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Abstract 
In this research paper, we depict an unprecedented four-dimensional ordinary differential 

equation modeling the dynamic transmission of the Lassa fever virus incorporating relapse and 

reinfection rate. Recent studies showed that the recovered individuals from Lassa fever can 

again be susceptible; which contradicted the common assumptions made by different 

researchers on modeling of Lassa fever. So, this article corrects and states the implications of 

the assumptions on the population density. The numerical simulations unveil the effect of 

relapse, reinfection, and treatment rate in the affected population. Performing sensitivity 

analysis suggests all new incorporated parameters can impact the infection dynamics 

substantially. The stability analysis was carefully estimated where expression for each 

compartmentalized variable was calculated at both disease-free and persistence (endemic) 

equilibrium. Also, the basic reproduction number of the novel model was calculated using the 

Next Generation Matrix. The analytical results justify that the persistence (endemic) and the 

disease-free equilibrium are locally and globally asymptotically stable using both Routh 

Hurwitz Criterion and Comparison Theorem. 
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Introduction 

An acute viral hemorrhagic fever and a 

zoonotic disease termed Lassa fever was 

firstly observed in 1969 in a small town 

called Lassa located in Nigeria, Borno state 

to be precise. This infectious disease is 

persistent in West African countries and 

causes about 500,000 cases yearly with 

approximately 1% mortality. It is observed 

that the eruption of the severe ailment 

surfaced in the Central African Republic 

(CAR), Nigeria, and Liberia among others. It 

is clinically evident that Lassa fever diseases 

also exist in Mali, Senegal, and Congo. The 

known virus is diagnosed to be transmitted by 

coming in contact with some liquid or 

gaseous substances which could be urine and 

feces of animals (WHO 2019).  

Various studies on Lassa fever led to the 

formulation of different models actualizing 

the authors’ perceptions about the upsurge of 

Lassa fever to eradicate the threat posed by 

the infectious diseases. Studies enunciated 

that the yearly occurrence of biological 

reproduction can, without a doubt, affect the 

movement of host-microbe systems (Bolzoni 

et al. 2006). Then, Okuonghae and 

Okuonghae (2006) formulated a 

https://dx.doi.org/10.4314/tjs.v48i2.16
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mathematical model portraying the 

dynamical transmission of Lassa fever. The 

statuses of their stability analysis for the DFE 

and persistence equilibrium were analytically 

examined. According to Ogabi et al. (2012), 

they built a Susceptible-Infected-Recovered 

model for the control of Lassa fever out-

sending in Edo State specifically in the 

Northern area, Nigeria. A quantified shift was 

done by Bawa et al. (2013); where a 

constructive model for Lassa fever was 

developed. They partitioned the human size 

into two (2) which are susceptible, infectious, 

also the reservoir size into two (2) which are 

infant and adult as well as representing the 

virus in the habitat by V. Additionally, 

Onuorah et al. (2016) built another salient 

model using the approach termed sex pattern; 

where their resulting computation of basic 

reproduction number is 0.129 indicating that 

the disease would be eventually out of the 

population. Also, the method employed in 

Castillo-Chavez et al. (2002) was used to 

obtain their DFE which justified its global 

stability. Omale and Edibo (2016) proposed a 

model which contained control strategies. 

While Akinpelu and Akinwande (2018) put 

into consideration, the isolated class of 

individuals when formulating their 

mathematical model of Lassa fever. Also, 

Faniran (2017) presented a mathematical 

model with a non-drug rate. Then, Mariën et 

al. (2019) stated in their study that the 

implementation of rodent vaccination or 

incessant control would gradually terminate 

the virus from the affected population. 

Loyinmi et al. (2021) constructed a model 

which captured two species of rodents which 

are the Mastomys natalensis and the Rattus 

rattus.  

Having perused different works on Lassa 

fever disease and its in-out flow 

transmissions, we noticed that Lassa fever 

recurrence which result from either relapse of 

an original infection or exogenetic reinfection 

with a new strain of Lassa hemorrhagic fever 

have not been considered from past research 

studies. So, the model formulated in this 

paper is novel and quite different from all the 

previous works; it incorporates the relapse 

and reinfection rate which eliminates the 

common assumptions mostly stated by past 

researchers that “everyone who recovers does 

not become infected again”. The sensitivity 

analysis revealed the parameters which have 

the most prominent effects on the basic 

reproduction number. Also, the numerical 

simulations show the adverse effects of the 

two (2) constraints (relapse and reinfection 

rate) on the population density. 

 

Materials and Methods 

This section provides the schematic diagram 

and systems of the equation of the proposed 

model alongside their interpretations: 
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Considering the schematic diagram above,  
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Where the parameters are as follows:   = Recruitment rate, 
 
= Contact rate, 

 
= Natural 

death rate, 1  
= Relapse rate, 1  Transition from exposed individuals to infectious, 2

Transition from infectious individuals to recovered,   Disease induced death rate, 2  

Reinfection rate, S  Susceptible region, E = Exposed region, I = Infected region, R = 

Recovered region; 

Where the total human-size )()()()()( tRtItEtStN   

 

Model assumptions 

1) Relapse in medicine is a recurrence of 

disease after it has been apparently 

cured. So, relapse in Lassa fever 

connotes the recurrence of the virus after 

clinical treatment. It is assumed that this 

recurrence makes the recovered humans 

become susceptible humans again. 

2) Reinfection in medicine is a second 

infection by the causative agent after 

recovery from or during the course of a 

primary infection. So, it is assumed that 

reinfection in Lassa fever is the second 

infection of the virus which incorporate 

transcending from the recovered class to 

the infectious class. 

 

Non- negativity invariant region of the model 

The total human-size RIESN      (5) 
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Theorem 2.1: The resulting solutions provided analytically for the system )4()1(   is feasible 

for all 0t   

Proof: Let   4,,, RRIESD   culminates the results of the system )4()1(   with conditions 

greater than zero. 

Assuming no infection at the primitive stage say 0 , then (7) gives 

N
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N tends to 



 as t in (9)  Hence all feasible solutions of (1)-(4) enter into the region 


























NNtRtItEtS

tRtItEtSRtRtItEtS

D
,)()()()(

0)(),(),(),(:,4))(),(),(),((  

 

Non-negativity of solution 

Lemma 1: consider the primitive   DRIES  0)0(,0)0(,0)0(,0)0( . Then collective 

solutions  RIES ,,,  of the model are non-negative for all 0t . 

Recall (1) 
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Boundedness of solution 
The formulated systems of the equation denote the first-order human ordinary differential 

equation and its resulting general solution is 


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o eNN  ; oNN )0( ; 0t ,  

Hence, the total human population is bounded 



 )(tNNo             (10) 

 

Equilibrium states 

Disease free equilibrium (DFE) state 

At DFE,  oooo RIESE ,,,0   ; and the DFE points is calculated as 
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The endemic equilibrium state (EES)  

Theorem 3: If 10 R , the model )4()1(   show a distinct EES which is denoted as  
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Basic reproduction number 

One of the most important thresholds regarding any infectious disease is the basic reproduction 

number (Diekmann et al. 1990).  It helps to determine if a disease can invade a population or 

not. We, therefore, calculate 0R  using Next Generation Matrix )( 1

0

 FVR   as 

demonstrated by Huo and Feng (2013).    
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The Jacobian matrices of )(xF  and )(xV  at the disease free equilibrium 0E  are respectively  
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The basic reproduction number of the model, denoted by 0R  is thus given by 
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Stability analysis of the model 

Local stability analysis of the disease free equilibrium 

The local stability of the DFE and EES are resolved using Jacobian Matrices for the model

)4()1(   at the Disease Free Equilibrium point.  
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Theorem 1: The DFE point for the system )4()1(   is locally asymptotically stable for  

10 R   and unstable otherwise 

Proof: The eigenvalues of the Jacobian Matrices J for the model )4()1(   is evaluated at the 

DFE and the solutions of the characteristics polynomial equation were justified using the Routh 

Hurwitz criterion 
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Global stability analysis of the disease free equilibrium 
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


S  for all 0t in D, then 

 












































R

I

E

VF

R

I

E

,


















000

000

00 S

F



 &  
























)(0

)(

00)(

122

221

1







V

  

(19) 



Tanz. J. Sci. Vol. 48(2) 2022 

421 

0)(  IVF  ; Where 33I  identity matrix

0

)(0

)(

0)(

)(

122

221

1



















IVF              (20) 

Since the eigenvalues 321 ,,  of the characteristic polynomial all have negative real parts, 

then model (1)-(4) is stable whenever 10 R . So, )0,0,0(),,( RIE as t . By 

comparison theorem in Huo and Feng (2013), it follows that )0,0,0(),,( RIE and 




S  as t . The 0),,,( ERIES 

 
as t . So, 0E is globally asymptotically 

stable for 1R . 

The parameters used for the model are presented in Table 1. 

 

Table 1: Datum parameters for the model (1)-(4) 

S/N Parameters Definition of parameters Clinical 

values 

References 

1   Recruitment rate 0.15 Akinpelu and 

Akinwande  2018 

2 
1  The transition from recovered to 

susceptible 

0–1 Calibrated 

3 
2  Relapse rate 0–1 Calibrated 

4   Contact rate 0.08 Estimated 

5   Natural death rate 0.02 Akinpelu and 

Akinwande  2018  

6 
1  The transition from exposed 

individuals to infectious 

0.5 Akinpelu and 

Akinwande  2018  

7 
2  The transition from infectious 

individual to recovered 

0–1 Calibrated 

8   Disease induced death rate 0.3 Akinpelu and 

Akinwande  2018  

 

Results and Discussion 

Sensitivity analysis 

It is expedient to determine the 

effectiveness of each parameter to the disease 

invasion. It is mostly used to presume the 

strength of each parameter incorporated in 

the analytical model. The normalized forward 

sensitivity coefficient of a variable related to 

a parameter is the unit of the relative change 

in the variable to the relative change in the 

parameter. The sensitive index is defined 

using partial derivatives by 

0

00

R

f

f

RR
f 




                             (21) 

Where 0R is sensitively and differentially on 

the parameter f.  
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Table 2: Values for numerical solutions of 

the model 

S/N Parameter Sign Result 

1   Positive 1 

2 
1  Negative 0.15998293 

3 
2  Positive 0.17598122 

4   Positive 1 

5   Negative 0.02758534 

6 
1  Positive 0.03846153 

7 
2  Negative 0.56313993 

8   Negative 0.40955631 

 

The sensitivity coefficients of 

0

1

0

2

00 ,,,
RRRR

  are all positives while 

the remaining parameters are negatives. Since 

all coefficients are functions of other 

parameters, then the sensitivity coefficients 

will change when other parameter values 

change. The value of 10 
R

 simply 

means that increasing or decreasing 0R
 
by 

20% increases or decreases 0R by 20%. This 

is also true for 0R

 . The two have the same 

effect on the basic reproduction number. The 

reinfection parameter being a positive value 

when sensitized, affirmed the huge effect it 

would have on 0R  in the population 

dynamic. The same is the transition rate from 

exposed to infectious individuals. However, 

the sensitized remaining parameters have a 

traceable effect on 0R implying that they all 

have to be carefully estimated. So, this 

analysis has shown us the clinical effect of 

12 ,,,  on the population density. So, 

it is expedient that these parameters are 

treated with urgency whenever there is an 

outbreak of Lassa fever. 

 

Numerical simulations 

The numerical solutions of the model (1)–(4) 

were obtained using the values provided in 

Table 2. The simulations were conducted 

using ODE-45 in MATLAB software. The 

effects are shown in Figures 1–5. 

 

 
Figure 1: The graph of exposed population with increasing values of relapse and reinfection 

rate. 
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Figure 2: The graph of the infectious population with increasing values of relapse and 

reinfection rate. 

 

 

 
Figure 3: The graph of the recovered population with increasing values of relapse and 

reinfection rate. 
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Figure 4: The graph of the infectious population over time when treatment is administered. 

 

 
Figure 5: The graph of the recovered population over time when treatment is administered. 

 

Discussion 

From the review of various articles on 

Lassa fever, it is mostly assumed that 

whoever recovers from the disease cannot be 

susceptible; which has contradicted the recent 

outbreak of Lassa fever as documented by 

NCDC (2019) on the Lassa fever factsheet. 

So, this assumption is clarified with the 

above curves in Figures 1, 2, and 3. These 

figures show how “relapse and reinfection 

rate” can affect the dynamical behavior of 

individuals in the population density. It is 

observed that numerous reasons could make 

an individual who has recovered from Lassa 

fever be susceptible and even become 

infectious instantaneously. Mostly, it is 

through ingestion or inhalation of the fluidic 

substance from Mastomys rodents. The virus 



Tanz. J. Sci. Vol. 48(2) 2022 

425 

is shed via urine, direct contact with the 

infectious rodent, toughing soiled materials, 

consumption of contaminated foods, eating of 

infectious Mastomys rodent, lack of 

protection from open sores and cuts, and so 

on. So, the above Figures 1, 2 and 3 unveil 

the implications of neglecting the preventive 

measures of Lassa fever. It succinctly tells 

the recovered individuals to nullify the 

illogical assumption. By so doing, the disease 

will hastily approach the Disease Free 

Equilibrium point which is the goal of this 

research article. It is evident from Figures 1 

and 2 that if recovered individuals from the 

population neglect or carelessly do not take 

note of the stated preventive measures, the 

exposed and the infectious individual 

population will gradually be increasing. 

Hence, the curves would approach endemic 

equilibrium. Figure 3 justifies the fact that 

continuous “relapse and reinfection” in the 

population would make the recovered class 

increase instantaneously without any traces of 

decrement. 

Figures 4 and 5 portray the dynamical 

effect of getting whoever is infectious treated 

on time. Governments and Health care 

practitioners are hereby advised to make all 

that may be required to hasten the treatment 

of Lassa fever in various medical centers e.g. 

ribavirin, ICU bed, shelters, etc. With these, 

the invasion of the disease would be curbed 

provided that the relapse and reinfection rate 

is minimal or prevented. It is demonstrated 

that if the treatment rate 
2  is drastically 

increased to 0.8, the infectious curve would 

hastily be flattened after 5 months. And if 

everyone takes up the responsibility of 

exercising all the preventive measures since 

researchers are yet to license a vaccine for 

Lassa fever, there would be no record of 

Lassa fever disease in the affected population 

after 5 months. This means every infectious 

individual will recover as shown in Figure 5.  

 

Conclusion 

In this research work, a dynamic model 

was constructed. The non-negativity and 

boundedness which are the preliminary 

properties were gotten and were analytically 

found to be true at all times. A comparative 

analysis was simultaneously executed 

resulting in the deduction of equilibrium 

points, showing the existence and stability of 

the equilibriums, and computing the 

reproduction number. By using the Routh 

Hurwitz criterion, we established that the 

reproduction number is less than one. The 

study of the analytic and qualitative behavior 

of the model for the dynamics transmission of 

the virus was critically carried out. Possible 

threats that can be posed by holding on to the 

illogical assumption are succinctly shown on 

the graphs. Also, we demonstrated the effect 

of getting infectious individuals treated on 

time. Furthermore, the sensitivity analysis 

carried out, showed that the reproduction 

number in the human population is most 

sensitive to the transmission rate, reinfection 

rate, transition from exposed to infectious 

rate, and recruitment rate of the humans. 

Numerical investigations of the model 

revealed that the only feasible way of 

reducing the transmission dynamics of the 

disease is by taking all preventive measures 

seriously since the vaccination for Lassa 

fever is yet to be licensed. 
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