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Abstract 
In this paper, one-strain tuberculosis (TB) model with two control mechanisms, education 

campaigns and chemoprophylaxis of TB-infected patients, was studied to determine their effects 

on the reduction of latent and active TB cases. In the case of analysis, boundedness and positivity 

of the model solutions were carried out to determine the biological feasibility of the study. 

Besides, the calibration of the parameters by utilizing the identifiability technique through the 

Markov chain Monte Carlo (MCMC) was thoroughly analysed. The optimum conditions for 

controlling TB were derived from the Pontryagin Maximum Principle. The numerical simulations 

were carried out using the forward-back sweep method with the help of the Runge-Kutta fourth-

order numerical schemes. Simulation results showed that the education campaigns strategy is 

more effective in reducing TB infections than the chemoprophylaxis of TB-infected individuals. 

The combination of the two control strategies reduces a significant number of infections than 

when each strategy is used on its own. To minimize the transmission of TB from the community, 

we recommend the education campaigns strategy be a focal point and treatment of latent TB to be 

paired with the treatment of active TB cases. 
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Introduction 

Tuberculosis (TB) is a highly contagious 

airborne disease caused by bacillus 

Mycobacterium tuberculosis (MTB). Among 

the infectious diseases caused by a single 

infectious agent, TB is globally ranked the 

ninth with an estimate of 1.3 million deaths 

and 10.4 incident cases recorded in 2016, the 

tally which is above HIV/AIDS (WHO 2017). 

The TB burden is high in developing countries 

due to poor nutrition, the resurgence of HIV 

and overcrowded accommodation (Mlay et al. 

2015, WHO 2017). TB retards the economy of 

the developing world as it affects more men 

than women and specifically the productive 

working group ageing between 15 and 59 

years (Agusto 2009, Mlay et al. 2015, WHO 

2017). The typical TB affects the lungs 

(pulmonary TB). However, it can also affect 

other parts of the body and organs (extra-

pulmonary TB) such as the central nervous 

system and bones (WHO 2012).  

The major focus of this particular study was 

on pulmonary TB. Pulmonary TB is a bacterial 

lung infection that can cause various 

symptoms, including chest pains, shortness of 
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breath and severe coughing. Also, if someone 

does not receive treatment on time, it can be 

life-threatening. In this case, an infectious 

individual expels air that contains the minute 

droplets of MTB by coughing, sneezing, 

speaking, or singing (Castillo-Chavez and 

Song 2004). An individual gets infected with 

TB when he/she inhales air containing MTB 

droplets. Once infected, an individual can 

progress to active TB via two routes: either 

directly to the infectious state via fast route 

when the immunity of the body is 

compromised or slow route through the latent 

stage of the disease (Ozcaglar et al. 2012). A 

chance of being infectious is 10%, while 90% 

of individuals infected with TB will remain 

noninfectious for the rest of their lives 

(Castillo-Chavez and Song 2004, Ozcaglar et 

al. 2012). The clinical signs of active TB 

include excessive coughing and coughing up 

sputum, general tiredness, night sweats, chest 

pains, fever, weight loss, short breaths and loss 

of appetite (Cohen and Murray 2004). 

Treatment of active TB does not confer 

permanent immunity. Once recovered from 

TB, an individual may revert to the latent 

stage. TB dynamics are complex in such a way 

that even reducing the basic and the effective 

reproduction numbers below one do not 

guarantee the clearance of the disease from the 

community. Modelling of the TB epidemics 

has become the means to study the complex 

dynamics of the disease to advise the public 

health policymakers to construct the 

appropriate controls and intervention strategies 

to fight against TB infections (Hattaf et al. 

2009, Mlay et al. 2015).  

Hattaf et al. (2009), formulated an optimal 

model of TB with exogenous reinfection by 

introducing a control mechanism that prevents 

exogenous reinfection as the result of 

preventing contacts between infectious and 

infected individuals in the latent group. The 

results showed that the number of infectious 

individuals in the one-year frame is 

significantly reduced when the control is 

imposed on latently infected individuals than 

when control is not used. An optimal control 

model of TB with treatment, a case study of 

Angola was formulated by Silva and Torres 

(2012) to include the mechanisms of helping 

infectious individuals to complete the 

treatment and reducing the number of 

individuals with persistent latent TB. The 

successful implementation of these controls 

prevents the enviable number of new and 

reinfected TB cases. Athithan and Ghosh 

(2015) formulated an optimal model of TB 

with case treatment and detection. They treated 

the case detection parameter as a variable 

(time-dependent). As time evolves, they 

managed to show that the case detection 

reduces the significant number of infected 

individuals when treated as a variable than 

when is taken as a constant parameter. Jung et 

al. (2002) came up with two strain tuberculosis 

model in which the treatment efforts (case 

holding and case finding) were introduced. 

They found that the program that follows these 

treatment efforts reduces a remarkable number 

of latent and infectious individuals with 

resistant TB cases. 

In this article, we modified a TB model of 

Mlay et al. (2014) by assuming that some 

infected individuals are immune-compromised 

as a result of progressing faster to active TB. 

Two control mechanisms, education 

campaigns and chemoprophylaxis (treatment 

of latent TB) are incorporated into the model 

as efforts to reduce the number of individuals 

who are latently and actively infected with TB. 

Besides, we estimated model parameters using 

Markov Chain Monte Carlo (MCMC) 

technique to determine the efficiency and 

accuracy of model parameters. The 

identifiability technique was used in the 

calibration of parameters as the study misses 

the actual data. Solonen et al (2013) has 

applied the same technique. 

The MCMC technique is widely used in 

various areas of research.  Gilks et al. (1995) 

used it in stochastic non-linear dynamic 

systems in various fields of physics, biology, 

chemistry, and computational finance; while 

Mbalawata et al. (2014) applied MCMC in 

stochastic models and Solonen et al. (2013) 
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applied it in SEIR epidemic model. The 

MCMC algorithm usually works by generating 

a sequence of random draws from the target 

distribution which converge to prior 

distribution (Gilks et al. 1995, Haario et al. 

2001, Gelman et al. 2013). The generated 

samples of the data (y) are therefore used to 

determine the properties of the distribution of 

each parameter. The prior information is 

usually termed as a prior distribution ( )p  , 

where   stands for model parameters that are 

randomly considered. In the Bayesian 

inference approach, the parameter is estimated 

by employing posterior distribution ( | )y  as 

it is pointed in Mbalawata et al.  (2014). The 

posterior distribution ( | )y   is defined as 

( | ) ( )
( | )

( | ) ( )

l y p
y

l y p d

 
 

  



, 
 

whereas ( | )l y   represents the likelihood 

function that contains the necessary 

information given by the data, ( )p  is the 

prior distribution and denominator,

( | ) ( )l y p d  
 
is known as normalization 

constant that ensures posterior distribution 

integrates to one.  

The most well-known algorithms in MCMC 

methods are the Metropolis, Metropolis-

Hastings and Gibbs sampler algorithms (Gilks 

et al. 1995). The Metropolis algorithm usually 

generates a sequence of random draws from 

the approximate distribution which converge 

to ( | )y   (Gilks et al. 1995, Haario et al. 

2001, Gelman et al. 2013). The Metropolis-

Hastings algorithm is a generalization of the 

random walk Metropolis algorithm that uses an 

accept/reject rule to converge to the target 

distribution ( )   (Gilks et al. 1995). The new 

candidate 
*

  is created from proposal 

distribution (. | )q   that contains the 

information from the previous values  . The 

MCMC algorithm produces a chain of values 

that depend on the previous iterations (Chib 

and Greenberg 1995). The Metropolis-

Hastings (MH) algorithm works by sampling a 

candidate point 
*


 
from a proposal distribution 

(. | )q  and then accepting the point with an 

acceptable probability of 

*
( ) ( | *)

min 1,
*

( ) ( | )

q
old

q
old old

   


   


 
 
 
 

  (Gilks et al. 

1995). 

In general, the proposal distributions used 

in MCMC algorithms should result in well 

mixing of chains and converge at a suitable 

acceptance rate. The determination of the most 

suitable proposal distribution for a particular 

target distribution is a very important aspect. 

Moreover, it is a difficult task because it 

involves many trials and errors (Mbalawata et 

al. 2014). Markov chain is said to converge 

when the unique distribution has been 

achieved and assessed by how well the chain is 

mixed. The good mixing of the chain means 

the degree to which the Markov chain explores 

the support of the posterior distribution. The 

convergence can be assessed through statistical 

and graphical tools such as Trace or time 

series, two-dimensional parameters and or 

auto-correlation plots.  

 

Materials and Methods 

In this section, a one-strain deterministic 

compartmental model was constructed by 

modifying the model of Mlay et al. (2014). 

The modification task was done by fusing the 

infectious classes I1 and I2 to a single infectious 

class I that leads to Susceptible-Vaccinated-

Exposed-Infectious-Treated (SVEIT) model. 

Besides, we assumed that some susceptible 

individuals progress faster to infectious class 

and an individual can die due to disease while 

is under treatment. Susceptible individuals are 

recruited by birth at a rate of   and come into 

contact with infectious individuals, I  at per-

capita infection rate .  A fraction   of 

susceptible individuals who are immuno-

compromised join directly to the infectious 

group .I  The proportion,   of babies, are 

vaccinated at birth while the remaining 
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proportion  1   is left out to join the 

susceptible class. Vaccinated babies lose 

immunity and become susceptible at a per-

capita rate  , from which 
1


 is the mean 

expiry period of a vaccine. Latently infected 

individuals are endogenously reactivated and 

progress to active TB at the per-capita rate  . 

The infectious individuals progress to the 

treatment group at the per-capita rate  . TB 

does not confer permanent immunity. Once 

treated, an individual may receive another 

episode of disease and relapse back to the 

latent group at a reduced infection rate of .  

Infectious and treated individuals are assumed 

to die with disease-induced mortality rates of 

δ1 and δ2, respectively, while the rest classes 

die naturally at a per-capita rate µ. All 

variables and parameters are assumed to be 

non-negative. 

Besides, we formulate the model by making 

the following assumptions: 

a) All individuals are susceptible to TB, 

mixing homogeneously and have an 

equal chance to be infected with TB 

regardless of age, sex and social status. 

b) TB vaccine is administered only once to 

susceptible individuals and usually 

provided to the newborn. 

c) Natural recovery is negligible and hence 

ignored. 

d) Recovery of an active TB individual is 

only through treatment. 

 

Model equations 

The model description and assumptions 

made in the section of materials and methods 

lead to the following system of ordinary 

differential equations: 

(1 ) ,
dS SI

N S V
dt N


          

 

( ) ,
dV

N V
dt

       
 

( ) ,
dL SI TI

L
dt N N

 
        

(1) 

1( ) ,
dI

L I
dt

         
 

( ) ,
2

dT TI
I T

dt N


         

 

.N S V L T I        

 

Positivity and boundedness of solutions 

The solutions of the model (1) denoted by
5


 

are such that, the set of the points 

1 2 3 4 5
( , , , , )ix x x x x x  in 

5



 
has positive 

coordinates. We consider the system of 

Equations (1) with the initial values 
0 0 0 0 0 0

1 2 3 4 5
( , , , , )x x x x x x . Using the approach of 

Lungu et al. (2013), we formulate the 

following lemma: 

Lemma 1. The system (1) can be transformed 

into the following differential inequalities 

         
1

,
j

j

i
i i

n

ij

dx
A x B x

dt




                 (2)

( 1, 2, 3, ..., ),i n  

 

where 0 0,ijB   . If (0)ix    then

( ) 0ix t   for all 0t   and 1 i n  . We 

assume that 0  . For the case, 0   it 

approximates the system with the sequence 

0k   . 

Proof. By contradiction 

Suppose (0)ix    for 1 5i   is not true. 

Hence there exists a smallest number 0 0t    

such that ( ) 0ix t  for 1 i n  , 00 t t  ,

0( ) 0ix t  for at least one i say 
0

i i  . Then 

0i
x  is a decreasing function at 0t t  , so that 

0
0( ) 0.

idx

dt
t                                    (3) 

 



Mlay and Hugo - Application of optimal control to tuberculosis model with parameter … 

702 

At 
0 ( )ix t , the differential inequality (3) 

becomes 

1

0
( ) 0

0
.

n

ij j
j

idx
t B x

dt
 



        (4) 

This contradicts our Lemma (1). For the state 

variables in our model, we always take  

(0) 0, (0) 0, (0) 0, (0) 0, (0) 0.S V L I T      (5)  

Thus in the region, 
5


the model is 

epidemiologically and mathematically well-

posed□ 

 

TB model with control 

We incorporate the time-dependent controls, 

education campaigns, u1 and 

chemoprophylaxis for latently infected 

individuals, u2 to the model system (1). These 

control strategies have been chosen because 

they make a significant contribution to the 

control of the spread of the disease to the 

community. The model with control is 

therefore represented as 

 

1
(1 ) (1 ) ,

dS SI
N u S V

dt N


          

 

                
1

(1 ) ( ) ,
dV

u N V
dt

       
 

               
1 1 2

(1 ) (1 ) (1 ) ,
dL SI TI

u u u L L
dt N N

 
                                               

(6)    

                
2 1 1(1 ) (1 ) ( ) ,

dI
u L u I I

dt
          

 

1 1 2(1 ) (1 ) ( ) .
dT TI

u I u T
dt N


          

 

 

The incorporated controls are used in making 

decisions involving complex biological 

situations (Lenhart and Workman 2007). It 

determines the optimal level of the 

intervention strategy that is preferred in 

reducing the spreads of TB. The objective 

functional is minimized subject to the system 

of ordinary differential equations in (6) and is 

expressed as 

2 2

0 1 2 1 1 2 2
1 2

1 1
min ,

, 2 2

t f
J A L A I B u B u dt

u u
   

 
 
 

 

 

(7) 

where 
f

t  is the final time, A1L and A2I are the 

social relative costs associated with controlling 

TB to the individuals in latent and infectious 

classes, respectively, while B1 and B2 are 

relative weights associated with respective 

control measures u1 and u2. The objective 

functional (7) is involved in minimizing the 

costs of controls. In this paper, a quadratic 

function that satisfies the optimality conditions 

is considered. Thus, there exist optimal 

controls 
*

1
( )u t  and 

*

2
( )u t  such that 

* *

1 2 1 2 1 2
( ( ), ( )) min{ ( ( ), ( ) | ( ), ( ) )},J u t u t J u t u t u t u t U   

where U = {(u1(t), u2(t))} is Lebesgue 

measurable, ai ≤ (u1, u2(t)) ≤ bi,i = 1,···5, ai = 0, 

bi = 1, t ∈ [0,tf] is the closed set and are 

evaluated under Lebesgue measurable control. 

The necessary conditions that satisfy the 

optimal control are developed by Pontryagin’s 

Maximum Principle (Lenhart and Workman 

2007). The principle works by converting the 

system of Equations (6) and (7) into a point-

wise minimization problem known as a 

Hamiltonian, H function such that 
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 
 

 
 

2 2

1 2 1 1 2 2

1 1

2 1

3 1 1 2

4 2 1 1

5 1 1

1 1

2 2

        (1 ) (1 )

        (1 ) ( )

        (1 ) (1 ) (1 )

        (1 ) (1 ) ( )

        (1 ) (1 )

H A L A I B u B u

SI
N u S V

N

u N V

SI TI
u u u L L

N N

u L u I I

TI
u I u

N


    

   

 
   

    


  

    

     

   

      

     

    2
( ) ,T 

                         (8) 

 

 

 

 

 

 

 

 

where λi, i = 1,2,···,5 are the co-state variables associated with state variables S, I, V, L and T. The 

adjoint equations are obtained by using relation 

         

,
d Hi

dt xi

 
 


 

 

   (9) 

with transversality condition 

            
( ) 0.

f
ti   (10) 

From (8) we obtain the following adjoint equations: 

        

31

1 1 1
(1 ) (1 ) ,

d I
u u I

dt N N

 
      
 
 
 

  
(11) 

      

2

1 2
( ),

d

dt


         

(12) 

      

3

2 3 4 3 1
(1 ) ( ) ,

d
u A

dt


           

(13) 

       4

2 1 1 3 1 5 3 1 4 5 4 1
(1 )  (1 ) + (1 )

d S T
A u u u

dt N N

  
                    

 

(14) 

     

5 1

5 2 5 3

(1 )
( ) ( ) .

d u I

dt N

 
    


      

(15) 

 

The optimality of the control model (6) is obtained by using 

*
( ) 0,i

H
u t

ui


 


 

where i = 1,2. The solutions of 
*

1
( )u t  and 

*

2
( )u t  are presented in a compact form as 

2

* 4 5 3 1 3 5 2

1

1

( ) ( ) ( )
( ) max 0, min 1, ,

NIN SI IT
u t

NB

               


  
  

  
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* 4 3

2

2

( )
( ) max 0, min 1,

L
u t

B

  


  
  

  

. 

 

Results and Discussion 

The parameter identifiability for model (1) 

has been manipulated by the means of 

Gaussian noise through the Delayed Rejection 

Adaptive Metropolis (DRAM) algorithm. The 

MCMC samples are analyzed via scattering 

and auto-correlation plots. The graphical 

method shows the correctness of the 

distribution of the chain and henceforth, we 

determine the goodness of the performance of 

the MCMC method. The estimated parameter 

values are therefore presented in Table 1 and 

are used for numerical simulations of the 

model. The Geweke test is used in the 

comparison of the mean of the first 10% of the 

chain samples to the next second half of the 

chain (Geweke and Tanizaki 2003), and its 

outcomes are therefore presented in Table 1. 

 

Table 1: MCMC estimated parameter values of the model 

Symbol Value Estimated Mean Std MCMC error Geweke 

λ 0.05 0.049877 0.050168072 0.000858465 0.00011428 0.989731486 

β 2.58 2.580579 2.578914906 0.013068771 0.001884119 0.999354325 

ρ 0.4 0.402655 0.400770992 0.008978622 0.001327865 0.999822737 

θ 0.1 0.1009 0.100746486 0.002716445 0.000362394 0.988338865 

  0.03 0.029985 0.030113728 0.000387371 0.00004 0.9955884 

µ 0.02 0.019083 0.019437045 0.001083897 0.000146612 0.963203722 

δ1 0.3 0.298597866 0.294376438 0.012281125 0.001617703 0.960811576 

ν 0.3 0.300757638 0.304299461 0.01721474 0.002465443 0.916977296 

γ 0.2 0.192241199 0.195692833 0.078573245 0.012212649 0.587932159 

α 0.1 0.099035081 0.09979694 0.00821952 0.001151098 0.912942282 

δ2 0.2 0.201833459 0.203942958 0.007165459 0.001025618 0.949477431 

 

The convergences of each parameter 

generated by MCMC are presented in Figures 

1, 2, 3 and 4. The correctness and goodness of 

the performance of the MCMC results are 

analyzed by using scatter, autocorrelation, 

trace, and marginal distribution plots. Figure 1 

shows the samples for the parameters in 

10,000 iterations and parameters such as λ, β, 

ρ, θ,  , µ and α show a good mixing than the 

rest in the list of parameters displayed in Table 

1. Pair plots of parameters reveal good 

relationships as many parameters indicate 

positive and strong correlations as shown in 

Figure 4. The convergences of MCMC sample 

parameters are therefore graphically visualized 

by plotting autocorrelation plots as shown in 

Figure 2. The convergence oscillates up and 

down and finally stabilizes at around zero with 

60 lags as shown in Figure 2. The sample 

marginal distribution plots with mean and 

original parameters are depicted in Figure 3 

and provide the promising values of the 

parameters which show the estimated values 

tend to be close to the original values. 
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Figure 1: Markov Chain Monte Carlo (MCMC) scatter plots. The vertical axis represents 

samples and the horizontal axis represents the number of iterations. 

 
Figure 2: MCMC autocorrelation plots for some of the parameters. The vertical axis represents 

samples, while the horizontal axis represents the number of iterations. 
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Figure 3: Marginal distribution plots and a mean of MCMC samples. The green colour 

represents the sample mean, while the black colour represents the original parameter 

values. The x-axis represents the parameter distribution, while the y-axis represents 

the number of iterations.  

 
Figure 4: A plot showing pair correlation of parameters. 
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The estimated parameters were therefore 

used to solve and simulate state optimal 

control model (6) together with adjoint 

Equations (11), …, (15) through the Runge-

Kutta forward-backward sweep techniques. 

The adjoint Equations (11), (12), (13), (14) and 

(15) were solved by the fourth-order Runge-

Kutta scheme using the forward solution of the 

state equations in (6). While optimality 

conditions are satisfied through the convex 

update of the previous control values. The 

numerical results are now presented in the 

following Figures 5 to 7. 

In particular, the control profile of Figure 5 

shows that the control, u1 remains at 1 for 0.55 

years, while in Figure 6 the same control 

remains at 1 for 0.81 years as an implication of 

more cost incurred compared with when both 

controls are applied. Furthermore, the 

education campaigns control alone is more 

effective in controlling TB than 

chemoprophylaxis of latently infected 

individuals (compare Figure 6 and Figure 7). 

This implies that the community members 

need to be educated on how TB is transmitted 

and the means of being protected from it. Also, 

the chemoprophylaxis of latently infected, u2 is 

less effective in controlling TB as shown in 

Figure 7. For it to be effective, it has to be 

paired with the treatment of active TB cases. 

 

Figure 5: Effect of the education campaigns, 1u  and chemoprophylaxis of latently infected 2u . 

 

Figure 6: Effect of the education campaigns, 1u . 
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Figure 7: Effect of chemoprophylaxis of latently infected, u2. 

 

Conclusion 

The dynamical model for the transmission of 

TB has been developed and analyzed. In this 

paper, the main focus was to estimate 

parameters by using the Bayesian approach via 

Markov Chain Monte Carlo (MCMC) as well 

as solving the time-dependent control problem 

to seek optimal control measures to combat TB 

infections and transmissions. The output of 

MCMC shows good correlation as well as 

generated parameter values used in numerical 

simulations. The optimal control numerical 

simulations which are based on Forward-

Backward Sweep Method (FBSM) were 

carried out and the results were presented in 

Figure 5 to Figure 7. Two control strategies 

were involved; these include education 

campaigns, u1 and chemoprophylaxis of 

latently infected individuals, u2. Numerical 

simulations showed that the combination of 

education campaigns and chemoprophylaxis 

was the best strategy in controlling TB than 

when each strategy was taken alone. From the 

findings of this study, it is concluded that the 

mathematical model based on parameter 

estimation and the optimal control theory lead 

to important results due to accurate and precise 

parameter values used for numerical 

simulations which in turn reflect economic 

consequences of the studied disease. 

 

Conflict of Interest: No conflict of interest. 

 

References 

Agusto F 2009 Optimal chemoprophylaxis and 

treatment control strategies of a 

tuberculosis transmission model. World J. 

Model. Simul.  5(3): 163–173. 

Athithan S and Ghosh M 2015 Optimal control 

of tuberculosis with case detection and 

treatment. World J. Model. Simul. 11: 111–

122. 

Castillo-Chavez C and Song B 2004 

Dynamical models of tuberculosis and their 

applications. Math. Biosci. Eng. 1(2): 361–

404. 

Chib S and Greenberg E 1995 Understanding 

the metropolis-hastings algorithm. The 

American Statistician 49(4): 327–335. 

Cohen T and Murray M 2004 Modeling 

epidemics of multidrug-resistant M. 

tuberculosis of heterogeneous fitness. 

Nature Med. 10(10): 1117–1121. 

Gelman A, Carlin JB, Stern HS, Dunson DB, 

Vehtari A and Rubin DB 2013  Bayesian 

data analysis. Chapman and Hall/CRC 

Press. 

Geweke J and Tanizaki H 2003 Note on the 

sampling distribution for the metropolis-

0 1 2 3 4 5
100

120

140

160

S
u

sc
e
p

ti
b

le
 H

u
m

a
n

 

 

Time (years)

With control

Without control

0 1 2 3 4 5
20

40

60

80

100

E
x

p
o

se
d

 H
u

m
a
n

 

 

Time (years)

With control

Without control

0 1 2 3 4 5
0

10

20

30

Time (years)

In
fe

c
te

d
 H

u
m

a
n

 

 

With control

Without control

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

C
o

n
tr

o
l 

P
ro

fi
le

 

 

Time (years)

u
1
(t)

u
2
(t)



Tanz. J. Sci. Vol. 47(2), 2021 

709 

hastings algorithm. Commun. Statistics-

Theor. Meth. 32(4): 775–789. 

Gilks WR, Richardson S and Spiegelhalter D 

1995 Markov chain Monte Carlo in 

practice. Chapman and Hall/CRC. 

Haario H, Saksman E and Tamminen J 2001 

An adaptive metropolis algorithm. 

Bernoulli 7(2): 223–242. 

Hattaf K, Rachik M, Saadi S, Tabit Y and 

Yousfi N 2009 Optimal control of 

tuberculosis with exogenous reinfection.  

Appl. Math. Sci. 3(5): 231–240. 

Jung E, Lenhart S and Feng Z 2002 Optimal 

control of treatments in a two-strain 

tuberculosis model. Discrete and 

Continuous Dynamical Systems Series B 

2(4): 473–482. 

Lenhart S and Workman JT 2007 Optimal 

control applied to biological models. 

Chapman and Hall/CRC. 

Lungu E, Massaro TJ, Ndelwa E, Ainea N, 

Chibaya S and Malunguza NJ 2013 

Mathematical modelling of the 

HIV/Kaposi's sarcoma coinfection 

dynamics in areas of high HIV 

prevalence. Comput. Math. Meth. Med. 

2013. 

Mbalawata IS 2014 Adaptive Markov chain 

Monte Carlo and Bayesian filtering for 

state-space models. PhD Thesis, 

Lappeenranta University of Technology. 

Mlay GM, Luboobi L, Kuznetsov D and 

Shahada F 2015 Optimal treatment and 

vaccination control strategies for the 

dynamics of pulmonary tuberculosis. 

Int. J. Adv. Appl. Math. Mechan. 2(3): 

196–207. 

Mlay GM, Luboobi LS, Kuznetsov D and 

Shahada F 2014 Dynamics of a one-

strain pulmonary tuberculosis model 

with vaccination and treatment. 

Commun. Math. Biol. Neurosci. 2014. 

Ozcaglar C, Shabbeer A, Vandenberg SL, 

Yener B and Bennett KP 2012 

Epidemiological models of Mycobacterium 

tuberculosis complex infections. Math. 

Biosci. 236(2): 77–96. 

Silva CJ and Torres DF 2012 Optimal control 

strategies for tuberculosis treatment: a case 

study in Angola. Numerical Algebra, 

Control and Optimization 2(3): 601–617. 

Solonen A, Haario H, Tchuenche JM and 

Rwezaura H 2013 Studying the 

identifiability of epidemiological models 

using MCMC. Int. J. Biomath. 

6(02):1350008. 

WHO 2012, 2010/2011 Tuberculosis Global 

Facts: Global Tuberculosis Report. 

http://apps.who.int/iris/bitstream/10665/759

38/1/9789241564502 eng.pdf 

WHO 2017 Global Tuberculosis Report.  

https://www.who.int/tb/publications/global

_report/gtbr2017_main_text.pdf 

 

 

 

http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502%20eng.pdf
http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502%20eng.pdf
https://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf
https://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf

