE arising from real world phenomena 

when compared with Algorithm 1.  

Algorithm 1 becomes unstable at some points 

for certain problems as it can be seen in 

Table 1 to Table 5. 

 

Computation of condition number 𝑪𝒇(𝒚𝒊)  

Equation 1: Consider  𝑓(𝑦) =
1

4.62
(𝑦3 +

2.87𝑦2 − 10.28) − 𝑦  with an input data  

𝑦 = 2.002118778953827. The summary of 

results is presented in Table 6.  

From Table 6, condition number of Equation 

1 is arbitrarily large (𝐶𝑓(𝑦𝑖) > 1). This result 

shows that the problem is ill-conditioned 

which means is very sensitive to any small 

perturbation in the input data. 

 

Table 6: Condition number for Equation 1 

𝑦𝑖 = 𝑦 + 𝜎 𝐶𝑓(𝑦𝑖)           𝑓(𝑦𝑖) 

2.002118778953827+10−7 2.002118979674711e+07 4.090389920108351e-07 

2.002118778953827+10−9 2.002119185724736e+09 4.090388916466736e-09 

2.002118778953827+10−11 2.002148962727241e+11 4.090328076244987e-11 

2.002118778953827+10−16 1.844099323583018e+16 4.440892098500626e-16 

 

Equation 2: Consider 𝑓(𝑦) =
1

4.62
(𝑦3 +

2.87𝑦2 − 4.62𝑦 − 10.28)  with an input 

data  𝑦 = 2.002118778953827.  The 

summary of results is presented in Table 7. 

From Table 7, condition number of Equation 

2 is arbitrarily large (𝐶𝑓(𝑦𝑖) > 1). This result 

shows that the problem is ill-conditioned 

which means is very sensitive to any small 

perturbation in the input data. 
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Table 7: Condition number for Equation 2 

𝑦𝑖 = 𝑦 + 𝜎  𝐶𝑓(𝑦𝑖)   𝑓(𝑦𝑖) 

2.002118778953827+10−7 2.002118980672156e+07 4.090389918070539e-07 

2.002118778953827+10−9 2.002119229951120e+09 4.090388826110923e-09 

2.002118778953827+10−11 2.002157055487802e+11  4.090311543053624e-11 

2.002118778953827+10−16 1.064967359369193e+16 7.689856447620132e-16 

 

Equation 3: Consider   𝑓(𝑦) = 1 − 0.2𝑦 −
𝑒−𝑦  with an input data 

𝑦 = 4.965114231744276.  The summary of 

results is presented in Table 8. From Table 8 

above, condition number of Equation 3 is 

arbitrarily large ( 𝐶𝑓(𝑦𝑖) > 1 ). This result 

shows that the problem is ill-conditioned 

which means is very sensitive to any small 

perturbation in the input data. 

 

Table 8: Condition number for Equation 3 

𝑦𝑖 = 𝑦 + 𝜎  𝐶𝑓(𝑦𝑖)             𝑓(𝑦𝑖) 

4.965114231744276 + 10−7 4.965114335323633e+07 1.930228469074202e-08 

4.965114231744276 + 10−9 4.965112948608904e+09 1.930228962776504e-10 

4.965114231744276 + 10−11 4.965140791823373e+11 1.930218138102013e-12 

4.965114231744276 + 10−16 2.833172991458863e+16 3.382710778154774e-17 

 

Equation 4: Consider  𝑓(𝑦) =
1

441
𝑦8 −

8

63
𝑦5 − 0.05714285714𝑦4 +

16

9
𝑦2 −

3.624489796𝑦 + 0.3 with an input data 𝑦 =
8.643355805246679𝑒−02. The summary of 

results is presented in Table 9. From Table 9, 

condition number of Equation 4 is arbitrarily 

large (𝐶𝑓(𝑦𝑖) > 1). This result shows that the 

problem is ill-conditioned which means is 

very sensitive to any small perturbation in 

the input data. 

 

Table 9: Condition number for Equation 4 

𝑦𝑖 = 𝑦 + 𝜎 𝐶𝑓(𝑦𝑖)    𝑓(𝑦𝑖) 

8.64335580524667e−02  + 10−7 8.643365341367542e+05 3.317353331477868e-07 

8.64335580524667e−02  + 10−9 8.643355909839228e+07 3.317353503007325e-09 

8.643355805246679e−02 + 10−11 8.643345406346273e+09 3.317357499810214e-11 

8.643355805246679e−02 + 10−16 8.608800834968345e+14 3.330669073875470e-16 

 

Equation 5: Consider 𝑓(𝑦) = 100𝑦3 −
9.31(1 − 𝑦)2 with an input data =
3.426482058114499𝑒−01  . The summary 

of results is recorded in Table 10. From 

Table 10, condition number of Equation 5 is 

arbitrarily large ( 𝐶𝑓(𝑦𝑖) > 1 ). This result 

shows that the problem is ill-conditioned 

which means is very sensitive to any small 

perturbation in the input data. The computed 

condition numbers 𝐶𝑓(𝑦𝑖)  for the nonlinear 

equations in Equations 1–5 indicate extreme 

ill-conditioning, with arbitrarily large values. 

Consequently, even a minor perturbation in 

the input data leads to significant changes in 

the solutions (see Table 6–Table 10). 

 

Table 10: Condition number for Equation 5 

𝑦𝑖 = 𝑦 + 𝜎  𝐶𝑓(𝑦𝑖)          𝑓(𝑦𝑖) 

3.426482058114499e−01 + 10−7 3.426484 ×  106 4.746223762452928e
-06

 

3.426482058114499e−01 + 10−9 3.426482 ×  108 4.746222881379936e
-08

 

3.426482058114499e−01 + 10−11 3.426483 ×  1010 4.746221193840938e
-10

 

3.426482058114499e−01 + 10−16 4.577585 ×  1015 3.552713678800501e
-15
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Conclusion  
Analysis on the efficiency based on 

numerical computation revealed that the 

proposed Algorithm 2 was more effective 

when compared with Algorithm 1. On the 

other hand, condition numbers computed for 

each problem indicated that most of 

problems were ill-conditioned. This infers 

that nonlinear equations arising from real 

world phenomena are quite sensitive and 

may generate approximations with huge 

error. To enhance accuracy and applicability, 

it is crucial to prioritize meticulous data input 

and simulation in the model, thereby 

minimizing errors and ensuring the 

attainment of correct solutions. In our future 

research, we intend to study intensively the 

stability of these algorithms and their 

accuracy under a certain tolerance. 
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