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Abstract 

Tuberculosis (TB) is a major threat to human health particularly in most of developing 

countries. In this article, we formulate and analyze a deterministic model for the transmission 

dynamics of pulmonary and extra-pulmonary tuberculosis. The next generation method is 

employed to find the basic reproduction number 𝑅0 which helps to determine whether TB 

clears or persists in the human population. Global stability of model equilibria is done through 

Lyapunov functions whereas the normalized forward sensitivity index method is adopted to 

determine parameters that drive tuberculosis. Analysis shows that both TB free and endemic 

equilibria exist. The TB free equilibrium is globally asymptotically stable whenever the basic 

reproduction number 𝑅0 < 1 whereas the endemic equilibrium is globally asymptotically 

stable whenever 𝑅0 > 1. Sensitivity analysis shows that the TB infection rate, the fraction of 

individuals who progress to pulmonary tuberculosis and its induced death drive TB. Numerical 

results indicate that when there are no interventions, susceptible humans decline significantly 

with time until when they are attracted to the steady state whereas latently infected, pulmonary 

and extra-pulmonary TB individuals increase until when they settle at the equilibrium states 

supporting the analytical results for existence of the endemic equilibrium. In light of these 

findings, we recommend treating humans infected with pulmonary TB who are carriers of the 

disease. 

Keywords: Tuberculosis; Basic reproduction number; Sensitivity analysis; Lyapunov 

function; Global stability 

 

Introduction 

Tuberculosis (TB) is an airborne disease 

caused by Mycobacterium tuberculosis 

bacteria. Humans contract TB through 

breathing in tuberculosis germs released in 

the air by an infected person during 

coughing, sneezing, speaking or singing 

(Lopes et al. 2014). There are two forms of 

TB, namely pulmonary tuberculosis and 

extra-pulmonary tuberculosis. Extra-

pulmonary TB happens when Mycobacterium 

tuberculosis germs infect organs other than 

the lungs, whereas pulmonary TB arises 

when the bacteria infect the lungs. TB occurs 

in two different stages which are latent TB 

and active TB. Usually, latent TB individuals 

harbor the Mycobacterium tuberculosis 

germs, but they are not contagious (WHO, 

2023). Active tuberculosis arises when TB 

germs evade the immune system and start 

growing within the human body (Marino et 

al., 2015). Though individuals with weak 

immunity get active TB immediately after 

infection, those with strong immunity acquire 

active TB later when their immune systems 

weaken (Lopes et al. 2014). Symptoms of TB 

include fatigue or weakness, weight loss, 

fever, chills, loss of appetite and night sweats 

(Halim 2013). 
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Despite the fact that TB has been 

controlled to some extent, the disease still 

poses a threat to human health, particularly in 

many underdeveloped countries. 

Tuberculosis ranks as the ninth most common 

cause of death worldwide. For instance, in 

2016 a total of 10.4 million individuals, 2.5 

million of whom were African, contracted 

tuberculosis. Globally, 1.7 million people 

died from TB in the same year, with 417,000 

deaths occurring in Africa (Floyd et al., 

2018). In 2021, the World Health 

Organization categorized Tanzania to be 

among 30 high-burden countries for TB 

whereby approximately 13,300 TB new cases 

and 26,800 deaths occurred in 2019 (WHO 

2023). Despite the presence of various 

interventions such as treatment of infected 

individuals, vaccination, patient education, 

financial and psychological support to 

patients with tuberculosis, TB remains a 

major challenge to human health particularly 

in developing countries due to the existence 

of multidrug resistance, delay in tuberculosis 

detection, undernourishment, HIV infection, 

alcohol use, smoking and diabetes mellitus 

(WHO 2023). Therefore, to design effective 

TB control strategies, it is necessary to 

understand how TB is transmitted. 

Mathematical modeling has proven to be 

an effective tool in the study of infectious 

diseases transmission dynamics. Numerous 

mathematical models have been formulated 

over time to investigate TB dynamics. 

Nonetheless, most of them failed to take into 

account the two types of tuberculosis:  

pulmonary and extra-pulmonary TB. 

Therefore, this work attempts to study and 

analyze a mathematical model for 

transmission dynamics of both extra-

pulmonary and pulmonary tuberculosis, and 

identify the factors that contribute to the 

spread of tuberculosis disease. 

 

Materials and Methods 

Mathematical Model and Analysis 

In this section, we formulate and analyze 

a basic mathematical model for transmission 

dynamics of pulmonary and extra-pulmonary 

tuberculosis based on the work by Fatima et 

al. (2020) and Herrera et al., (2013). The 

study of Fatima et al. (2020) considered 

standard incidence rate, latent TB stage and 

immunity status of individuals though did not 

consider two types of TB whereas Herrera et 

al., (2013) considered human infection due to 

mass action principle, endogenous TB 

reactivation and exogenous reinfection. The 

human population is classified into 

susceptible S, latently infected L, infectious I 

and non-infectious N individuals. Individuals 

with pulmonary tuberculosis (TB) belong to 

the infectious class I, while individuals with 

extra-pulmonary TB belong to the non-

infectious class N.  The variable 𝐻  
conventionally represents the total human 

population where 𝐻 =  𝑆 +  𝐿 +  𝐼 +  𝑁.  

Susceptible humans are recruited through 

birth at a rate r and contract tuberculosis (TB) 

at a rate 𝜆 =  
𝛽𝐼

𝐻
  through interaction with 

infected individuals where 𝛽 is the infection 

rate. Following infection, individuals 

progress into latent, pulmonary or extra-

pulmonary TB. A proportion α of weak 

immunity individuals acquires either 

pulmonary or extra-pulmonary TB whereas 

1-α remain latently infected. Parameter δ is 

the fraction of individuals who contract 

pulmonary TB shortly after infection, 

whereas 1-δ represents the proportion of 

individuals who contract extra-pulmonary 

TB. The rate at which individuals with latent 

tuberculosis progress into pulmonary or 

extra-pulmonary TB as a result of 

endogenous reactivation is represented by 

parameter τ. The percentage of latently 

infected humans who develop into pulmonary 

tuberculosis is denoted by η, while the 

remaining percentage 1-η progresses to extra-

pulmonary TB. Regardless of their status, all 

humans die naturally at a rate µ, whereas 

those with extra-pulmonary and pulmonary 

TB have extra TB-related mortality rates ψ 

and σ, respectively. When formulating the 

model, we take into account the standard 

incidence rate and make the assumption that 

there is no migration. Moreover, it is assumed 

that human recruitment into the susceptible 

compartment is constant through birth.  

Furthermore, exogenous reinfection is not 

taken into consideration and individuals with 

weak immunity are not regarded to undergo 
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the latent stage. Figure 1 summarizes the 

model flow chart for the dynamics of TB in 

humans whereas Table 1 provides 

descriptions of the model parameters. Taking 

into account the model assumptions and 

descriptions, a mathematical model for the 

transmission dynamics of TB is given as: 

 
𝑑𝑆

𝑑𝑡
= 𝑟 − (𝜆 + 𝜇)𝑆, 

𝑑𝐿

𝑑𝑡
= 𝜆𝑆 − (𝜏 + 𝜇)𝐿, (1) 

𝑑𝐼

𝑑𝑡
= 𝜆𝑆 + 𝜏𝜂𝐿 − (𝜇 + 𝜓)𝐼, 

𝑑𝑁

𝑑𝑡
= 𝜆𝑆 + 𝜏(1 − 𝜂)𝐿 − (𝜇 + 𝜎)𝑁, 

subject to initial conditions: 𝑆 > 0; 𝐿 ≥ 0, 𝐼 ≥ 0, 𝑁 ≥ 0 where 𝜆 =  
𝛽𝐼

𝐻
. 

 

Table 1: Description of model parameters 

Parameter  Description  

𝑟 Human recruitment rate. 

𝛽 Infection rate of susceptible individuals. 

𝛼 Fraction of individuals that progress to pulmonary and extra-pulmonary TB. 

𝛿 Percentage of humans who get pulmonary TB soon after infection 

𝜏 Latent TB progression rate to pulmonary or extrapulmonary TB. 

𝜂 Fraction of latent TB individuals who develop into pulmonary TB. 

𝜇 Human natural death rate. 

𝜎 Extra-pulmonary TB induced death rate. 

𝜓 Pulmonary TB induced death rate. 

 
Figure 1: The flow chart illustrating TB transmission dynamics 

 

Positivity and Boundedness of Model 

Solutions 

It is important to demonstrate that the 

model solutions are positive and bounded for 

the model system (1) to be well-posed and 

epidemiologically significant.  

 

Positivity of Model Solutions 

To prove the positivity of model 

solutions, we first establish the following 

theorem. 

Theorem 1: Let the initial conditions for the 

model system (1) be 𝑆(0) > 0;  𝐿(0) ≥
0;  𝐼(0) ≥ 0 and 𝑁(0) ≥ 0, then the solutions 

of the model system (1) with positive initial 
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conditions will remain non-negative for 

all 𝑡 ≥ 0. 

Proof: Let 𝑡1 = 𝑠𝑢𝑝{𝑡 > 0: 𝑆 > 0, 𝐿 > 0, 𝐼 >
0, 𝑁 > 0𝜖[0, 𝑡]} so that 𝑡1 > 0, then 

considering the equation for the susceptible 

population in the model system (1), we have: 
𝑑𝑆

𝑑𝑡
= 𝑟 − 𝜆𝑆 − 𝜇𝑆,  

⟹
𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝜇)𝑆.   

Separation of variables leads to: 
𝑑𝑆

𝑆
≥ −(𝜆 + 𝜇)𝑑𝑡.  

Integrating and using the initial condition, we 

get: 

𝑆(𝑡) ≥ 𝑆(0)𝑒𝑥𝑝 − ∫ (𝜆 + 𝜇)𝑑𝑠
𝑡

0
≥ 0.

 (2) 

Considering the latently infected individuals’ 

equation in the model system (1), we have: 
𝑑𝐿

𝑑𝑡
= (1 − 𝛼)𝜆𝑆 − (𝜏 − 𝜇)𝐿, 

⟹
𝑑𝐿

𝑑𝑡
≥ −(𝜏 + 𝜇)L.  

Separation of variables leads to: 
𝑑𝐿

𝐿
≥ −(𝜏 + 𝜇)𝑑𝑡.  

Integrating and using the initial condition, we 

arrive at: 

𝐿(𝑡) ≥ 𝐿(0)𝑒𝑥𝑝 − ∫ (𝜏 + 𝜇)𝑑𝑠
𝑡

0
≥ 0.

 (3) 

Using the same approach for the rest of 

system (1) model equations, it can be shown 

that: 

𝐼(𝑡)  ≥  𝐼(0) 𝑒𝑥𝑝 [−(µ +  𝜓)𝑡]  and 𝑁(𝑡)  ≥
 𝑁(0) 𝑒𝑥𝑝[−(𝜎 +  µ)𝑡].   

Therefore, for all non-negative initial 

conditions, all solutions of model system (1) 

will remain positive. 

Boundedness of Model Solutions  

Defining 𝐻 =  𝑆 + 𝐿 + 𝐼 + 𝑁 as 

conventionally the total human population, 

we can show that the model solutions are 

boundedness. Thus: 
𝑑𝐻

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐿

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑁

𝑑𝑡
 (4) 

Substituting the equations of the model 

system (1) into equation (4) we obtain: 
𝑑𝐻

𝑑𝑡 
=  r −  µH −  ψI −  σN,  

⟹
𝑑𝐻

𝑑𝑡 
+  µH =  r −  ψI −  σN,  

⟹
𝑑𝐻

𝑑𝑡 
 +  µ𝐻 ≤  𝑟.   (5) 

Equation (5) is a first order linear differential 

equation whose integrating factor is 𝑒−𝜇𝑡 . 

Solving equation (5) and using the initial 

conditions, we get: 

𝐻(𝑡) ≤
𝑟

𝜇
+ (𝐻(0) −

𝑟

𝜇
)𝑒−𝜇𝑡  

Applying limit as 𝑡 → ∞, it can be observed 

that: 

𝑙𝑖𝑚
𝑡→∞

𝐻(𝑡)    ≤  
𝑟

𝜇
. 

Therefore, we can analyze the model system 

(1) since its solutions are positive bounded in 

the region Ω = { 𝑆, 𝐿, 𝐼, 𝑁}  ∈ ℝ+
4. 

 

Model Analysis 

The TB Free Equilibrium Point 

A steady state solution where there is no 

TB in the population is known as the TB free 

equilibrium point. To get the TB free 

equilibrium point, we set the right-hand side 

of the equations in the model system (1) 

equal to zero and solve for S when L=I=N=0. 

As a result, the TB free equilibrium point 𝑇0 

of model system (1) is 𝑇0(𝑆
0, 𝐿0, 𝐼0, 𝑁0) =

(
𝑟

𝜇
 , 0,0,0). 

Basic Reproduction Number 

The basic reproduction number 𝑅0 is the 

number of secondary cases that may occur 

when one infectious individual is introduced 

in a full susceptible population (Diekmann et 

al., 1990). We use the next generation matrix 

approach to determine the basic reproduction 

number as applied in Diekmann et al., (1990). 

Let 𝐹𝑖 represent the rates at which new 

infection emerge in the infected 

compartments 𝑖 and 𝑉𝑖 be the rates at which 

infected individuals move into and out of the 

compartments 𝑖, such that: 

 

𝐹𝑖=

[
 
 
 
 

(1−𝛼)𝛽𝑆𝐼

𝐻
𝛼𝛿𝛽𝑆𝐼

𝐻
(1−𝛿)𝛼𝛽𝑆𝐼

𝐻 ]
 
 
 
 

 and 

𝑉𝑖=[

(𝜏 + 𝜇)𝐿
−𝜏𝜂𝐿 + (𝜇 + 𝜓)𝐼

−𝜏(1 − 𝜂)𝐿 + (𝜎 + 𝜇)𝐼
],  

𝑅0 = (
𝜕𝐹𝑖

𝜕𝑦𝑗
(𝑇0)) × (

𝜕𝑉𝑖

𝜕𝑦𝑗
(𝑇0))

−1

= FV−1, 

where 𝑦𝑗 are the infected classes in the model 

system (1) and 𝑇0 is the TB free equilibrium 

of model system (1). Therefore, the matrices 

F and V at TB free equilibrium are given as: 
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F = [

0 (1 − 𝛼)𝛽 0
0 𝛼𝛿𝛽 0

0 𝛼(1 − 𝛿)𝛽 0
] and  V =

[

 τ +  µ 0 0
−ητ µ +  ψ 0

−(1 −  η)τ 0 µ +  σ
]. 

The next generation matrix  FV−1 =

[
 
 
 
 

(1−𝛼)𝜏𝛽𝜂

(𝜏+𝜇)(𝜇+𝜓)

(1−𝛼)𝛽

(𝜇+𝜓)
0

𝜏𝛽𝜂𝛼𝛿

(𝜏+𝜇)(𝜇+𝜓)

𝛼𝛿𝛽

(𝜇+𝜓)
0

(1−𝛿)𝜏𝛽𝜂𝛼

(𝜏+𝜇)(𝜇+𝜓)

(1−𝛿)𝛼𝛽𝜇

(𝜇+𝜓)
0]
 
 
 
 

. 

The basic reproduction number 𝑅0 is the 

largest eigenvalue of the next generation 

matrix FV−1 denoted by 𝑅0 = 𝜌(FV−1). 

Therefore, the basic reproduction number 𝑅0 

is given by: 

𝑅0 =
𝛼𝛿𝛽(𝜏+𝜇)+(1−𝛼)𝜂𝜏𝛽

(𝜏+𝜇)(𝜇+𝜓)
. (6) 

Global Stability of TB Free Equilibrium 

Point 

Theorem 4: The TB free equilibrium point 

𝑇0 of the model system (1) is globally 

asymptotically stable whenever 𝑅0 < 1.  

Proof: To prove the Theorem 4, consider the 

Lyapunov function: 

𝑉 =
𝜂𝜏𝐿

(µ + ψ)(τ + µ)
+

𝐼

𝜇+𝜓
. 

⟹
𝑑𝑉

𝑑𝑡
= (

𝜂𝜏𝐿

(µ + ψ)(τ + µ)
)

𝑑𝐿

𝑑𝑡
+ (

𝐼

𝜇+𝜓
)

𝑑𝐼

𝑑𝑡
.

 (9) 

Substituting expressions for 
𝑑𝐿

𝑑𝑡
 and 

𝑑𝐼

𝑑𝑡
 from 

the model system (1) into equation (9), we 

have: 
𝑑𝑉

𝑑𝑡
= (

𝜂𝜏

(µ + ψ)(τ + µ)
) (

(1−𝛼)𝛽𝑆𝐼

𝐻
− (𝜏 + 𝜇)𝐿) +

(
1

𝜇+𝜓
) (

𝛼𝛽𝛿𝑆𝐼

𝐻
+ 𝜂𝜏𝐿 − (𝜇 + 𝜓)𝐼), 

⟹
𝑑𝑉

𝑑𝑡
=

𝜂𝜏(1−𝛼)𝛽𝑆𝐼

(µ + ψ)(τ + µ)H
−

𝜂𝜏(𝜏+𝜇)𝐿

(µ + ψ)(τ + µ)
+

𝛼𝛽𝛿𝑆𝐼

(𝜇+𝜓)𝐻
+

𝜂𝜏𝐿

𝜇+𝜓
−

(𝜇+𝜓)𝐼

𝜇+𝜓
, 

⟹
𝑑𝑉

𝑑𝑡
=

𝜂𝜏(1−𝛼)𝛽𝑆𝐼

(µ + ψ)(τ + µ)H
−

𝜂𝜏𝐿

(µ + ψ)
+

𝛼𝛽𝛿𝑆𝐼

(𝜇+𝜓)𝐻
+

𝜂𝜏𝐿

𝜇+𝜓
− 𝐼,  

⟹
𝑑𝑉

𝑑𝑡
= (

𝜂𝜏(1−𝛼)𝛽𝑆

(µ + ψ)(τ + µ)H
+

𝛼𝛽𝛿𝑆

(𝜇+𝜓)𝐻
− 1) 𝐼. 

At disease free equilibrium point 𝐻 = 𝑆. 

⟹
𝑑𝑉

𝑑𝑡
= (

𝜂𝜏(1−𝛼)𝛽

(µ + ψ)(τ + µ)
+

𝛼𝛽𝛿

(𝜇+𝜓)
− 1) 𝐼, 

⟹
𝑑𝑉

𝑑𝑡
= (𝑅0 − 1)𝐼. 

 

Since all the model parameters are non-

negative, it follows that 
𝑑𝑉

𝑑𝑡
≤ 0 if 𝑅0 ≤ 1 

and 𝐼 > 0, whereas 
𝑑𝑉

𝑑𝑡
= 0 if  𝐼 = 0  or 𝑅0 =

1. Therefore, 𝑉 is Lyapunov function on 𝐷 

and the largest compact invariant set 
(𝑆, 𝐿, 𝐼, 𝑁) ∈ Ω is the singleton TB free 

equilibrium 𝑇0. Thus, the TB free equilibrium 

point is globally asymptotically stable when 

𝑅0 < 1. 
Sensitivity Analysis 

The normalized forward sensitivity index 

method, as described in Chitnis et al., (2008), 

is used to derive sensitivity indices. If Φ is a 

parameter in the basic reproduction 

number 𝑅0, then its sensitivity index is given 

by ΓΦ
𝑅0 =

∂R0

∂Φ
×

Φ

R0
. Using parameter values in 

Table 2, we obtain the sensitivity indices of 

model parameters as shown in Figure 2. 

Using this approach, it can be shown that the 

sensitivity indices of parameters  𝛽, 𝜇, 𝛼, 𝛿,
𝜏, 𝜂 and 𝜓 are respectively .0000, −0.4581, 

0.5353, 0.8606, 0.0676, 0.1394 and −0.6094 

as shown graphically in Figure 2. Figure 2 

shows that the parameters most sensitive to 

tuberculosis (TB) transmission are the rate of 

tuberculosis infection in humans (β), the 

proportion of susceptible humans who 

develop pulmonary TB (δ), and the 

pulmonary TB-induced death (ψ). The 

positive sign of the sensitivity index indicates 

that increasing a given parameter value while 

keeping other parameter values constant leads 

to the increase in average number of 

secondary infection whereas the negative sign 

shows that increasing the parameter value 

reduces the average number of secondary 

infections. For example, as the parameter 𝛼 

with sensitivity index +0.5353  is increased 

by 10%, this leads to the increase of the basic 

reproduction number by 5.35%. Similarly, as 

the parameter 𝜓 with sensitivity index 

−0.6094 is increased by 10%, the basic 

production number decreases by 6.09%. 
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Figure 2: Sensitivity indices of parameters in 𝑅0 

 

Table 2: Parameter values 

Parameter Value Source 

𝜇 0.0141 Mwasunda et al., 2023  

𝛿 0.75 Lopes et al., 2014 

𝜏 0.015 Chong et al., 2019 

𝜓 0.022 Hickson et al., 2012 

𝛼 0.7 Herrera et al., 2013 

𝜂 0.55 Assumed 

𝑟 2 Bowong et al., 2010 

𝜎 0.0015 Assumed 

𝛽 0.75 Assumed  

 

Endemic Equilibrium Point 

 

When TB persists in the human population, we obtain the endemic equilibrium point. The 

endemic equilibrium is obtained by setting the right-hand side of each equation of the model 

system (1) equal to zero and solving for the model variables 𝑆∗, 𝐿∗, 𝐼∗ and 𝑁∗in term of force of 

infection 𝜆. Thus, the endemic equilibrium is given as  𝑇∗ = (𝑆∗, 𝐿∗, 𝐼∗, 𝑁∗) where: 

𝑆∗ =
𝑟

𝜆+𝜇
,  𝐼∗ =

𝑟𝛼𝜆𝛿(𝜇+𝜏)+(1−𝛼)𝜏𝜂𝜆𝑟

(𝜏+𝜇)(𝜆+𝜇)(𝜇+𝜓)
, 𝐿∗ =

(1−𝛼)𝜆𝑟

(𝜏+𝜇)(𝜆+𝜇)
,   𝑁∗ =

(1−𝛿)(𝜏+𝜇)𝛼𝜆𝑟+(1−𝜂)(1−𝛼)𝜏𝜆𝑟

(𝜏+𝜇)(𝜆+𝜇)(𝜇+𝜎)
. 

Since 𝜆 =
𝛽𝐼

𝐻
 and 𝐻 = 𝑆 + 𝐿 + 𝐼 + 𝑁, it can be shown that: 

𝜆(𝐴𝜆 + 𝐵) = 0, (12) 

where 

𝐴 = 𝜇2 + 𝜓 (𝜎(1 − 𝛼) + 𝜏 (1 − (𝛼𝛿 + 𝜂(1 − 𝛼)))) + 𝜇 (𝜎(1 + (1 − 𝛿)) + 𝜏 +

𝜓(1 − 𝛼𝛿)) + 𝜎𝛼𝛿𝜏 + 𝜎𝜂𝜏(1 − 𝛼) (13) 

𝐵 = (𝜇 + 𝜓)(𝜏 + 𝜇)(𝜇 + 𝜎) − 𝛽(𝜇 + 𝜎)(𝛼𝛿(𝜏 + 𝜇) + 𝜂𝜏(1 − 𝛼)) (14) 
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Solving (12), we obtain 𝜆 = 0 and 𝐴𝜆 + 𝐵 =
0. When 𝜆 = 0, we have TB-free 

equilibrium; nevertheless, when 𝐴𝜆 + 𝐵 = 0, 

then TB persists in the human population. 

When we solve for 𝜆 if 𝐴𝜆 + 𝐵 = 0 we get: 

𝜆 = −
𝐵

𝐴
.  (15) 

Substituting the value of 𝐵 into 

equation (15), we obtain: 

𝜆 =
1

𝐴
(𝜇 + 𝜓)(𝜏 + 𝜇)(𝜇 + 𝜎)(𝑅0 − 1).

            (16) 

Therefore, the model system (1) has a 

unique endemic equilibrium point which is 

globally asymptotically stable when the basic 

reproduction number 𝑅0 > 1. We summarize 

this result in Theorem 5. 

Theorem 5: The model system(1) has a 

unique endemic equilibrium 𝐸∗ whenever 

𝑅0 > 1.  

Global Stability of Endemic Equilibrium 

Point 

We employ the methodology applied by 

Mwasunda et al. (2023) to prove the global 

stability of the endemic equilibrium point.  

Consider the logarithmic Lyapunov function: 

ℒ = (𝑆 − 𝑆∗ − 𝑆∗ ln (
𝑆∗

𝑆
))

+ (𝐿 − 𝐿∗ − 𝐿∗ ln (
𝐿∗

𝐿
))

+ (𝐼 − 𝐼∗ − 𝐼∗ ln (
𝐼∗

𝐼
))

+ (𝑁 − 𝑁∗ − 𝑁∗ ln (
𝑁∗

𝑁
)) 

⟹
𝑑ℒ

𝑑𝑡
= (

𝑆−𝑆∗

𝑆
)

𝑑𝑆

𝑑𝑡
+ (

𝐿−𝐿∗

𝐿
)

𝑑𝐿

𝑑𝑡
+ (

𝐼−𝐼∗

𝐼
)

𝑑𝐼

𝑑𝑡
+

(
𝑁−𝑁

𝑁
)

𝑑𝑁

𝑑𝑡
. (17) 

Substituting 
𝑑𝑆

𝑑𝑡
,
𝑑𝐿

𝑑𝑡
, 

𝑑𝐼

𝑑𝑡
 and 

𝑑𝑁

𝑑𝑡
 expressions from 

the model system (1) into equation (17), 

⟹
𝑑ℒ

𝑑𝑡
= (

𝑆−𝑆∗

𝑆
) (𝑟 − 𝜆𝑆 − 𝜇𝑆) +

(
𝐿−𝐿∗

𝐿
) ((1 − 𝛼)𝜆𝑆 − (𝜏 + 𝜇)𝐿) +

(
𝐼−I∗

𝐼
) (𝛼𝛿𝜆𝑆 + 𝜂𝜏𝐿 − (𝜇 + 𝜓)𝐼) +

(
𝑁−𝑁∗

𝑁
) ((1 − 𝛿)𝜆𝛼𝑆 + (1 − 𝜂)𝜏𝐿 −

(𝜇 + 𝜎)𝑁).   

At the endemic equilibrium point, we have: 
𝑑ℒ

𝑑𝑡
= (

𝑆−𝑆∗

𝑆
) (𝜆𝑆∗ + 𝜇𝑆∗ − 𝜆𝑆 − 𝜇𝑆) +

(
𝐿−𝐿∗

𝐿
) ((𝜏 + 𝜇)𝐿∗ − (𝜏 + 𝜇)𝐿) +

(
𝐼−𝐼∗

𝐼
) ((𝜇 + 𝜓)𝐼∗ − (𝜇 + 𝜓)𝐼) +

(
𝑁−𝑁

𝑁
) ((𝜇 + 𝜎)𝑁∗ − (𝜇 + 𝜎)𝑁),  

⟹
𝑑ℒ

𝑑𝑡
= (𝜆 + 𝜇)𝑆∗ − (𝜆 + 𝜇)𝑆 −

(𝜆+𝜇)𝑆∗2

𝑠
+

(𝜆 + 𝜇)𝑆∗ + (𝜏 + 𝜇)𝐿∗ − (𝜏 + 𝜇)𝐿 −
(𝜏+𝜇)𝐿∗2

𝐿
+ (𝜏 + 𝜇)𝐿∗ + (𝜇 + 𝜓)𝐼∗ −

(𝜇 + 𝜓)𝐼 −
(𝜇+𝜓)𝐼∗2

𝐼
+ (𝜇 + 𝜓)𝐼∗ +

(𝜇 + 𝜎)𝑁∗ − (𝜇 + 𝜎)𝑁 −
(𝜇+𝜎)𝑁∗2

𝑁
+

(𝜇 + 𝜎)𝑁∗, 

⟹
𝑑ℒ

𝑑𝑡
= (𝜆 + 𝜇)𝑆∗ (2 −

𝑆

𝑆∗ −
𝑆∗

𝑆
) +

(𝜏 + 𝜇)𝐿∗ (2 −
𝐿

𝐿∗ −
𝐿∗

𝐿
) + (𝜇 + 𝜓)𝐼∗ (2 −

𝐼

𝐼∗
−

𝐼∗

𝐼
) + (𝜇 + 𝜎)𝑁∗ (2 −

𝑁

𝑁∗ −
𝑁∗

𝑁
).

 (18) 

Since the arithmetic mean exceeds the 

geometric mean value, it follows that: 

(2 −
𝑆

𝑆∗ −
𝑆∗

𝑆
) ≤ 0,(2 −

𝐿

𝐿∗ −
𝐿∗

𝐿
) ≤

0,(2 −
𝐼

𝐼∗
−

𝐼∗

𝐼
) ≤ 0,(2 −

𝑁

𝑁∗ −
𝑁∗

𝑁
) ≤ 0. 

Since all model parameters are positive, then 
𝑑ℒ

𝑑𝑡
≤ 0 for 𝑅0 > 1. Hence by LaSalle’s 

invariance principle (LaSalle 1976), every 

solution of the model system (1) approaches 

the endemic equilibrium point 𝑇∗ as 𝑡 → ∞ 

whenever 𝑅0 > 1. 

 

Results and Discussion 

Simulation of Model System 

In this section, we perform numerical 

simulation of model the model system (1) 

using parameter values in Table 2 and briefly 

discuss the results obtained. It can be seen 

from Figure 3 that susceptible humans 

decline significantly within the first 20 years 

following infection and then settle to a steady 

state whereby only a small proportion 

remains uninfected. This trend has 

consequently resulted to an increase in the 

number of latently infected humans, 

individuals with pulmonary tuberculosis and 

individuals with extra-pulmonary 

tuberculosis whereby these populations grow 

with time until when they attain their steady 

state after the 20th year. These results show 

that TB will continue to persist in the human 

population as long as no control is taken to 

control the disease. 
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Figure 3: Dynamics of tuberculosis in humans when there is no any control measure 

 

Impact of Varying the Most Sensitive 

Parameters on the Dynamics of TB  

In this section, we carry out simulation of 

the model system (1) by varying the value of 

most sensitive parameter so as to study their 

contribution on the transmission of 

tuberculosis. 

Impact of Varying the Probability of Infection 

on TB Dynamics 

Figure 4 (a) shows that the susceptible 

population decreases with the increase in the 

infection rate 𝛽. This is the case since the 

increase in the infection rate increases the 

chance of susceptible individuals to acquire 

TB, leading to the decline of the susceptible 

population. On the other hand, Figures 4(b), 

(c), and (d) indicate that the latently infected 

individuals, individuals with pulmonary and 

extra-pulmonary tuberculosis increase with 

the increase in the infection 𝛽. These results 

are in correspondence with the disease 

dynamics where susceptible humans decrease 

due to infection while other infectious classes 

increase with time when no intervention is 

taken to control the disease. 
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Figure 4:  Impact of varying the probability of infection on TB dynamics 

 

Impact of Varying the Proportion of 

Susceptible Humans who progress to 

Pulmonary TB 

The results in Figure 5(c) show that 

humans with pulmonary tuberculosis increase 

with time as a result of an increase in the 

proportion of individuals 𝛿 that progress to 

pulmonary TB class affecting positively 

latently infected class as indicated in Figure 

5(b). However, a different trend can be 

observed for susceptible humans and humans 

with extra-pulmonary TB in Figures 5 (a) and 

5 (d) where there is a decrease in number of 

susceptible humans and individuals with 

extra-pulmonary TB. This is the case since 

increasing parameter 𝛿 reduces proportion of 

pulmonary TB individuals and increases 

pulmonary TB individuals leading to 

reducing susceptible population and increase 

in latently infected individuals. 
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Figure 5: Impact of varying the proportion of susceptible humans who progress to pulmonary 

TB 

Impact of Varying Pulmonary Disease-

Induced Death on the Dynamics of TB  

When more individuals with pulmonary 

TB die due to the disease, they reduce the 

chance for susceptible individuals to contract 

TB. This causes decline in a number of 

latently infected individuals, as well as 

individuals with pulmonary and extra-

pulmonary TB as shown in Figures 6(b), (c), 

and (d). This consequently leads to an 

increase in a number of susceptible 

individuals as shown in Figure 5(a). 

However, it is not practical to let people die 

due to pulmonary TB-induced death 𝜓, rather 

than putting more efforts to save peoples’ 

life.  Thus, we recommend putting more 

efforts to treat individuals with pulmonary 

tuberculosis so as to control the transmission 

of TB. 
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Figure 6: Impact of varying pulmonary disease induced death on the dynamics of TB 

 

Conclusion 

In this work, a mathematical model for 

transmission dynamics of both pulmonary 

and extra-pulmonary tuberculosis is 

formulated and analyzed to get insight on the 

disease’s dynamics in human population. The 

basic reproduction number 𝑅0 is computed 

through the next generation method. The TB 

free equilibrium is globally asymptotically 

stable when 𝑅0 < 1 whereas the endemic 

equilibrium is globally asymptotically stable 

when 𝑅0 > 1. Sensitivity analysis of 

parameters in the basic reproduction number 

𝑅0 is done using the forward normalized 

sensitivity index method. Results indicate 

that the probability of TB infection, the 

fraction of individuals who progress to 

pulmonary TB and pulmonary TB induced 

death influence TB disease. Thus to control 

TB, more effort is needed to reduce 

pulmonary TB individuals who are carriers of 

TB disease. Therefore, further research 

should focus on assessing the impact of 

treatment of individuals with pulmonary TB 

and vaccination of susceptible individual on 

TB control. 
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