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Abstract 

Magnesium doped zinc oxide (ZnO:Mg) thin films were deposited on soda lime glass slides 

by DC magnetron sputtering method. Atomic force microscope (AFM), and UV/VIS 

spectrophotometer were used to investigate the effect of sputtering power and substrate 

temperature on the surface morphology and optical properties of ZnO:Mg thin films. AFM 

images revealed that sputtering power and deposition temperature have significant influence on 

surface morphology of the ZnO:Mg thin films. For all sputtering powers and substrate 

temperatures investigated, ZnO:Mg films had peak transmittance above 85%. Samples 

deposited at 110 W sputtering power and 450 °C substrate temperature showed the best peak 

transmittance of > 90% at 560 nm (visible range). Optical band gap of ZnO:Mg films was in 

the range of 3.44– 3.69 eV depending on the substrate temperature. The results indicated the 

potential of the films for transparent conductor applications.  

Key words: ZnO:Mg, Transparent conducting oxides, Band gap energy, Optical properties, 

morphology properties 

 

Introduction 

High optical transmittance is usually 

associated with dielectrics which are 

inherently poor conductors, while high 

electrical conductivity is usually associated 

with metallic materials which are usually 

opaque (Chopra et al.  1983). Transparent 

conductive oxides (TCOs) are materials with 

unique combination of very high optical 

transmittance, especially in the visible part of 

the solar spectrum, with high electrical 

conductivity (Granqvist 2007). TCOs are 

mainly applicable in opto-electrical devices 

including thin film solar cells, panel displays, 

liquid crystal displays, and heat mirrors 

(Chopra et al. 1983, Major and Chopra 1988, 

Ellmer 2001, Maloda and Malisa 2020, 

Rwenyagila et al. 2021). Several materials 

are in use as candidates for TCO layer in 

devices. These include Fluorine doped Tin 

Oxide (SnO2:F), Cadmium Oxide (CdO), 

Zinc Oxide (ZnO), Indium Tin Oxide (ITO) 

etc. ITO is a widely used TCO, however, it 

has several limitations, particularly toxicity 

and scarcity (Minami 2008). Zinc oxide 

(ZnO) thin films on the other hand have 

several advantages over other TCOs, mostly 

due to its chemical and mechanical stability, 

high abundance, nontoxic in nature and good 

transparency (Wenas et al. 1991, Ellmer 

2001, Samwel et al. 2015).  
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ZnO belongs to II–IV group in a periodic 

table with the band gap of 3.37 eV at room 

temperature (Suchea et al. 2007). ZnO thin 

films have low conductivity and low optical 

transmittance in the visible range (Pawar et 

al. 2005). One of the possibilities to improve 

electrical conductivity and optical 

transmittance is by adding foreign elements 

such as B, Al, and Ga (Pholds et al. 2013, 

Samwel et al. 2015, Maloda and Malisa 

2020). It should be noted that there exist 

other ways of improving ZnO properties such 

as fabrication of ZnO/metal/ZnO multilayer 

films (Rwenyagila et al. 2014). Studies have 

shown that it is possible to add Mg in ZnO 

lattice without any structural deformation due 

to fairly comparable radii between Mg2+ (
101057.0 − nm) and Zn2+ (

101060.0 −
nm). ZnO doped with magnesium has its 

band gap enlarged compared to undoped 

ZnO, causing the optical absorption edge to 

shift to lower wavelength, and consequently 

increasing overall transmittance of the films. 

The increased transmittance may make 

ZnO:Mg thin film a suitable candidate 

material for optoelectronics (Pawar et al. 

2005, Yusuf et al. 2014, Maloda and Malisa 

2020). 

Several factors influence physical 

properties of DC magnetron sputtered 

ZnO:Mg thin films, the most important being 

the deposition parameters and target 

composition. It was reported that, using 

metallic targets, one for zinc and the other for 

the dopant in preparing sputtered alloys of 

ZnO give rise to high quality films (Suchea et 

al. 2007). Moreover, high quality doped ZnO 

thin films with good physical properties can 

also be obtained by preparing the films from 

alloy targets (Samwel et al. 2015). This paper 

explores the effect of deposition parameters 

(deposition power and substrate temperature) 

on the surface morphology and optical 

properties of DC sputtered ZnO:Mg thin 

films.  

 

Materials and Methods 

ZnO:Mg thin films were deposited on soda 

lime glass substrates by DC magnetron 

sputtering in an argon atmosphere using 

Balzers BAE 250 coating unit. The sputtering 

target was ZnO:Mg alloy with 95:5 wt% and 

99.99% purity. The base and working 

pressures for film deposition were 1 × 10–5 

mbar and 6 × 10-3 mbar, respectively. The 

films were deposited at different substrate 

temperatures of 300 °C, 350 °C, 400 °C and 

450 °C; and sputtering powers of 80 W, 90 

W, 100 W and 110 W. The optical 

transmission of the films was determined by 

UV–VIS spectrophotometer in the 300 nm to 

800 nm wavelength range. The band gap of 

ZnO:Mg thin films was obtained through 

extrapolation of (αhυ)2 versus hυ (photon 

energy) plots assuming direct band gap 

following Equation 1 (Sawa et al. 2018). 

 𝛼ℎ𝜈 = 𝐴(ℎ𝜈 − 𝐸𝑔)
1

2⁄  (1) 

Where 𝛼  is the absorption coefficient, ℎ𝜈 is 

the photons quantum energy constant, A is a 

constant and 𝐸𝑔 is the band gap energy. The 

absorption coefficient 𝛼   was determined 

from transmittance 𝑇 measurements and film 

thickness 𝑡 as per Equation 2 (Maloda and 

Malisa 2020).  

𝛼 =  
1

𝑡
𝑙𝑛

1

𝑇
  (2) 

Surface morphology of the ZnO:Mg thin 

films was determined using Atomic Force 

Microscopy (Digital Instruments IIIa) in 

tapping mode, using RTESP7, 125 µm 

pyramidal silicon tips with a resonant 

frequency of about 300 kHz.  

 

Results and Discussions 

The AFM images of ZnO:Mg thin films 

indicate that sputtering power has a 

significant influence in morphology of 

ZnO:Mg thin films. Figure 1 shows AFM 

micrographs for films deposited at room 

temperature with varying sputtering powers 

of 80 W to 110 W.  The figure shows 

somewhat rough morphology with 

heterogeneous nano sized particles with 

estimated mean grain size of 1470 nm2, 1484 

nm2, 1779 nm2 and 2000 nm2 for the 

sputtering powers of 80 W, 90 W, 100 W and 

110 W, respectively (Figure 2). Moreover, 

the AFM cross section profiles (Inserts in 

Figures 1a–d) show maximum cross section 

(grain) height of 11.60 nm, 12.43 nm, 30.2 

nm and 34 nm for films deposited with 

sputtering power of 80 W, 90 W, 100 W and 
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110 W, respectively. The data show an 

improvement in film grains growth with 

increasing sputtering power. Films prepared 

at 100 W and 110 W sputtering powers have 

relatively more homogeneous surface 

morphology with relatively larger and clearly 

defined grains. High sputtering power leads 

to high kinetic energy and flux of sputtered 

atoms on the substrate, resulting into 

enhanced surface diffusion of ad atoms and 

hence increased growth of grains (Petrov et 

al. 2003). However, even at high sputtering 

powers, the film structure for samples 

prepared at room temperature was of low 

quality in terms of grains homogeneity. The 

inhomogeneous growth of the films is due to 

low mobility and diffusion rate possessed by 

the condensed atoms at room temperature. 

This trend was also reported for aluminum 

doped zinc oxide thin film (AZO) 

(Ghorannevis et al. 

2015). 

 

 
 

Figure 1  AFM images of magnesium doped ZnO thin films deposited at (a) 80 W (b) 90 W 

(c) 100 W and (d) 110 W sputtering powers. The inserts are cross-section profiles 

of the films. 
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Figure 2: Variation of mean grain size and grain height of ZnO:Mg films with deposition 

power. 

 

Figures 3 a - d, show surface morphology 

AFM images of ZnO:Mg thin films deposited 

at different substrate temperatures. The 

images show film grains and morphology 

evolution as the substrate temperature is 

increased from 300 °C to 450 °C. Samples 

deposited at 300 °C have inhomogeneous 

grains in terms of size and distribution and 

roughness is of very small scale as revealed 

in Figure 3a. The estimated mean grain size is 

957 nm2 and maximum cross section (grain) 

height is 9 nm. The grains evolution is 

evident when the substrate temperature 

reaches 350 °C and 400 °C where the grains 

seems to have agglomerated, more defined 

and larger (Figures 3 b and c). Analysis from 

Figures 3 b and c, revealed that the film mean 

grain size and maximum cross section height 

are 1154 nm2 and 19 nm; and 1979 nm2 and 

24 nm for films sputtered at substrate 

temperatures of 350 °C and 400 °C, 

respectively (Figure 4). Large, smooth and 

compact columnar grains with mean size of 

6006 nm2 and maximum cross section height 

of 64 nm were observed in the films 

deposited at substrate temperature of 450 °C 

(Figure 3d). This indicates that, the deposited 

atoms had enough thermal energy for 

enhanced ad atoms mobility and re-

crystallization (Kumar et al. 2006, Liang et 

al. 2019).  
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Figure 3. AFM images of ZnO:Mg thin films deposited at substrate temperatures of (a) 300 
°C (b) 350 °C (c) 400 °C and (d) 450 °C. The inserts are cross-section profiles of the 

films. 
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Figure 4: Variation of mean grain size and grain height of ZnO:Mg films with substrate   

temperature. 

 

The transmittance spectra of ZnO:Mg thin 

films deposited at various sputtering powers 

are shown in Figure 5. The transmittance in 

the visible range for all films is above 80% 

except for films deposited at 80 W sputtering 

power that has a deep in the visible range at 

about 78%. The observed deep could be a 

result of poor crystallinity of the films due to 

slow growth rate (Lee et al. 2006). The 

transmittance falls sharply in the UV region 

for all films owing to the onset of 

fundamental absorption. Films deposited at 

90 W, 100 W and 110 W were observed to 

show improved transmittance compared to 

those deposited at 80 W. The improvement is 

attributed to reduced optical scattering as a 

result of reduced films roughness and 

improved microstructure as demonstrated by 

the AFM data. This observation was also 

reported by other authors (Selmi et al. 2010, 

El hamali et al. 2016).  
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Figure 5: The influence of sputtering power on the spectral transmittance of ZnO:Mg films. 

The insert shows average peak transmittance as a function of sputtering power. 

 

The transmittance spectra of ZnO:Mg thin 

films as a function of substrate temperature is 

shown in Figure 6. The figure shows 

interference effects in the spectra for 

wavelengths,  > 400 nm. The effect is more 

pronounced as the deposition temperature 

increases from 300 °C to 450 °C indicating 

smoothness and low scattering loss of the 

films surface (Xie et al. 2012). The average 

peak transmittance of the films increased 

with deposition temperature from ~ 81% for 

samples deposited at 300 °C to ~ 88% for 

samples deposited at 450 °C (Figure 6 insert). 

The results show that deposition substrate 

temperature enhances optical transparency of 

the films. Similar results were reported by 

Devi et al. (2015). 

 

 

 
Figure 6: The influence of substrate temperature on the optical transparency of ZnO:Mg 

films. The insert shows average peak transmittance as a function of sputtering 

temperature. 

 

Figure 6 further shows a significant blue 

shift in the fundamental absorption edge most 

likely owing to reduction in defects (Singh  et 

al.  2007)  as was observed from AFM data.  

The estimated band gap energy values 

increased with increase in deposition 

temperature from 3.44 eV for samples 

deposited at 300 °C to 3.69 eV for samples 

deposited at 400 °C (Figure 7). Upon further 

increase in substrate temperature to 450 °C, 

the band gap energy decreases slightly to 

3.63 eV. Similar results were reported by 

Devi et al. (2015). The band gap values 

obtained are larger than that for bulk ZnO 

(Suchea et al. 2007), indicating usefulness of 

Mg doping and high temperature deposition 

on improvement of ZnO based thin films as 

transparent conducting oxide material. The 

ZnO:Mg thin films optical data from this 

study, combined with reported high 

conductivity data for the films (Lekoui et al. 

2023) makes the material potential for TCO 

applications. 
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Figure 7: The energy band gap graph of ZnO:Mg thin films deposited at different substrate 

temperatures. The insert is the plot of (αhν)2 vs. hν plots for ZnO:Mg thin. 

Conclusions 

Magnesium doped zinc oxide (ZnO:Mg) 

thin films were successfully prepared by DC 

magnetron sputtering. Clear evolution of film 

structure with increasing sputtering power 

was observed. Films deposited at 110 W 

showed relatively more homogeneous surface 

morphology and larger grains compared to 

those deposited at lower powers. 

Improvement in optical transmittance was 

observed for films deposited at higher 

powers. Substrate temperature had more 

pronounced effect on the surface morphology 

of the films. Grain size increased from 957 

nm2 to 6006 nm2 as substrate temperature 

was increased from 300 °C to 450 °C. At 450 
°C, the grains were smooth and compact 

indicating complete film crystallization. The 

average optical transmittance and band gap 

energy of the films increased from 81% to 

88% and 3.44 eV to 3.63 eV, respectively as 

the substrate temperature was increased from 

300 °C to 450 °C. These results show that 

sputtering power and substrate temperature 

have great influence on the structure and 

optical properties of ZnO:Mg thin films. 
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