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Abstract 

This investigation is to consider the impact of a temperature-dependent variable viscosity of a 

reactive hydromagnetic Couette fluid flowing within parallel plates. The variable property of the 

fluid viscosity is thought to be an exponential relation of temperature under the impact of magnetic 

strength. The differential equations controlling the smooth movement of fluid and energy transfer 

are modeled and solved by using the series solution of modified Adomian decomposition 

technique (mADM). The outcomes are shown in tables and graphs for different estimations of 

thermophysical properties present in the flow regime together with the rate of entropy generation 

and irreversibility distribution outcome. 

 

Keywords: Reactive fluids, Couette Flow, variable viscosity, hydromagnetic and modified 

Adomian decomposition method (mADM). 

 

Introduction 

The uses of non-Newtonian fluids in 

current innovations in industries have been 

tremendous and attractive to researchers 

because of their essentialness in the current day 

industrial and engineering procedures. Many 

problems concerning the fluid flow with 

thermophysical properties which sometimes are 

assumed to be constant, some of these 

properties may alter fluid temperature, most 

importantly, the fluid viscosity. As discussed in 

Hassan (2019), the prediction of heat transfer 

rate and flow speed completely, it is critical to 

consider the variation of viscosity with respect 

to temperature. 

However, the study of Couette flow is 

remarkably necessary because of its industrial 

applications in numerous flows occurring in 

many procedures that have been modeled with 

diverse heat transfer circumstances. Therefore, 

such complex fluid flow has been 

comprehensively investigated by many 

researchers for different limit conditions and 

other effects, for instance, the investigation of 

the entropy generation in an unsteady MHD 

Couette flow of a viscous incompressible 

electrically conducting fluid with respect to 

magnetic field strength in a circular system 

conducted in Das et al. (2016a). In addition to 

that, Das et al. (2016b) further examined the 

compound impacts of spinning and the 

magnetic field on the transient MHD Couette 

flow of a reactive fluid in a rotating system. To 

buttress the significant study on Couette flow, 

Makinde et al. (2015) employed the first two 

laws of thermodynamics to examine the flow 

and thermal dissipation in MHD variable 

viscosity flow of a Couette flow in a spinning 

system. Other investigations on Couette flow 

and other physical properties are extensively 

presented in Makinde (2014), Theuri and 

Makinde (2014), and Vyas and Ranjan (2015). 
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Notably, the investigation of Hayat et al. 

(2016) on temperature dependent thermal 

conductivity in a stretched surface with 

variable thickness in stagnation flow 

highlighted the impact of chemical reaction 

between fluid and foreign mass. 

Moreover, to prevent a danger or risk in a 

system that controls fluid behavior, it is 

imperative to take note of fluid flow and heat 

transfer conditions, particularly the fluid 

viscosity. It is well known that viscous heating 

is generated due to surface interaction between 

the fluid and the walls together with high shear 

rates that lead to high temperature; in actual 

fact, viscosity is the most delicate fluid 

property that causes change in temperature as 

supported and complimented in Makinde and 

Maserumule (2008). Hence, it is important to 

note that the diverse means of fluid viscosity 

due to change in temperature may remarkably 

affect the flow properties together with 

efficiency of lubrication in industrial tools. 

Many authors have investigated various models 

of variable viscosity of fluid flow 

characteristics, for instance, Eegunjobi et al. 

(2015) examined the compound effects of 

unsteady and temperature-dependent viscosity 

on the rate of entropy distribution in a 

generalized Couette flow. Additionally, 

Makinde (2008a) considered the consequences 

of variable viscosity fluid through parallel 

channels with convective cooling the walls 

with the temperature-dependent viscosity as an 

exponential function of temperature. In 

addition to that, Hassan (2019) examined the 

impact of heat source without magnetic 

strength influence on a variable viscosity 

reactive Couette fluid flow. Further studies 

involving properties of variable viscosity could 

be found (Salem 2007, Mukhopadhyay 2009, 

Kobo and Makinde 2010, Hassan and 

Gbadeyan 2013, Makinde et al. 2016a, 

Makinde et al. 2016b, Salawu and Oke 2018, 

Wang et al. 2020).  

From application point of view, the present 

study is to determine the impact of variable 

viscosity on a reactive hydromagnetic Couette 

fluid between parallel moving upper and static 

lower plate with an exponential temperature-

dependent viscosity. The impact of 

electromagnetic influence on any fluid flow is 

highly noticeable on a flow of viscous 

materials as extensively discussed in Salem 

(2007), Hassan et al. (2017), and Muhammad 

et al. (2020).  The model problem is obtained 

and solved analytically using a series solution 

of modified Adomian decomposition method 

(mADM). The choice of this technique is based 

on the rapid convergence with less iteration and 

has been shown in literature (Adomian 1994, 

Wazwaz 1999, Wazwaz and El-Sayed 2001) to 

be effective and accurate. The expressions from 

the outcomes of velocity and heat transfer are 

employed to determine the rate of entropy 

distribution, irreversibility distribution ration 

and Bejan number. Pertinent outcomes are 

shown in tables and graphs to demonstrate the 

remarkable impact of magnetic field strength 

and other thermophysical properties in the flow 

stream. 

 

Problem Formulations 

We consider a steady flow of an 

incompressible, reactive, viscous and 

hydromagnetic fluid with moving upper plate 

and stationary lower plate as shown in the 

configuration in Figure 1. The fluid viscosity is 

assumed to be an exponential function of 

temperature between two parallel plates of 

width, H and length, L. The upper plate is 

driven with uniform speed, U, while the lower 

plate is kept unmoved. 

 
Figure 1: Geometry of the problem 

 

The variable property of the fluid viscosity is 

taken to be an exponential function of 

temperature as used in Makinde (2008b), 

Makinde and Maserumule (2008), Gbadeyan 
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and Hassan (2012), Eegunjobi et al. (2015), 

Makinde et al. (2015) and Hassan (2019) as: 

e TR

E


 0    (1) 

where 0 , E, R and T, respectively stand for 

the fluid reference dynamic viscosity at a very 

large temperature (i.e. as T  ), the 

activation energy, the universal gas constant 

and the absolute temperature. 

 

The equations controlling the fluid flow in 

dimensional form without the reactant 

consumption are given as described in Makinde 

and Maserumule (2008), Kobo and Makinde 

(2010), and Hassan (2019) as: 
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such that the initial boundary situations are 

given as: 

0)0()0(  Tu ,    1)1( u   and      

0)1( T   (4) 
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where (x, y) are distances measured in stream 

wise and normal directions, respectively,   is 

the dynamic viscosity, k represents the thermal 

conductivity, u is the axial velocity, U is the 

velocity scale,   is the activation energy 

parameter,   is the Frank-Kamenettski 

parameter. However, the flow at the upper plate 

is driven by a constant velocity without the 

pressure gradient. 
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with the appropriate boundary conditions as 

follows: 

0)0()0( u    and 1)1( u   and    

0)1(   (8) 

such that, the dynamic viscosity is given as 

e 



 


 1

.
 

 

Solution Method 

The governing Equations (6) and (7) are 

non–linear differential equations (ODE) with 

no exact analytical solution. Therefore, for 

accuracy, effectiveness, better stability and 

simplicity, we employed the use of series 

solution of modified Adomian decomposition 

method by assuming that the outcomes appear 

in the following forms: 
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where 0a  and 0b  are constants of integration 

to be resolved by putting to use the limit 

conditions in Equation (8). With the series 

solutions introduced in Equation (9), the 

Equations (10) and (11) reduce to the 

following: 
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where the non-linear terms present are termed respectively as follows: 
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such that the Adomian polynomials, A0,  A1, 

A2,……. to F0,  F1, F2, …… are obtained by 

expanding each expression in Equation (14) 

such that few are stated thus: 
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With the Adomian polynomials obtained in 

Equation (15), we take the zeroth components 

of the couple Equations (12) and (13) as 

described in Wazwaz and El-Sayed (2001), and 

Hassan et al. (2017) for the solutions as 

follows: 
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Equations (16) to (20) are hereby done 

repeatedly to acquire the approximate results 

for momentum and energy distributions as: 
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Entropy Generation 

Flow and heat transfer processes within 

parallel channels interact with each other and 

thereby causing the exchange of thermal 

energy within the flow stream, thus resulting in 

the rate of entropy production. Following 

Wood (1975), Bejan (1996), Makinde (2008), 

and Hassan and Gbadeyan (2015), the equation 

for finding the rate of entropy generation 

together with the influence of magnetic 

strength is presented as: 
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The terms in Equation (22) show the 

irreversibility caused by heat transfer and the 

local entropy production caused by viscous 

dissipation and magnetic strength, respectively. 

Using the existing parameters and variables in 

Equation (5), the rate of entropy generation is 

given as: 
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For convenience, Equation (23) is divided into 

two portions, N1 and N2 to respectively 

represent the irreversibility due to heat transfer 

and effects of viscous dissipation together with 

magnetic strength. With that we have 
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However, we defined the irreversibility 

distribution ratio as: 
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such that heat transfer dominates when 

10    and fluid friction dominates when 



Tanz. J. Sci. Vol. 47(2), 2021 

437 

1 . As an alternative to irreversibility 

parameter, the Bejan number (Be) is defined as




1

11

sN

N
Be  where 10  Be     (26)  

 

Results and Discussion 

In this section, we describe the outcomes 

from the coupled differential equations to 

determine the impact of magnetic strength on a 

temperature-dependent reactive variable 

viscosity Couette flow. Table 1 displays the 

rapid convergence of the series solution for the 

constants a0 and b0 in Equations (10) and (11) 

with little iteration to show the effectiveness of 

the series solutions of modified Adomian 

decomposition technique as already discussed 

in introduction. Table 2 displays the 

comparison of the numerical outcomes of 

temperature distribution obtained using 

perturbation method in investigation done in 

Kobo and Makinde (2010) and the present 

results obtained from modified decomposition 

method of Adomian (mADM). The results 

obtained from both methods demonstrate the 

agreement between the two methods with 

difference of order 10
–3

. 

 

Table 1: Rapid convergence of the series solution for a0 and b0 

1.0 H  

n  
0a  0b  

0 1 0 

1 0.99834 0:054992 

2 1.00777 0:055551 

3 1.00760 0:055426 

4 1.00758 0:055428 

5 1.00758 0:055428 

 

Table 2: Comparison of numerical outcomes of the temperature profile
 

 

 

 

 

                      

Y T(y)PM (Kobo and Makinde 2010)   (y)mADM Absolute error 

0 0  0 

0.1 0.02360044943 0.02475 1.14955
310  

0.2 0.04208380022 0.04400 1.91620 
310  

0.3 0.05535532038 0.05775 2.39468 
310  

0.4 0.06334613033 0.06600 2.65387 
310  

0.5 0.06601440811 0.06875 2.73559 
310  

0.6 0.06334613023 0.06600 2.65387 
310  

0.7 0.05535532037 0.05775 2.39468 
310  

0.8 0.04208380020 0.04400 1.91620 
310  

0.9 0.02360044944 0.02475 1.14955 
310  

10 0 0 0 
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Figure 2 displays the fluid motion with 

variation in magnetic strength parameter (H). It 

is noticed that the flow speed remarkably 

reduces as (H) rises. This is caused due to the 

presence of electromagnetic force across the 

channel and thus brings about the delay in the 

fluid flow. 

The temperature profiles of the fluid system 

are with variations in the values of magnetic 

strength parameter (H), Frank-Kamenettski 

parameter ( ) and viscous heating parameter (

 ) are respectively displayed in Figures 3 to 5. 

The greatest temperature occurs at the 

centerline of the flow regime on a general note. 

It is noticed that the maximum temperature 

occurs with the least value of (H) in Figure 3 

and otherwise gives the greatest value of ( ) 

in Figure 4 and in Figure 5. The increment in 

fluid temperature in Figure 4 and 5 is due to the 

overwhelming performance of variable 

viscosity properties that is an exponential 

relation of temperature.  
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The rate of entropy generation distribution 

for different values of magnetic strength 

parameter (H), Frank-Kamenettski parameter (

 ) and viscous heating parameter (  ) are 

respectively illustrated in Figures 6 to 8. The 

rate of entropy distribution is generally active 

at both upper and lower walls throughout the 

flow stream within the channel. The rate of 

disturbance reduces at lower plate and 

increases at the upper plate but maintain 

equilibrium at the centreline with rising values 

of H in Figure 6. However, the rate of entropy 

distribution increases at both the lower and 

upper plates but otherwise at the centreline 

with the increasing values of ( ) in Figure 7 

and (  ) in Figure 8. 

 

 
 

 

 

Conclusion 

The study conducted herein showed the 

significant effect of magnetic strength on a 

temperature dependent variable viscosity of 

reactive hydromagnetic coquette flow with 

fixed lower wall and moving upper wall that 

are both parallel. The coupled differential 

equations controlling the fluid flow are 

determined using the modified decomposition 

method of Adomian (mADM). The results 

obtained for momentum and energy 

distributions are used to determine the rate of 

entropy generation, the irreversibility 

distribution ratio and Bejan number. The 

results showed the meaningful impact of 

magnetic strength that reduces the fluid 

momentum together with fluid temperature. 

Also, the exponentially temperature-dependent 

variable viscosity contributed to the remarkable 

increase in fluid temperature with respect to 

viscous heating parameter and combustion 

parameter. 
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