IMPLEMENTATION OF A TABU SEARCH HEURISTIC FOR THE
EXAMINATIONS TIMETABLING PROBLEM

AR Mushi
Department of Mathematics, University of Dar es salaam, Box 35062, Dar es salaam,
Tanzania
allen.mushi@gmail.com

ABSTRACT

This paper reports on the design and implementation of an algorithm for the construction of an
examinations timetable. The Examinations Timetabling Problem is the problem of assigning
examinations and candidates to time periods and examination rooms while satisfying a set of
specific constraints. Every University has a different set of constraints and structure of
examinations. Generally, timetabling problems are NP-Hard and therefore very difficult to solve.
However, they are of great interest due to their important practical application in educational
institutions. This paper discusses a heuristic algorithm basing on the examinations timetabling
at the University of Dar es salaam. The algorithm uses a Tabu Search technique, which has been
successfully applied to other variations of the problem. Real life instance of the problem has been
solved within reasonable time and compares with results of the previous work which used a
Simulated Annealing Algorithm. It is concluded that the algorithm gives a better performance
than manual system and compares well with Simulated Annealing results; Tabu Search is
therefore applicable and a good approach to the problem of Examinations timetabling at UDSM.

Keywords: Timetabling, Tabu Search, Combinatorial Optimization, Scheduling

INTRODUCTION

The Examination-Timetabling Problem
(ETP) is the problem of assigning
examinations and candidates to time periods
and examination rooms while satisfying a
set of specific constraints. Constraints are
normally divided into hard and soft
(Elmohamed et al, 1998, Slim and Marte,
1998), and where hard constraints must be
satisfied while soft constraints may be
tolerable but must be satisfied as much as
possible. ETP is NP-Hard (Cooper and
Kingston 1996, de Werra 1985) and
therefore no optimal algorithm is known
which can give a solution within reasonable
time. Due to its practical importance, many
researchers have attempted to solve different
variations of the problem.

A good number of papers have been
published on ETP for specific Universities.
A survey on automated timetabling is found
on Schaef (1995). De Werra (1985) gives a
good introduction into timetabling

problems. Previous attempts include the use
of graph colouring concepts, (see the work
done by Welsh and Powell, 1967), by
reducing ETP into the chromatic number
problem which is also NP-Hard (Karp,
1972). Some attempts have also been made
to use mathematical programming
techniques (Dimopolou and Milliotis, 2001)
with success only on small size instances.

Due to the complexity of the problem, most
of the literature concentrates on the heuristic
algorithms, including Genetic Algorithms
(Corne et al. 1993), Tabu Search (Mooney
1991), Simulated Annealing (Cooper and
Kingston 1996), and Scatter Search (Marti et
al. 2001). Some researchers have recently
paid attention to the Logic Programming
techniques, the so-called Constraint
Satisfaction Problems, because they have a
natural way of representing constraints, such
as a paper by Stamapoloulos et al. (1998).
However, such methods have some

Tanz. J. Sci. Vol. 37 2011

limitations including unstable performance
as pointed out by Bartak (1999).

Articles describing practical case studies are
relatively few compared to theoretical work
on the timetabling problems. These include
Carter et al (1994) who described a system
called EXAMINE, and applied to
Universities of Toronto and Carleton, and a
case study by Thomson and Dowsland
(1995) on a system called TISSUE. Kendall
& Hussin (2005) describes a Tabu Search
hyper heuristic specifically for ETP at
University of Technology MARA; Ayob et
al (2007) describes a formulation of an ETP
for Universiti Kebangsaan Malaysia by
proposing a useful objective function. Ayob
& Hamdan (2009) proposed a multistage
Tabu Search for ETP and compared their
results on benchmark tests where they
reported some promising results requiring
improvement.

This paper is a contribution to the case
studies with a focus to UDSM. Mushi
(2007) presented a first attempt to automate
examinations timetabling at UDSM and
used Simulated Annealing. This is another
attempt to improve on the previous work by
applying Tabu Search and compare the
results.

The Examinations Timetabling Problem

differs significantly from the Course

Timetabling Problem. The major differences

include;

* An examination requires only one
timeslot throughout the planning
period, while course timetable may
require several timeslots and with
different categories such as lectures,
tutorials and practical sessions.

* An examination timetable may span
several weeks depending on the
University’s policy, while a course
timetable must fit within a week and to
be repeated for a full semester.

* An examination room can occupy more
than one examination at the same time,
while a course timetable can only have
one lecture in a room at a time.

85

* An examination may span several
rooms at the same time depending on
the number of candidates and rooms
availability, while a course timetable
can only take place in a single room.

¢ Some constraints differ in weight
between the two types of problems. For
instance, distance between examination
rooms is not a problem in examinations
timetable, but it is an important issue
for consideration when planning a
course timetable.

L]

In this paper a heuristic algorithm is

discussed based on Tabu Search as applied

to the examinations timetabling problem at
the University of Dar es salaam (UDSM) in

Tanzania, East Africa. Firstly an overview of

the examinations timetabling process at

UDSM is presented, then follows the

discussion on the design and

implementation issues of the algorithm.

Lastly, summary of results and conclusions

are presented.

Examinations timetable at the University
of Dar es salaam

The examinations period is fixed to 2
weeks, with 3 examination sessions per day
except on Fridays where we have 2 sessions
to allow time for Muslim and Seventh Day
Adventist prayers. An examination week is
made up of five days, from Monday to
Friday. Some examinations have more
candidates than a single room can hold, thus
some examinations are scheduled in more
than one room. On the other hand, a room
can have more than one examination
scheduled in it if sufficient room space is
available. To optimize examination space,
lecture theatres are also used for
examinations. However, since lecture
theatres have close and slanted seats, the
examination capacity is significantly small
compared to lecture capacity. Cafeterias are
also used for examinations but only during
the morning session of the day since they
are later used for serving food. During the
research period, most examinations were 3
hours long but there were a few deviations

Mushi — Implementation of a Tabu Search heuristic for timetabling problem

between 2 and 3 hours, and majority of
the examinations were closed book.

Because the university campus is very large
(more than 6000 hectares), there is a gap of
at least 1_ hours between examination
sessions, so that the distance between
examination rooms is not a problem to
candidates. Examination invigilators are
normally scheduled by individual
departments after the release of the main
timetable. The central timetable is therefore
not involved in scheduling invigilators. The
problem implemented in this algorithm
includes all hard constraints and the most
important soft constraints as follows:

Hard Constraints

i) A candidate cannot do more than one
examination at the same time

ii) A room cannot be assigned more
candidates than its capacity

iii) Only rooms with standby generators can
be used for the evening session of the
day. This is to avoid the risk of power
cuts, which is a possibility.

iv) Cafeterias can only be used during the
first timeslot of the day.

Soft Constraints

i) Discourage continuous examinations for
a candidate in a day. Since there are
three sessions in a day, we prefer to
have at least one gap between
examinations per candidate in a day. In
general, we would like to spread each
candidate examinations as much as
possible within the planning horizon.

ii) Minimize the split of examinations into
rooms. The ideal situation is when each
examination is conducted in a single
room. When this is not possible, then a
set of rooms for each examination
should be minimal, so as to help
departments in planning for the scarce
invigilators.

iii) Large examinations should be scheduled
earlier, to allow more time for
examiners to mark the large number of
scripts associated with the examination.

86

iv) There are some special requests by both
students and departments in the order of
examinations due to mostly personal
reasons.

Tabu Search Algorithm

Tabu Search (TS) is a global heuristic
technique which tries to avoid falling into
local optima by creating a special list called
Tabu (Reeves, 1993). Any solution which
has been recently selected is put into a Tabu
list so that it becomes ‘taboo’ for a short
period of time, depending on the length of
the list. This minimizes the chance of
cycling in the same solution, and therefore
creates more chances of improvement by
moving into unexplored areas of the search
space. The work by Glover (1990) and
Glover & Laguna (1997) gives a
comprehensive description of the technique.
TS is selected for this project because of its
success in other timetabling scenarios
(including Ab Malik et al 2009; Kendall and
Hussin 2005; Mooney 1991). The algorithm
applied in this project is;

Tabu Search {

Initialize parameters;

Get Initial Solution (S,);

Converged = false;

While Not Converged {
Get a set of solutions S in
neighborhood of S,(SEN(S,))
Moved = false;
While Not Moved {
if S Not Tabu {
Given an objective function f, find o
= 1(S)- f(s0);
Push S into Tabu list
Moved = true;
if(o < 0) Accept solution (S, = S);}

Next S €N(S,) }

Converged = Test convergence; }
return S, as best solution; }

The most challenging part in this general
heuristic lies in the design and
implementation of variables specific to
UDSM. The following section describes the

Tanz. J. Sci. Vol. 37 2011

representation of the Tabu Search heuristic
to UDSM examination timetabling problem.

Representation of the problem

The discussion in this section is also
described in Mushi (2007), and summarised
here for clarity of presentation. Since there
are 3 examination sessions per day from
Monday to Thursday and two sessions on
Fridays, there are 28 examination sessions
for the two examination weeks. In this
project, each of these time sessions is called
a timeslot and define T = total number of
timeslots.

Given a total of »n rooms and m
examinations, lists R, and C, are defined
such that;

Ri = capacity of room i,

Ci = Number of candidates for examination i
A timetable is represented by an integer-
valued list of events S,, such that;

si = Timeslot assigned to examination i

Since an examination can span more than
one room, an adjacency list K;, is defined,
where each node of the list stores all rooms
assigned to the examination i.e. ki = A list
of rooms allocated to examination i.

On the other hand, since a room can be
assigned to more than one examination at
the same time, there is a need to keep track
of all remaining space in a room after
allocation, so that the room can be used for
further examination assignment. To achieve
this, we declare a matrix Pt such that,

Pi; = remaining capacity of room i at
timeslot j.

Initially, P stores the maximum capacity of
each room, but capacities are decremented by
the size of the examinations assigned to the
room, so that the remaining capacity can be
used by other suitable examinations. Thus a
fully utilized room has a capacity of zero.

In this setting, hard constraints (iii) and (iv)
can be enforced by simply assigning values
of zero to all restricted timeslots in rooms

87

with no standby generators and cafeterias
respectively.

A conflict matrix Mxm is defined such that;
M = {1 if exam i clashes with exam j

0 Otherwise

Examinations i and j clashes if they have at
least one student in common.

Cost function
Given a solution s, and a set of v
constraints,

\4
Minimize f(s) = Y A, f,(s),

=
Where f; = cost function associated with
constraint i and
Ai = weight given to constraint i which
represents the importance of the constraint to
the overall performance measure of the
solution.
Higher penalties are assigned to hard
constraints to discourage them from
appearing in the best solution.

Modelling Constraints
Let E = set of all examinations
F = set of all rooms

Then the components which makes up the

cost function are defined as follows;

i) No candidate can have more than one
examination at the same time,
Two examinations i and j have a
candidate collision if they belong to the
same time slot (i.e. si = sj) and M;; = 1.
Thus it only suffices to minimize
Mfi(s), where

fi(s) = Mz'/' , and A, is a
(i.)EE3S;=5,;
i<j
large value.
fi(s) is the total number of

candidate collisions associated with the

current solution.

ii) No room can be assigned to
examinations with more candidates
than the room capacity;

The number of times that a room has
been assigned more students than its
capacity is calculated as follows;

Mushi — Implementation of a Tabu Search heuristic for timetabling problem

Let L; = a set of examinations assigned
to room i

The remaining capacity of room i is
then given by; Cap (i) =R, — E ;.

=

For feasibility, the condition Cap (i) >
0 must be satisfied.
1 if Cap(i) <0
0 Otherwise

room i, and minimize Ayf>(s), where;

So let b = , for some

f(s)= Ebi , with A, a large value.
F=)
The function f>(s) gives the total
number of rooms which have been
assigned examinations with higher
number of candidates than the room
capacity. For a feasible solution, the
condition f5(s) = 0 must be satisfied.
iii) Minimize the number of splits of an
examination into rooms;
The procedure is required to minimize
the number of rooms assigned to an
examination, which is achieved by
minimizing the maximum number of
rooms per examination. Thus we
minimize A;f3(s), where;

As) = max{[K [}

iv) Minimize continuous examinations per
each candidate;
Since there are many candidates with
complex course selections, this
constraint may have many conflicting
constraints between candidates. The
number of examinations with common
students which are scheduled in
consecutive timeslots is to be
minimized. Note that two examinations
i and j are scheduled in consecutive
timeslots if |si—sj/= 1, and have
candidates in common if M;; = 1. Thus,
the problem is to minimize A4f(s)
where;

fils) = M,
(i,j)EEsS[—S/‘=1
i<j

v) Large examinations should be

scheduled first;

88

There is a need for a relation which will
give priority to large examinations on
the lower-numbered timeslots.
Experimental results shows that the
following function provides a good

2
measure; t é , where ¢ is the timeslot

and z is the size of an examination.
Thus, the cost function involves
minimizing Asfs(s), where;
S‘2
o=y~
e C;

vi) Examinations scheduled for evening
sessions must be assigned to rooms
with standby generators;

Let G = set of all rooms fitted with
standby generators and W = set of all
evening timeslots of the planning
horizonie. V= {3, 6,9, 12, 17, 20,
23, 26}. We simply assign zeros to all
rooms » € G at all timeslots ¢+ €V in P

ie. P, =0VrEG,VIEV .

vii) Cafeterias can only be used during the
first morning session of the day;
Like the previous constraint we simply
assign zeros to the respective positions

in P ie. P, =0VreEX,VIEY

where X = set of all cafeterias, and Y =
set of all afternoon and evening
timeslots.

Initial timetable

It is important to have an easy and quick
way of generating an initial feasible
timetable. Each examination is assigned to
the earliest possible feasible timeslot and
earliest feasible room. To achieve the
assignment of large examinations first, both
examinations and rooms are sorted in
descending order of their sizes. The initial
solution is to be feasible only by satisfying
all the hard constraints. It is not necessary
though that the initial solution should be
completely feasible, since we penalize higher
on hard constraints in the cost function. An
initial solution is therefore preferred to be as
feasible as possible, and any infeasibility

Tanz. J. Sci. Vol. 37 2011

can be tolerated in anticipation of
improvement in the Tabu Search process.
Note that, during assignment of rooms to an
examination, it is necessary to search for the
available room space even in rooms which
have already been used, as they may still
have free space.

Tabu Search implementation
One of the major challenges in Tabu Search
is the selection of types of moves. Several
types of moves are possible, but two types
in particular have shown promising results.
The first type is the change of a timeslot by
the randomly generated one as follows;
4. Select a random examination e in the
set of all possible examinations
5. Select randomly a new timeslot ¢ in the
set of all possible timeslots.
6. Assign the new timeslot ¢
examination at position e.
Similar moves have been described by,
Thomson and Dowsland (1996), Saleh and
Coddington (1998) and Reeves (1999). The
size of the neighbourhood associated with
this kind of move is
IN(s)| = |e| x (|¢]-1), where |e| = total number
of examinations, and |7| = total number of
timeslots.

to the

The second type of move is the swap of two
timeslots as follows;
1. Select randomly two examinations
e, e in the set of all possible
examinations
2. Swap time
examinations
The size of the neighbourhood associated
with this kind of move is |[N(s)| = |e|x(|e|-1).
The algorithm is tested by using these two
move types.

slots of the two

Aspiration criteria

Sometimes a candidate solution could be in
the Tabu list, but would bring large
improvement in the solution if accepted. In
this case an aspiration criteria is used, where
a candidate solution with large improvement
in the solution is accepted regardless of its
Tabu status. We accept any solution which

89

brings an improvement of a value with o<
100.

Stopping criteria

Fixing the number of iterations has a
disadvantage that the algorithm can run for a
long time without improvement just to
complete the set of iterations. A stopping
criterion has been applied, which considers
the number of iterations without a change in
solution value. The algorithm stops after
running 1000 iterations without solution
change. This is an experimental value that
has been found to be sufficient to show lack
of improvement.

SUMMARY OF RESULTS

The algorithm was tested on an examination
timetabling problem previously solved by
manual methods for semester 1 of the
2003/2004 academic year. A program
written in C++ is tested by running on a 2.4
GHz, Pentium 4 processor. Table 1 shows
the data for the specific problem that we
have tested;

Data Value
Candidates 8161
Rooms 74
Examinations 729
Total timeslots 28
Table 1: Data for the tested problem at

UDSM

Table 2 shows the weights used in the cost
function for each type of constraint. These
weights have been assigned according to our
experience on the user needs. In this case,
avoiding continuous examinations is more
important to candidates than the number of
examination splits into rooms. Likewise,
scheduling large examinations early in the
timetable is more important to examiners
than examination splits. A value of 10 was
found to be sufficiently large to prevent
infeasibilities in the solution space.

Mushi — Implementation of a Tabu Search heuristic for timetabling problem

Weight Value | Description

A=Ay 10 Hard constraints

s 1 Number of
examination splits

4 2 Continuous
examinations

As 2 Large
examinations first

Table 2: Weights used in the objective

function

These choices of A have performed very well
as shown in Table 3 which presents a
summary of results and performance of the
algorithm. The presented values are the
average of values obtained by runs made for

varying random number seeds. The two
columns show the performance, using the
time change and time swap moves
respectively. Time change performs slightly
better than time swap. This may be caused
by the restrictions imposed by the time
swap on the possible timeslots for
swapping. The time change moves allows
random generation of timeslots which entail
the introduction of new timeslots which
may not be used by the current solution.
The best solution was found after 2,965.69
seconds which is approximately 50 minutes.
This time is tolerable in this timetable
application compared to three weeks required
for the manual timetable generation.

Time change Time swap
Initial cost 249.975 249.975
Final Cost 10.865 14.475
Student/Lecturer Collisions 0 0
Room size 0 0
Continous exams 0 0
Cafeterias violation 0 0
Large exams first 5.865 9.475
Exam splits 5 5
Standby generators violation 0 10
Iterations 100,000 100,000
Time 2,790.82 2,965.69
% Cost improvement 96% 94%

Table 3: Performance of the Algorithm
Figure 1 compares the performance of time
move and time swaps in improving the cost
value by iterations. The performances of the
two cases are very close to each other, but
time moves perform slightly better on the
lower cost values. In both cases, the
algorithm was stopped after 100,000
iterations which show a sufficient
convergence to a fixed value. The best Tabu
list size used was 24.

Table 4 represents a comparison of the
performances of the manual and automatic

systems in terms of constraint violations.
Both timetables are feasible by satisfying
the hard constraints but the automatic
systems clearly outperform the manual
system in achieving the soft constraints. The
performances of Tabu Search and Simulated
Annealing are very close (96% and 96.08
respectively). Simulated Annealing is
relatively faster, with 37 minutes compared
to 50 minutes of the Tabu Search. In
general, the two algorithms do not differ
significantly.

Tanz. J. Sci. Vol. 37 2011

100 \
90

80

70

60

50

——Time change

Cost

40

Time swap

30

20

21 26

Iterations

31

36

41 46 51

Figure 1: Performance improvement by iterations

Violations [Violations in|Violations in

Constraints in Manual |Tabu Search |Simulated Annealing

Candidate clashes 0 0 0
Room size violations 0 0 0
Continuous exams 20 0 0
Large exams first 29.97 5.86 4.81
Exam splits 8 5 5
Standby generators 0 0 0
Cafeterias violation 0 0 0
Total violation cost 57.97 10.86 9.81
% Improvement from Cost 77% 96% 96.08%

Table 4: Comparison of Performances
SUMMARY AND CONCLUSION

The aim of the project was to design and
implement an algorithm to solve the
examinations timetabling problem at UDSM
using Tabu Search technique. This has been
achieved by solving a real instance of the
problem within reasonable time of 50

91

minutes. The algorithm has been compared
with the manually generated case and shows
great improvement in satisfying the soft
constraints without violating the hard
constraints. Comparison with Simulated
Annealing shows that the performances of
the two approaches are close to each other.

Mushi — Implementation of a Tabu Search heuristic for timetabling problem

Tabu Search is therefore a viable and good
heuristic for the UDSM examinations
timetable with a random time change as the
best move. Fine tuning of parameters may
however bring better results. This algorithm
also sets a benchmark for comparison with
other heuristic techniques to be developed
for this UDSM application.

Further Research

Examinations timetabling problems are very
specific to institutions, since each
institution has its own structure and
policies. This paper presents only the second
attempt in development of algorithms which
can help in the automation of examinations
timetables at UDSM. There is therefore a
room for further development of algorithms
and compare performances. Other variants of
timetabling problems exist, including course
and high school timetabling. Very limited
work has been done in Tanzanian
institutions, development of algorithms for
automation of these timetabling problems in
almost unexplored area of further research.
The presented algorithm may be improved
by designing variable Tabu list structures
and creating different aspiration criteria.
Limited effort is made on exact methods to
timetabling due to the fact that the
complexity of NP-Hard problems. However,
with the current improvement in exact
solvers, it is worth developing efficient
mathematical programming models and use
the results as benchmarks for heuristic
algorithms.

REFERENCES

Ab Malik, A, Ayob M and Hamdan A 2009
Iterated Two-stage Multi-neighborhood
Tabu Search Approach for Examination
Timetabling Problem, 2" Conference on
Data Mining and Optimization 27-28
October 2009 Selangor Malaysia

Ayob M, Abdullah S and Ab Malik A 2007
A Practical Examination Timetabling
Problem at the Universiti Kebangsaan
Malaysia, International Journal of
Computer Science and Network Security
7(9): 198-204

92

Bartak R 1999 Constraint Programming: In
pursuit of the Holy Grail, Proceedings of
WDS99 (Invited lecture) Prague

Carter W Laporte G Chinneck J 1994 A
General Examination Scheduling
System, Interfaces 24: 109-120

Cooper T B Kingston J H 1996 The
Complexity of Timetable Construction
Problems, Springer Lecture Notes in
Computer Science 1153: 283-295

Corne D Fang H S Mellish C 1993 Solving
the Modular Examination Scheduling
Problem with Genetic Algorithms,
Proceedings of the sixth International
Conference of Industrial and Engineering
Applications of Artificial Intelligence
and Expert Systems Edinburgh

de Werra D 1985 An Introduction to
Timetabling, Eur. J. Operat. Res 19:
151-162

Dimopoulou M Milliotis P 2001
Implementation of a University course
and examinations timetabling system,
Eur. J. Operat. Res. 1(130): 202-213

Elmohamed S Fox G Coddington P 1998 A
Comparison of Annealing techniques for
Academic Course Scheduling, Lecture
Notes in Computer Science 1408 92-114

Glover F 1990 Tabu Search: A tutorial,
Interfaces 20(4): 74-94

Glover F Laguna M 1997 Tabu Search,
Kluwer Academic Publishers

Karp K M 1972 Reducibility among
Combinatorial Problems, In Complexity
of Computer Computations, Plenum
Press New York

Kendall G and Hussin N M 2005 Tabu
Search Hyper-Heuristic Approach to the
Examination Timetabling Problem at
University Technology MARA In:
Burke E K Trick M (eds), PATAT 2004
LNCS 3616 199-218 Springer
Heidelberg

Marti R Lourenco H Laguna M 2001
Assigning Proctors to Examinations
with Scatter Search In: Laguna M
Gonzélez-Velarde J L (Eds), Computing
Tools for Modelling Optimization and
Simulation: Interfaces in Computer
Science and Operations Research Kluwer

Tanz. J. Sci. Vol. 37 2011

Academic Publishers Boston 215-227

Mooney L M 1991 Tabu Search Heuristics
for Resource Scheduling with Course
Scheduling Applications, PhD
Dissertation Purdue University

Mushi A R 2007 Simulated Annealing
Algorithm for the Examinations
Timetabling Problem, Afr. J. Sci.
Technol. (AJST) Science and
Engineering Series 8(2): 24 — 32

Reeves C R (E.) 1993 Modern Heuristic
Techniques for Combinatorial Problems,
Blackwell Scientific Publications Oxford

Reeves C R 1999 Landscapes, operators and
heuristics search, Annals of Operations
Research 86 473-490

Saleh E Coddington P Mihala B 1998 A
Comparison of Annealing Techniques
for Academic Course Scheduling,
Lecture Notes in Computer Science
1408, 92-114

Schaef A 1995 A survey of Automated
Timetabling, Artificial Intelligence

93

Review 13(2): 87-127

Slim A Marte M 1998 University
Timetabling using Constraint Handling
Rules, Journees Phrancophones de
Programmation par contraintes Nates
France

Stamapoloulos P Viglas E Karaboyas S
1998 Nearly Optimum Timetable
construction through CLP and
Intelligent Search, Int. J. Artific.
Intellig. Tools 7(4): 415-442

Thompson J Dowslan K 1995 TISSUE
wipes away exam time tears, OR Insight
8(4) 28-32

Thompson J Downsland K 1996 Variants of
simulated annealing for the examination
timetabling problem, Ann. Operat. Res.
63 105-128

Welsh D J Powell M B 1967 An Upper
Bound for the Chromatic Number of a
Graph and Its Applications to
Timetabling Problems, Comp. J. 10 85-
86

