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Abstract 

In this paper, a predator-prey relationship in the presence of prey refuge was studied. The analysis 

of the dependence of locally stable equilibrium points on the parameters of the problem was 

carried out. Bifurcation and limit cycles for the model were analyzed to show the dynamical 

behaviour of the system. The results showed that the system is stable at a constant prey refuge m = 

0.3 and prey harvesting rate H = 0.3. However, increasing m  and decreasing H  or vice versa, the 

predator-prey system remains stable. It was further observed that for a constant prey refuge m ≥ 

0.78, the predator population undergoes extinction. Therefore, m was found to be a bifurcation 

parameter and m  = 0.78 is a bifurcation value. 
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Introduction 

The dynamic relationship between 

predators and their preys has been, and 

continue to be, one of the most important 

topics of study in ecology and mathematical 

ecology due to its universal existence and 

importance (Berryman 1992, Mapunda et al 

2018). As species interact, they compete 

amongst themselves for resources and space. 

They are doing so either under intraspecific 

competition or interspecific competition 

(Schwinning and Kelly 2013). A Holling type I 

functional response assumes that there is no 

satiation (linear relationship) rather predators 

keep on feeding until the prey population goes 

to extinction or remains with few individuals to 

make preying difficult (Dawes and Souza 

2013). This situation leads to competition for 

resources among the predators. A prey refuge 

is one of the strategies that can be used to 

protect preys from over-predation (Sagamiko et 

al. 2015). Increasing prey refuge implies 

increasing prey density (Kar 2005). 

Bifurcation is a sudden change of stability 

behaviour of a dynamical system at equilibrium 

as an equilibrium parameter changes. For 

complex dynamical systems, bifurcation theory 

and stability analysis are used for investigating 

their dynamical behaviour without determining 

explicitly the solutions of their governing 

equations for various initial and boundary 

conditions (Stefanou and Alevizos 2016). 

Much work has been done on predator-prey 

systems incorporating prey refuge and species 

competition as pointed out by Majeed (2018), 

Kar (2005), Kar (2006), Das et al. (2013) and 
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Sagamiko et al. (2015). Majeed (2018), studied 

the dynamics of a prey-predator model with 

refuge and stage structures in both populations, 

Sagamiko et al. (2015) considered a threatened 

prey-predator system with prey refuge in the 

Serengeti ecosystem, Kar (2005) worked on the 

stability analysis of a prey-predator model 

incorporating a prey refuge, Kar and 

Chakraborty (2010) explored the effort 

dynamics in a prey-predator model with 

harvesting in which competition among 

predators was considered. In particular, Kar 

(2006) and Das et al. (2013) investigated the 

dynamics of exploited prey-predator with 

constant prey refuge. However, the study of the 

dynamical behaviour of a harvested Holling 

type I predator-prey system with prey refuge 

incorporating intraspecific competition among 

predator species is not treated in the existing 

literature, and therefore this study intended to 

take care of this aspect. 

This paper is organized as follows: Model 

formulation and basic results are under the 

Materials and Methods section where the 

model is formulated and the existence of 

equilibrium points is studied, Boundedness of 

the system, stability analysis of the equilibrium 

points, and existence of periodic solutions are 

presented. The next section is about  numerical 

solutions in which phase plots and bifurcation 

diagrams for examining the effects of 

harvesting and prey refuge to the dynamics of 

the prey-predator system are presented 

followed by discussion and concluding remarks 

of the work.  

 

Materials and Methods 

 

The mathematical model 

A predator-prey system is modelled using 

Lotka-Voltera as follows: 
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where N and P  denote prey and predator 

population densities, respectively at any time 

t , and r , K , 
1 , 

2 ,  ,  , and H  are all 

positive constants. Here r  represents intrinsic 

growth rates of prey population; K  is the 

carrying capacity; 
1  is the predation rate to 

prey species;   is the natural mortality rate 

for a predator; 
2  is the predator biomass to 

the prey species;   is the intraspecific 

competition among predators; H  is harvesting 

rate in prey and m  is prey refuge constant 

with  1,0m . The following assumptions 

have been taken into considerations of the 

model system (1): There is logistic growth of 

prey species in absence of predation and 

external factors. The rate of increase of the 

predator population depends on the amount of 

prey biomass it converts to food. 

 

Existence of equilibrium points 

To study the existence of the equilibrium 

points of the system (1), all possible solutions 

satisfying equation (2) are listed. 
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Boundedness of solution 

The state variables of model (1) represent the 

population densities of species. Thus, they 

must be non-negative at any time 0t . 

Lemma 1. All solutions of the system (1) are 

bounded in  }0,0:),(
2

 PNPN . 

Proof: Defining a function represented in 

Equation (3): 
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Differentiating S  along the trajectory; 

resulting into Equation (4) as: 
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Taking the sum of the last relation and the 

Equation (3) multiplied by  results into; 
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Solving for S  as 0t , obtaining Equation (7) 

as: 
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as  t  gives 
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Thus, S is bounded and this completes the 

proof. 

 

Linear stability analysis 

To study the linear stability of the equilibrium points, the Jacobian matrix of the right-hand side of 

Equation (1) is presented in Equation (9). 
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It can be shown that the equilibrium points 

0E and 
1E  are always unstable. 

The equilibrium point 
0E  has eigenvalues 

  ,Hr , and therefore unstable for 
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1E  has 
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The Jacobian matrix of  the interior point 
2E   

takes the form; 
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The characteristics polynomial of the matrix in Equation (10) is 
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Since  

011 A and 012 A then, linear stability takes 

place if 022 A   and 021 A .  

 

Existence of periodic solutions  

The system of Equation (1) can be written in 

general form as; 
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According to Bendixson’s negative criterion, 

the following theorem holds: 
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Therefore, the system has periodic solutions. 

 

Numerical Results and Discussion 

The simulation of the model (1) is done using 

parameter values as given in Table 1. 
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Table 1: Parameter values for model (1) 

Parameter Parameter value Source 

r  2 Kar (2004) 

1  0.6 Kar (2003) 

2  0.4 Assumed 

m  10  m  Standard range for refuge 

K  200 Assumed 

H  0.24 Das et al. 2013 
  0.083 Kar and Chakraborty (2010) 
  0.0001 Assumed 

 

Bifurcation 

Figure 1 shows the bifurcation behaviour of the 

system (1) with m as a bifurcation parameter. 

For 78.0m , there is an increase in prey 

population and decrease in predator population 

leading to extinction due to resource scarcity. 

The decrease in predator population due to 

more protected prey is also described in Figure 

8.  

 
Figure 1: A bifurcation diagram for system (1) with m  a bifurcation parameter. The vertical axis 

measures both 
*N  and  

*P . 

 

Phase portraits  

Figure 2 shows a phase diagram that justifies 

the existence of periodic solutions as was done 

in theoretical analysis. Moreover, it is observed 

that the interior equilibrium point is always 

stable when m = 0.3 and H = 0.3; the behaviour 

which is also displayed in Figure 7.  
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Figure 2: Phase portrait of the system (1) for m = 0.3, H = 0.3. 

 
Figure 3: Phase portrait of the system (1) when m = 0.13, H = 0.1. 

 

Figure 3 shows the effect of a decrease in 

refuge and harvesting. It is observed that the 

predator-prey system is unstable. The 

instability is due to excess preys resulted from 

small protected prey species. To bring the 

system into stability, the harvesting rate has to 

be increased as shown in Figure 4.  
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Figure 4: Phase portrait of the system (1) when m = 0.13, H = 0.63. 

 

 
Figure 5: Phase portrait of the system (1) when m = 0.5, H = 0.63. 

 

Figure 5 portrays the effect of increasing prey 

refuges for m > 0.4 and harvesting rate above 

50% (i.e., H = 0.63 for this case). It reveals the 

instability of the system which can be corrected 
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by decreasing the harvesting rate to 

unprotected preys as shown in Figure 6.  
 

 
Figure 6: Phase portrait of the system (1) when m = 0.5, H = 0.01. 

 

Species interactions 

 
Figure 7: Predator-prey interaction for protected prey m < 0.3. 
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Figure 8: Predator-prey interaction for increased protected prey m > 0.5. 

 

 

Prey harvesting 

Figure 9 demonstrates the extinction of both 

species when the rate of harvesting exceeds 

prey intrinsic growth rate. This results remind 

of the need for abiding with the theoretical 

analysis that the harvesting rate should not 

exceed prey intrinsic growth rate for the 

predator-prey system to be stable.  

 
Figure 9: Effect of harvesting on prey density when H ≥ r. 
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Conclusion 

In this work, a dynamic behaviour of a 

harvested predator-prey system with prey 

refuge and intraspecific competition was 

studied. The model incorporated harvesting to 

prey and intraspecific competitions to predator 

individuals. It was also assumed that Holling 

type I is the predator’s functional response to 

preys. Numerical studies have been conducted 

to verify the theoretical results. The dynamical 

behaviour indicated by simulations is in 

agreement with the theoretical results.  
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