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Abstract 
Many mathematical optimization problems from real-life applications are NP-hard, and hence no 

algorithm that solves them to optimality within a reasonable time is known. For this reason, 

metaheuristic methods are mostly preferred when their size is big. Many meta-heuristic methods 

have been proposed to solve various combinatorial optimization problems. One of the newly 

introduced metaheuristic methods is a bat-inspired algorithm, which is based on the echolocation 

behaviour of microbats. Bat algorithm (BA) and its variants have been used successfully to solve 

several optimization problems. However, from the No-free Lunch Theorem, it is known that there 

is no universal metaheuristic method that can solve efficiently all optimization problems. Thus, 

this study work focused on investigating the usefulness of BA in solving an optimization problem 

called Course Teaching Problem (CTP). Since BA was originally designed to solve continuous 

problems, and CTP is a combinatorial optimization problem, a discrete version of BA for CPT has 

been proposed and tested using real-life data from the Dar es Salaam University College of 

Education (DUCE). The algorithm has produced promising results, as in each execution test, it 

generated a timetable in which all hard constraints were met and soft constraints were significantly 

satisfied within a few iterations.  

 

Keywords: Combinatorial optimization, Timetabling problem, Metaheuristic algorithms, Bat 

algorithm. 

 

Introduction  

Optimization problems arise in different 

fields such as economics, industries, education, 

manufacturing systems such as engineering 

designs and many other sectors. Due to the 

importance of optimization problems, it is 

required to have effective and strong 

computational algorithms to solve large-sized 

optimization problems. Basically, techniques 

for solving optimization problems depend on 

whether the problem is continuous or discrete. 

While continuous optimization problems 

contain completely continuous variables, a 

discrete optimization problem contains some 

discrete variables, i.e. the domain of the 

respective variable consists of a finite set of 

discrete values (Alba 2005). The set of discrete 

optimization problems forms an optimization 

class of problems called combinatorial 

optimization whose decision variables are 

discrete and has a finite number of feasible 

solutions (Baghel et al. 2012). Examples of 

combinatorial optimization problems include 

the Travelling Salesman Problem (TSP), 

Machine Scheduling Problems, Timetabling 

Problems (TP) and Assignment Problems. It is 
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worth noting that besides theoretical 

significance, combinatorial optimization 

problems have empirical relevance, as they 

apply to real-world situations because they 

arise in several and heterogeneous domains, 

such as scheduling, location problems, 

transportation, production planning, decision-

making processes, routing and 

telecommunications, just to name but a few 

(Festa 2014). Due to the concrete usefulness of 

combinatorial optimization problems, large 

numbers of methods for solving them have 

been established.  

Methods for solving combinatorial 

optimization problems can be categorized as 

exact or approximate. Exact methods guarantee 

to obtain an optimal solution for each instance 

of a combinatorial optimization problem in a 

limited time, while approximate methods seek 

to achieve solutions that are as nearly as 

possible to the optimum values within a 

reasonable amount of time. One example of 

approximate methods is heuristic methods. 

There is a class of combinatorial optimization 

problems named NP-hard. This class contains 

problems for which no polynomial-time 

algorithm to solve them to optimality is known, 

and it has been conjectured that such 

algorithms do not exist (Garey and Johnson 

1979). Unfortunately, many problems in real-

life applications fall into this class of NP-hard 

problems and have large sizes. For this reason, 

heuristics and metaheuristics (a combination of 

heuristic methods) are mostly preferred. 

Heuristics and metaheuristic methods compute 

good solutions quickly but without a guarantee 

of optimality.  

The purpose of heuristic methods is to 

obtain good quality solutions, not necessarily 

optimal but within a reasonable amount of 

time. Generally, heuristic methods are based on 

experience (that is, rule of thumb). Thus, 

heuristics often have an intuitive justification 

(Winston et al. 2003). Improvement of 

heuristic methods has resulted in metaheuristic 

methods that have a high capacity for solving a 

large class of problems. Osman and Kelly 

(1996) defined metaheuristic as an iterative 

generation process that guides a subordinate 

heuristic by combining intelligently different 

concepts for exploring and exploiting the 

search spaces using learning strategies to 

structure information in order to find a near-

optimal solution efficiently.  

The two main components of meta-heuristic 

algorithms are intensification (also called 

exploration) and diversification (also called 

exploitation) (Yang 2010b). Diversification 

tries to ensure that the algorithm does not get 

trapped into local solutions, while the idea 

behind intensification is to obtain a high-

quality solution within the explored regions. 

Thus, for meta-heuristics to be successful in 

solving optimization problems, intensification 

and diversification strategies should balance in 

order to produce an equilibrium between the 

exploitation of the collected search experience 

and exploration of the search space to find 

areas with the best solutions in a specific 

problem, close to the optimal solution (Birattari 

et al. 2001). A good combination of the two 

components improves the achievement of 

global optimality.  

Meta-heuristic algorithms have been 

effectively applied to solve various real-life 

problems. A list of such applications includes 

Travelling Salesman (Wang et al. 2009), 

Facility Location (Qin et al. 2012), Aggregate 

Production Planning (APP) (Abu Bakar et al. 

2016), Examination Timetabling (Mujuni and 

Mushi 2015), Shortest Path in Network (Gonen 

2006), Agriculture systems for maximizing 

benefits (Srivastava and Yagyasen 2016), 

Vehicle routing (Masum et al. 2011), 

Optimization of the shift schedules for nurses 

(Augustine et al. 2009), Detection of Epistatic 

Interactions (Guan and Zhao 2019), Aircraft 

Recovery (Zegordi and Jafari 2010), Train 

Timetabling (Su and Huang 2006) and Aircraft 

Departure Scheduling (Atkin et al. 2008). This 

study aims at investigating the usefulness of a 

relatively new metaheuristic, a bat algorithm, 

on a combinatorial problem called Course 

Teaching Problem (CTP).  

Bat algorithm is one of the new 

metaheuristic algorithms. Proposed in Yang 
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(2010a), it mimics the behaviour of bats when 

they hunt for food. Bats are mammals with 

wings and they use a process called 

echolocation in finding preys and differentiate 

different types of objects by varying pulse rates 

of emission and loudness (Yang 2010a). Bat 

algorithm is a population-based metaheuristic, 

and it uses communication between individuals 

in searching solution. The key advantage of the 

bat algorithm is that it can balance between the 

diversification and intensification strategies by 

adjusting parameters when the global 

optimality is approaching.  

Bat inspired algorithms have been used to 

solve various optimization problems from both 

continuous and discrete fields. A list of such 

applications includes Scheduling, Allocation, 

Routing, Facility Layout Design (Kongkaew 

2017), Image Processing (Zhang and Wang 

2012) and Transport Network Design 

(Srivastava and Sahana 2019). See Kongkaew 

(2017) for overviews and applications of bat 

algorithms.  

 

Course Timetabling Problem 

The increasing enrolment numbers in 

academic institutions over the years and the 

complexity of course choices among students 

pose huge challenges to the timetabling 

process. The need to ensure that the teaching 

space is optimally used is extremely important 

for academic planning and hence increasing 

interest in timetabling research. 

Course Timetabling Problem (CTP) falls 

into a wide class of Timetabling Problems 

(TTP). The timetabling problem involves the 

allocation of resources to a limited number of 

timeslots, subject to the given constraints 

(Wren 1996).  Educational timetabling can be 

classified into three, namely, school 

timetabling, course timetabling and 

examination timetabling (Schaerf 1999). All 

three problems have some common 

characteristics of the general TTP but still can 

have significant differences between them 

(Mushi 2011).  

CTP is defined as an assignment problem in 

which students, teachers (or faculty members) 

are assigned to courses, course sections or 

classes; events (individual meetings between 

students and teachers), classrooms and 

timeslots (Carter and Laporte 1998). CTP is a 

complex and time-consuming task. It involves 

the allocation of classes to times and space 

subject to a set of constraints, which are 

classified as hard and soft. Hard constraints are 

those which must be met, while soft constraints 

are not necessarily met but must be satisfied as 

much as possible (see e.g. Mushi 2011). A 

timetable is said to be feasible if it satisfies all 

hard constraints.  

CTP is known to be NP-hard and therefore 

metaheuristic methods are widely used to solve 

it. Examples of such metaheuristics include 

Tabu Search (Mushi 2006, Aladag and 

Hocaoglu 2007), Simulated Annealing (Aycan 

and Ayav 2009, Basir et al. 2013), Genetic 

Algorithm (Al-Jarrah et al. 2017), Constraint 

Programming (Abdennadher and Marte 2000). 

To the best of the authors' knowledge, very 

little has been done on applications of a newly 

proposed Bat-Inspired algorithm in solving the 

course timetabling problem using real data. 

This has motivated this work.  

 

Mathematical Programming Formulation 

As mentioned above, a teaching timetable 

consists of hard and soft constraints. This paper 

considered the following hard constraints: 

1. There is no collision of two or more 

courses, i.e. no two or more courses are 

assigned into the same timeslot in the 

same room.  

2. The rooms must have enough size which 

can accommodate registered students.  

3. A student cannot attend more than one 

course at the same timeslot.  

 

Soft constraints considered are:  

1. Minimize the number of lectures of the 

same course in a day.  The idea is to 

spread courses over the teaching week. 

2. A student should not have consecutive 

sessions in a day.  

There are various models for CTP. Chacha 

and Mushi (2013) gave examples of such 
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models. In this work, we have opted to use a 

binary model to represent a schedule of lecture 

and courses after performing experimentations. 

The mathematical model will have the 

following form: 
            

                 
 

where   is a solution,      is the objective 

function, which consists of soft constraints and 

     consists of hard constraints. First, we need 

to define sets, parameters and variables to be 

used in our formulation.  

 

Sets:  

 : Set of all time slots, 

   Set of all rooms, 

   Set of lectures. 

Parameters: 

       if lectures   and   have some common 

students; 0 otherwise.  

        if   and   are lectures of the same 

course; 0 otherwise.  

  : The number of students in lecture  .  
  : Sitting capacity of room  .  

Variables: 

        if lecture   is scheduled in timeslot     

        if lecture   is scheduled in room     

        if room   is to be used in timeslot     
 

Model: 

                                       1) 

Subject to: 

∑ ∑                                           (2) 

∑                                                      (3) 

∑                                                      (4) 

∑                                                 (5) 

                                 (6) 

                                                   (7) 

                {   }  
 

Equation (1) is the objective function that 

needs to be minimized and represents soft 

constraints as detailed in the next section. 

Equation (2) ensures that lectures with some 

common students are not scheduled in the same 

timeslot. Equations (3) and (4) guarantee that 

each lecture is scheduled precisely once in a 

timeslot and room, respectively. Equation (5) 

ensures that at most one lecture is assigned to a 

room in each timeslot. Equation (6) establishes 

a connection between the variables           and 

    . Equation (7) guarantees that the total 

number of students in a lecture   does not 

exceed the capacity of the assigned room.  

 

Objective Function 

The objective function is formulated to 

minimize violations of soft constraints. The 

hard constraints are also penalized in the 

objective function so that all constraints are 

represented. Thus, it is a linear combination of 

functions of the form;              
               , where       is the number 

of lectures of the same course  offered on the 

same day,       is the number of conflicting 

lectures that are offered in consecutive 

timeslots,       is the number of hard 

constraints that have not been satisfied, and    , 

  ,    are weights indicating the importance of 

the associated constraint in relation to other 

constraints. Since    is associated with hard 

constraints, it is given a much higher value 

compared to those of    and   . Let 

       

{
                                           

          
  

       

{
                                                

          
  

Then,  

      ∑ ∑                    and       

∑ ∑                                     (8) 

 

Methodology 

Original Bat Algorithm 

Bat Algorithm (BA) is one of the relatively 

new meta-heuristic algorithms which is nature-

inspired. It was proposed by Yang in 2010 

(Yang 2010a). BA mimics the echolocation 

behaviour of bats when they are searching for 

food and navigation. Echolocation is an 

exceptional hearing based navigation system 

used by bats and some other animals to sense 

and identify preys or any obstacle in their 

surrounding environment through releasing a 
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sound (Yang 2010a). For simplicity, Yang 

(2010) suggested the following idealized rules: 

 

1. Bats use echolocation to determine 

distance, and they can differentiate between 

food and barriers.  

2. Bats fly randomly with velocity    at 

position    having a fixed frequency     , 

varying wavelength   and loudness    to 

search a prey. In this rule, it is assumed that 

bats can adjust automatically the frequency 

(or wavelength) of their emitted pulses as 

well as the rate of pulse emission    
     . The automatic adjustment relies on 

the proximity of the target.  

3. The loudness of the bats can vary in many 

ways, however, it is assumed that the 

loudness can vary from between positive 

values    and     .  

Figure 1 gives basic pseudo-code for BA. 

 

Define the Objective function     .  

Generate Initial population of the bat   
{        

For each bat      

Initialize the pulse rate   , velocity    and 

loudness    

Define the pulse frequency   ; 

End for   
While termination criterion not reached; 

For each bat      

Generate new solutions by using 

Equations (9), (10, and (11) 

Generate a random number      

If (          
Select one solution among the best one 

Generate a local solution around one 

of the best 

End if  

If (                      ) 

Accept the new solution 

Increase    and reduce       

End if 

End for 

End while 

Ranks the bats and obtain the current best bat 

Figure 1: Pseudo-code of the original bat-

inspired algorithm (BA). 

The first step involves initialization of bat 

population: position   , velocity    and 

frequency   . At each generation, each bat 

moves by adjusting its velocity   
  and position 

  
  at a time   using the following equations: 

 

                                   (9) 

  
    

       
                      (10) 

  
    

       
                                   (11) 

 

where,   is a random number generated from 

the interval       and    represents the current 

global best solution obtained after comparing 

all the solutions among all   bats in the swarm.  

 

Additionally, for the local search part, even if a 

solution is selected among the best solutions, a 

new solution for each bat is generated using a 

random walk.  

                                    (12) 

 

where   is a randomly generated number in the 

interval       and      is the average 

loudness of the bats in the swarm at a specific 

time step  . Moreover, the loudness    and the 

rate of pulse emission    of each bat have to be 

updated consequently using the following 

equations: 

  
     

   ,   
    

                   (13) 

where   and   are constant.  

 

Proposed Bat Algorithm for CTP 

The basic bat algorithm discussed above 

was basically established for solving 

continuous optimization problems. Since 

Course Timetabling Problem (CTP) is a 

discrete combinatorial optimization problem, 

some modifications on the basic BA are 

necessary.  

In the proposed BA, a position    of the bat, 

  presents a candidate solution for the CTP. In 

solving the CTP using the proposed algorithm, 

each position    is initialized by using a 

heuristic that randomly chooses a lecture and 

then tries to find timeslots without collision 

and a room big enough to accommodate the 
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lecture. The idea is to start with a good initial 

timetable.  

Considering the basic parameters of the 

original Bat algorithm, which are pulse rate   , 
loudness   , frequency    and speed, the first 

two parameters (   and    will be used in the 

way as in the basic BA and initialized 

randomly. But, frequency    has been fixed to 1 

in the proposed algorithm to reduce the 

complexity of the algorithm. Velocity    has 

been modified by relating it with the value of 

the objective function. This approach had been 

used previously to solve the Travelling 

Salesman Problem (Osaba et al. 2016). Thus, 

we have adapted    using the value of the 

objective function in the following way: 

  
                                    (14) 

In Equation (14),    can be viewed as the 

number of operations that bat   will perform in 

updating the current position.  

In the basic BA, a new position   
  is calculated 

through Equation (11). 

  
    

       
                             (15) 

 

Equation (15) implies that the current 

position depends on the previous position and 

velocity. Thus, this equation can now be 

interpreted as that the current position is 

obtained by performing   
  moves.  

To update the current solution of an 

instance of the CTP, the most commonly used 

strategies are 1-0 and 1-1 moves. For the case 

of 1-0 move, a lecture is moved from one 

timeslot to another. In the other case timeslots 

of two lectures are swapped. Because of its 

simplicity, in this work, we have opted to use 

1-0 move, in which both lectures and timeslots 

are randomly selected.  

A pseudo-code of the modified bat algorithm 

for CTP is given in Figure 2.  

 

Implementation of the method 

A modified BA was implemented by using 

Java programming language. Table 1 and Table 

2 give the used parameters of BA and weights 

of the problem, respectively. 

 

 

Define the Objective function     .  

Generate Initial population of the bat   
{       } 
For each bat      

Initialize the pulse rate   , velocity    and 

loudness    

Define the pulse frequency   ; 

End for   
While termination criterion not reached; 

For each bat      

                

Perform 0-1Moves    times to update     

Generate a random number      

If (          
Select one solution among the best one 

Generate a local solution around one 

of the best 

End if  

If (                     ) 

Accept the new solution 

Increase    and reduce       

End if 

End for 

End while 

Ranks the bats and obtain the current best bat 

Figure 2: Pseudo-code of a modified BA for 

CTP. 

 

Table 1: Parameters of BA 

Parameter Value 

Population size;   5 

Emission rate;              
Loudness;               
Maximum iteration  500 

   0. 98 

   0. 98 

 

Table 2: Weight of the problem 

Parameter Value 

   10 

   1 

   1000 

 

Table 2 implies that since    is associated with 

hard constraints, any solution   with      
     must be feasible. 
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To generate timetables, the program used 6 

input text files, namely: (i) Conflict.txt - 

containing courses conflict as per students 

registration, (ii) CourseName.txt containing 

names of the courses to be scheduled, (iii) 

CourseSize.txt containing the number of 

students registered for each course, (iv) 

NumberOfLectures.txt - containing the number 

of lectures for each course, (v) RoomName.txt - 

containing names of lecture rooms and (vi) 

RoomSize.txt containing the capacity of each 

lecture room. The file Conflict.txt was used to 

create a lecture conflict matrix. These input 

data were collected from Timetabling Section 

at DUCE and The Academic Registration 

Information System (ARIS) office.  

 

Results and Analysis 
A modified BA was tested by using real 

data from Dar es Salaam University College of 

Education (DUCE) which is a constituent 

College of the University of Dar es Salaam in 

Tanzania. Data for the first semester for the 

Academic Year 2018/2019 were used. Data 

included lectures excluding tutorials for science 

and mathematics as well as seminars for 

humanities. This is due to the fact that the Bat 

algorithm is a relatively new metaheuristic 

algorithm, thus the study focused on 

investigating the usefulness of the algorithm in 

solving combinatorial optimization problems.  

Small size instances of the problem are 

therefore sufficient for the research work.  

The study creates a course timetable for 

undergraduate courses only which is a major 

current project. The data set consisted of 5551 

students (from 1
st
 to 3

rd
 year) with a total of 

115 undergraduate courses for the semester, 10 

lecture rooms of different capacities excluding 

laboratories which were used for the teaching 

process. The largest room had a sitting capacity 

of 1000. There were seven (7) courses with 

more than 1000 students, hence exceeding the 

maximum room capacity of the available 

rooms. Those seven (7) big courses were split 

into either two or three sub courses. This gives 

a total of 124 courses that were used in the 

timetable construction. In addition, these 

courses need two (2) or three (3) lectures per 

week. Thus, in total there were 273 lectures for 

scheduling. There are 12 timeslots per day 

which makes a total of 60 timeslots for the five 

teaching days of a week (Monday to Friday). 

Table 3 provides a summary of the size of input 

data, Table 4 gives a sample course data, and 

Table 5 gives data on rooms (source: Timetable 

Section at DUCE). Table 6 shows a sample 

representation of the lecture conflict matrix. 

 

Table 3: Size of input data 

Courses  

Involved 

Number 

of 

lectures 

Number 

of rooms 

Students 

registered 

124 273 10 5551 

 

Table 4: Size of input data 

Courses 

Names 

Number of 

students 

Number of 

lectures per week 

BL111 470 3 

BT130 295 3 

BT225 230 3 

CH118 470 3 

CH121 404 3 

CL106  1584 2 

CT201 1712 2 

 

Table 5: Size of input data 

Name  Size 

MTR  100 

RoomA  160 

RoomB  160 

RoomC  160 

RoomD  160 

RoomE  160 

TheaterA  460 

TheaterB  460 

Hall  500 

TheaterC  1000 
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Table 6: A sample conflict matrix (   )  

  

BL111 BL111 BL111 BT130 BT130 CH116 CH116 

Lec1 Lec2 Lec3 Lec1 Lec2 Lec1 Lec2 

BL111 
0 1 1 1 1 0 0 

Lec1 

BL111 
1 0 1 1 1 0 0 

Lec2 

BL111 
1 1 0 1 1 0 0 

Lec3 

BT130 
1 1 1 0 1 0 0 

Lec1 

BT130 
1 1 1 1 0 0 0 

Lec2 

CH116 
0 0 0 0 0 0 1 

Lec1 

 

As mentioned earlier, the algorithm was 

implemented using Java programming 

language, on a PC machine with Intel(R) 

Celeron(R) 2955U processor of 1.4 GHz speed 

in Windows 10.  

Computational Results 

The proposed algorithm was able to generate a 

feasible solution of good quality. Table 7 gives 

a sample of solutions that were obtained.  

 

Table 7: A sample of a course timetable 

Day 07:00-08:00 08:00-09:00 . . 

.  
13:00-14:00 . . 

.  
17:00-18:00 18:00-19:00 

Mon 

CH243-ThtA  

CT225-RmB 

CT226-MTR 

CT107-ThtC 

DS101-MTR 

 HI103-ThtB 

. . 

.  

CH219-ThtA 

CT237-RmA  

CT302-RmB 

. . 

.  

BL111-ThtC 

CH290-ThtA 

LL212-Hall 

EC371-RmB 

EF200-RmA  

KF302-ThtA 

Tues 

BT225-ThtC  

CH121-ThtB  

CH243-ThtA 

EF200-RmA 

EP101A-

ThtC 

HI368-ThtA 

. . 

.  

GE142-Hall  

GE352-ThtC 

. . 

.  

CH290-ThtA 

EC373-RmB 

KI310-ThtC 

C117-RmB  

KF202-ThtA  

ZL236-ThtC 

Wed 
CH118-Hall 

 CT106-ThtC  

LL201-ThtA 

CH377-RmC 

CL106A-

ThtC 

EC217-RmA 

. . 

.  

CM105-

MTR  

DS101-RmB  

HI103-ThtA 

. . 

.  

CT209-RmA 

DS112A-

ThtC 

EV200-ThtA 

CH248-ThtB 

EF100B-ThtC 

KI208-ThtA 

Thur 
CH116-RmC  

GE352-ThtC 

DS112B-

ThtC  

KI208-ThtB 

. . 

.  

CH118-Hall  

CM209-RmA  

EA200-RmC 

. . 

.  

CT229-RmB 

EP101A-

ThtC 

IS272-MTR 

BT225-ThtB  

T228-RmA  

EC371-RmB 

 

Frid 
CT229-MTR  

C116-RmB  

EP101B-

ThtC 

CT302-RmA  

EP306A-

ThtC  

IS245-MTR 

. . 

.  

CH118-Hall  

EA200-RmA  

EA300B-

ThtC 

. . 

.  

BT130-ThtA 

CT225-MTR 

EC217-RmA 

EC373-RmB 

EF100A-ThtC 

LT310-ThtA 
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Performance analysis 

To assess the performance and the usefulness 

of the proposed algorithm, Table 8 presents a 

summary of results obtained after running the 

proposed algorithm 4 times. 

 

Table 8: Performance of the algorithm 

Description 
Run/Execution 

1 2 3 4 

Initial Objective function value 12200 9860 11900 12110 

Number of lecture collisions 0 0 0 0 

Number of lectures exceeding room capacity 0 0 0 0 

Number of  lecturers of the same course that offered on 

the same day 
0 0 9 11 

Number of back to back lectures 71 68 74 75 

Number of courses not assigned a room 0 0 0 0 

Final Objective function value 71 68 74 75 

 

It is worth noting that, in all 4 runs, all hard 

constraints were satisfied. That is, there is no 

lecture collision and each lecture is allocated in 

an appropriate room. Also, the table indicates 

that there were no lectures of the same course 

which were allocated on the same day. 

Furthermore, it can be noted that there were 

only a few conflicting courses which were 

allocated in consecutive timeslots. Since there 

were a total of 273 lectures to be scheduled, the 

table shows only between 24.9% and 27.5% 

lectures with some common students which 

were scheduled in consecutive timeslots. This 

has an implication that many students will have 

enough time to move from one lecture to 

another, in case they have another lecture on 

the same day.  

 

On convergence, Table 9 and Figure 3 give the 

improvement on the number of soft constraints 

that are violated (   and   )) and values of the 

objective function, respectively, against 

iterations for the four  (4) runs of the algorithm. 

Table 9 and Figure 3 show that there is a sharp 

drop in target values within the first few 

iterations, followed by a slow convergence. 

This is a normal situation for metaheuristic 

methods, where improvement in solution 

quality is expected to slow down when 

convergence is approaching. Furthermore, 

Figure 3 indicates that feasible solutions were 

obtained only during the first few iterations. 

The quality of the solution is very good since 

the final objective function value is much 

smaller compared to the initial value.  

Table 9: Improvements of soft constraints by iterations 

Iteration 
Run 1 Run 3 Run 3 Run 4 

                        

1 79 338 88 324 84 325 98 323 

5 7 176 12 171 12 179 11 204 

10 4 142 6 146 5 170 5 137 

20 2 114 4 124 7 106 3 112 

100 2 73 1 78 1 83 1 84 

200 2 65 0 72 0 82 0 80 

300 0 80 0 70 0 77 0 77 

400 0 74 0 69 0 75 0 75 

500 0 71 0 68 0 74 0 75 
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Figure 3:  Convergence to solutions. 

 

Conclusion and Recommendations 

This study aimed at investigating the 

usefulness of the bat algorithm in solving the 

course teaching timetabling problem. Since the 

original bat-inspired algorithm was basically 

prepared for solving continuous problems, 

modifications have been made in order to solve 

a problem that is defined on a discrete domain. 

We have developed a discrete version of the 

bat algorithm for CTP, which was tested using 

real data from DUCE. During the 

implementation of the proposed algorithm, five 

bats were used and each bat's position 

represented a solution to the problem. The 

obtained results show that the Bat algorithm is 

capable of generating timetables with good 

quality (Table 8). Moreover, the results show 

that the proposed algorithm computed feasible 

solutions very fast (see Figure 3).  

 

Future Research Directions  

The study was able to produce a feasible course 

timetable at DUCE using the bat algorithm but 

some recommendations could be valuable for 

further studies on the Course Timetabling 

Problem at DUCE. It is recommended to do the 

following in future: 

(i) The study only involved solving the 

problem by assigning lectures to timeslots 

and rooms. It is recommended to include 

seminars, tutorials and experiments for 

science subjects.  

(ii)  In this study, the bat algorithm was 

applied as a benchmark when solving the 

Course Timetabling Problem at DUCE. 

For further research, there is a need to 

apply hybrid heuristic techniques by 

combining the bat algorithm with other 

heuristics.  

(iii) Performing further fine-tuning of 

parameters might reduce the running time 

of the algorithm.  

(iv) It is worth doing a comparative analysis 

between the bat algorithm and other 

recent algorithmic techniques.  
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