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Abstract 

This research attempted to investigate the effects of double dose vaccination in a non-linear 

mathematical model of Covid-19 infections with special compartments class termed first and 

second dose vaccination. The basic reproduction number was obtained, the stability of the 

model was analyzed, and the sensitivity analysis was also carried out. Of interest is the 

numerical simulation of the model where the impacts of contact rate, first and second dose 

vaccination were studied. The obtained results recommended how to control the corona virus 

keeping in mind the contact rate and vaccination. 

 

Keywords: Covid-19, Double dose Vaccination, Basic Reproduction Number, Global 

Stability. 

Introduction 

COVID-19 pandemic has been identified 

as a global threat. The causative agent was 

identified as a novel coronavirus known as 

Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2), and the 

condition produced by the virus has been 

called Coronavirus Disease 2019 (COVID-

19) by the World Health Organization (WHO 

2020). It was confirmed by the WHO that the 

virus can also be breathed through normal 

breathing, resulting in new infections. 

COVID-19 has a 2–14-days incubation 

period, with approximately 97.5 per cent of 

infected patients developing symptoms by 

11.5 days of infection (Del and Malani 2020, 

Li et al. 2020, Lai et al. 2020). In Nigeria, as 

of 4
th

 June 2020, 11,516 cases had been 

confirmed, with 323 deaths (Adegboye et al. 

2020).  

In order to better understand how 

infectious diseases spread and how to prevent 

them, mathematical models are frequently 

used. Several researchers have presented 

different mathematical models as methods of 

understanding the spread and control of 

COVID-19 virus.  Das et al. (2021) presented 

a mathematical model that accounts for the 

transmission of the COVID-19 infections 

with a particular isolation class. The model 

was fitted with data from the ongoing 

pandemic scenario in India. Okuonghae and 

Omame (2020) with the aid of a 

mathematical model conducted an analysis of 

the spread of COVID-19 pandemic in Lagos, 

Nigeria. In the same vein, Ajisegiri et al. 

(2020) similarly conducted an analysis on the 

outbreak of COVID-19 in Nigeria. 

Advancing ways of curbing the spread of this 

deadly disease, Adegboye et al. (2020) 

presented a mathematical model which dealt 

with the early transmission of COVID-19 

virus in Nigeria. A mathematical model of 

COVID-19 with vaccination and treatment 

was presented and analyzed by Diagne et al. 

(2021); they concluded in their research that 
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both therapeutic and non-therapeutic 

measures could later be ways of 

exterminating the spread of the deadly virus 

in future. Peter et al. (2021) presented a new 

mathematical model of COVID-19 using real 

data from Pakistan. The basic reproductive 

number that represents an epidemic indicator 

is obtained from the biggest eigenvalue of the 

next-generation matrix, and the model is 

examined qualitatively using the stability 

theory of differential equations. The disease-

free equilibrium's global asymptotic stability 

criteria are determined. The study concluded 

that, with a regulated transmission rate, the 

methods used by the public health sector and 

the government to address the situation that is 

causing the pandemic to spread will be more 

effective.  

With the arrival of vaccination, various 

countries have approved the implementation 

of safe and effective COVID-19 vaccines for 

human use, and these include AstraZeneca, 

Moderna and Pfizer (Gumel et al 2021). An 

analysis of a mathematical model of COVID-

19 on ways of achieving herd immunity 

threshold was made by Gumel et al. (2021). 

In their paper, they stated the importance of 

two dose vaccination. It was emphasized that 

the first dose vaccine is particularly important 

to prime the immune system and the second 

dose is further needed to boost the immune 

system. The aim of this study was to 

investigate and analyze the effects of first and 

second dose vaccination in controlling the 

spread of COVID-19 pandemic using a 

mathematical model approach by extending 

the work of Das et al. (2021). Two additional 

compartments, namely individuals that are 

vaccinated with the first dose of vaccine V1(t) 

and individuals that are vaccinated with the 

second dose of vaccine V2(t) are 

incorporated. The S (t), E (t), I (t), Q (t), R 

(t), represents the susceptible, exposed, 

infected, isolated and recovered classes, 

respectively. The force of infection is defined 

as ,SI  where is the effective 

transmission between the susceptible and the 

infected individuals. 

 

Materials and Methods 

Formulation of model 

The modeling frame work of this study is 

based on the previous research by Das et al. 

(2021), the first and second dose vaccination was 

incorporated into the previous model. 
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Table 1: Description, parameters, values and references

 

Description Parameters Values References 

Recruitment rate   68,597.853 Estimated 

Effective contact rate    1.12 days
1

 Babaei et al. (2021) 

Progression rate from 

Exposed to Infected  

  1days
8

1   Li et al. (2020) 

Progression rate from 

Infected to Isolated class 

  13days10923.1   Adewole et al. 

(2021) 

Recovery rate   1days
10

1   Tang et al. (2020) 

Treatment rate  k  0.0701 Garba et al. (2020) 

Natural death rate   0.0003205 Estimated 

Covid-19 Induced death rate   0.018 Garba et al. (2020) 

Rate of first dose vaccine   0.4 Assumed 

Rate at which vaccinated 

population move to 

Susceptible  

  
 

 

0.2 Assumed 

Rate of second dose vaccine   0.5 Assumed 

Rate of population from 2V

to Recovery  

  0.02 Assumed 

  

 

Model analysis 
We shall discuss and analyze some 

basic properties of the proposed model to 

check for the existence and uniqueness 

of the solution of the model. Since we 

wish to check the Covid-19 incidence 

and prevalence, we focus our attention 

on system of equations below. 
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Existence and uniqueness of solution 
A Lipschitz criterion will be used to 

check for the existence and uniqueness of 

solution. Thus, if we recall from equation 3, 

let: 

QkIg

IEg

ESIg

VVg

VSg

VSSSIg

)(

)(

)(

)4()(

)(

6

5

4

213

2

11

























 

 

Theorem 1a:

 

Let 
1E  represent the region ,0 Rw  then the system of equation in )3( has a 

unique solution, provided that 6,,2,1, 
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are bounded and continuous. 

Proof: From (4) we obtain the partial derivative given below. 

For VSSSIg  1  
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Clearly, all the partial derivatives are 

Lipschitz continuous and bounded. Hence, 

the system of equations (3) has a unique 

solution. 

 

Invariant region 
Theorem 1b: Assume that all variables and 

parameters are non-negative for 0t . We 

show that the region where the model (3) is 

sensible, remains positively invariant and 

attracting to the model for all 0t , Thus, 

all the solution in   remains in   for all 

0t .  
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Proof: The total human population is defined as 

)()()()()()()( 21 tQtItEtVtVtStN  . Since human population changes with respect to 

time. Hence,   
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Positivity of solution 
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are positively invariant for 0t . 

Proof:  From equation )3(  introducing the force of infection   for simplicity of the 

expression,  
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Solving equation (17) by separation of variables, the solution to (17) is obtained as   
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Hence, the solution of the model is positive. This completes the proof of the theorem. Having 

satisfied all the basic properties of an epidemiology model, we conclude that the proposed 

model is suitable to study COVID-19 in human population. 

 

Equilibrium analysis 

In this section, we discuss the disease free and endemic equilibria of the model, 

respectively. 
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Existence of disease free equilibrium 

Recall from equation (3), at equilibrium that,  021 
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By equating the RHS of equation (3) to zero, and setting E, I, Q to zero, and solving the 

equations we obtain the disease free equilibrium states below. 

)26(
)(

,
)(

)( 0
1

0















 VS

)27(0,0,0,
)()(2

0
2 


 IQEV




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The next generation matrix is defined as
1*  VFG  and solving the Jacobian matrix above 

gives 

))((

0

0







S
R Where










)(

)(0S

)35(
])()[)((

)(
0








R

  

Stability analysis

 

Local stability analysis of diseases-free equilibrium 

 

To examine the stability of the equilibrium of the model, the following outcomes are 

proven: 

Lemma 1: The disease-free equilibrium of the model is locally asymptotically stable if 10 R

and unstable if 10 R . 

Proof: We consider the Jacobian of the System of equation (3) which is given by 
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Using row reduction )(,)( 21   kand and the matrix reduce to 44  
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The remaining eigenvalues are obtained as 
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From the equation above, all roots have negative real part; hence, we concluded that the 

disease free equilibrium is asymptotically stable.   

 

Local stability analysis of endemic equilibrium 

Theorem 2a:  Endemic equilibrium state is locally asymptotically stable if the determinant of a 

Jacobian matrix is greater than zero and the trace of the same matrix is less than zero (Nthiiri et 

al. 2016).
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To calculate the determinant, we assumed the following:

 

Let 
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Therefore, 
*J becomes
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   CFKDEBGMABKABDEJDet  *.

 

After the evaluation and substitution, the determinant of the above matrix becomes;
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That is, det.   0* J . Now, trace of  *J can be defined as the sum of the major diagonal 

elements. Trace = )41(FEDCBA   

                kIJofTrace **

That is,              0*   kI   

Hence, the trace of   0* J . Thus, the Jacobian matrix  *J  has eigenvalues that contain 

negative real parts; therefore, we conclude that the endemic equilibrium is locally 

asymptotically stable. 

 

Global stability at disease free equilibrium
 

To prove the global stability, we make use of Castillo-Chavez method (Castillo-Chavez and 

Song 2004). Consider a model of the form
 

)42(0)0,(,),(),,(  xGIxG
dt

dI
IxF

dt

dF
 

Where 
mx  represents, individuals that are not infected in the population and 

nRI   

represents infected individuals. Following the above representation, the disease free 

equilibrium state can be written as ),0,( *
0 xU 

 
the two conditions given below are used to 

verify the disease–free equilibrium is globally asymptotically stable.

 

)0,().( 1 xF
dt

dx
ForH   is globally asymptotically stable. 

 ),(0),(),,(),().(
^^

2 IxallforIxGIxGAIIxGH  
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Where )0,( *xGDA I  is an M-matrix (the off diagonal elements of A are non-negative) and 

  is the region where the model makes biological sense. 

Lemma 2: The fixed point )0,( *
0 xU  is globally asymptotically stable (g.a.s) equilibrium of 

(41) provided that 10 R  and assumption that   21 and)( HH  are satisfied. 

Theorem 2b: If ,10 R the disease free equilibrium is globally asymptotically stable and 

unstable if 10 R  

Proof: The model equation (3) above is re-written as in form of (41) by setting

).,,(and),,( 21 QIEVVSx   the disease free equilibrium is given by 
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And the system )0,(xF
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dx
  becomes 
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This equation has a unique equilibrium point  
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Which is asymptotically stable, therefore, the condition  1H  is satisfied.  

For 
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Clearly, )0,(  xGDA I  is a M-Matrix. On the other hand, 

)44(
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Hence    ),(0,

^

xallforxG ; therefore, 

conditions ( 1H ) and )( 2H  are satisfied. With theorem 3, the global stability of DFE is 

obtained and which completes the proof. 

 

Global stability of endemic equilibrium point  

Theorem 2b: If ,10 R the endemic equilibrium point of the model equation (3) is globally 

asymptotically stable. 

Proof: To establish the global stability of the endemic equilibrium of the model, we construct 

the following by Lyapunov function. 
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The derivative of V along this solution of equation (45) by direct calculation gives:
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Then, we have
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Expanding equation (47) above, we obtain;
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Collecting the positive and negative terms we obtain NM
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 , where M 

             

            )50(*
*

*
*

*
*

**
11

2

2*
22*

1

*
11*

11

*

II
Q

QQ
EE

I

II
SS

E

EE

IIVV
V

VV
SS

V

VV
VV

S

SS



























Also 

        
 

 
 

 
 

 
 

 
  )51(.

2*2*

2*

2

2*
22

1

2*
11*

2*

k
Q

QQ

I

II

E

EE

V

VV

V

VV
II

S

SS
N



























If ,NM 
 
then 

dt

dV
 will be negative 

;0
dt

dV
if and only if )52(,,,, ****

22
*

11
* QQandIIEEVVVVSS 

 



Tanz. J. Sci. Vol. 48(2) 2022 

509 

Thus, the largest compact invariant set is  








 0:,,,,, ****
2

*
1

*

dt

dV
QIEVVS  which is the 

singleton set  *E , hence the endemic equilibrium, by LaSalle’s Invariant principles; it implies 

that 
*E  is globally asymptotically stable (GAS) in   if  NM   . 

 

Sensitivity analysis
 

The sensitivity indices with respect to the parameter values are given in form of: 

0

0

0 R

R
R




  






 

))()((

)(
20








R  

The sensitivity indices of 0R  to parameters for the model equation (3) are summarized in 

Table 2. 

 

Table 2: Sensitivity indices of 0R  to parameters for the model equation (3)

 

Parameters           

Sensitivity indices 1.000000 1.000000 -0.015993 0.285264 -0.285081 

Parameters           

Sensitivity analysis 0.002558 -0.149696 -0.831646 -0.998879 -0.006526 

 

In the sensitivity indices of 0R , the most 

sensitive parameters are the effective contact 

rate   and the recruitment rate .  Another 

significant parameter is the second dose 

vaccine rate .  The positive index indicates 

that the prevalence of the disease will rise 

with the increase in the parameter values and 

the one with negative index will decrease the 

spread of Covid-19 with increase in the 

parameter values. 

 

Results and Discussion
 

We presented in Table 1 the value of each 

of the parameters for the proposed model. We 

choose baseline parameter values that are 

consistent with COVID-19 infections and 

transmission. The disease-free equilibrium is 

locally asymptotically stable if the basic 

reproduction number is less than one, i.e., 0R  

< 1. Furthermore, COVID-19 persists in the 

population if 0R  > 1. Figure 1 depicts the 

disease-free equilibrium's stability, i.e., when 

0R  < 1. COVID-19 illness is eradicated in 

this case. Figure 2 depicts the endemic 

equilibrium's stability, i.e., when 0R  >1, and 

COVID-19 disease endures in the population. 

The influence of transmission rate on 

COVID-19 prevalence is depicted in Figures 

3 and 4. Increased vaccination coverage 

significantly reduced COVID-19 spread, as 

shown in Figure 4. Increase in second dose 

vaccine coverage will help slow the spread of 

the disease, as seen in Figure 5. 
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Figure 1: Diseases -free equilibrium: 0R  < 1. In this case, Covid-19 disease dies out. 
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Figure 2: Endemic equilibrium: 0R  > 1. In this case Covid-19 disease persists in the 

population.  
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Figure 3: Impact of transmission rate (effective contact rate)  on COVID-19 prevalence. 
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Figure 4: Impact of first dose vaccine   on COVID-19 prevalence. 
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Figure 5:  Impact of second dose vaccine   on Covid-19 prevalence. 

 

Conclusion and recommendation 
A mathematical model on the 

transmission dynamics of COVID-19 with 

double dose vaccination was formulated and 

examined in this work. Sensitivity analysis 

was used to investigate the impact of model 

parameters, and the results revealed that the 

transmission rate has a significant impact on 

the spread of the Covid-19 epidemic. As a 

result, every effort should be made to reduce 

unnecessary transmission among COVID-19 

infected and uninfected people. The 

importance of vaccination in regulating and 

preventing the spread of COVID-19 was also 

highlighted. The greatest strategy to stop a 

COVID-19 outbreak is to vaccinate the entire 

population. COVID-19 vaccine has a 

detrimental impact on the prevalence of the 

disease, according to statistical data. This 

finding suggests that increasing the vaccine 

coverage rate reduces COVID-19 

dissemination. As a result, mass vaccination 

should be promoted to cover the majority of 

the population in order to achieve a high level 

of herd immunity for the disease. 

Based on the findings of this study, 

double dose vaccination is recommended as 

the best approach to use in the fight against 

the COVID-19 outbreak. As a result, if an 

intervention is to be adopted during a 

COVID-19 outbreak, this study suggests that 

mass vaccination of a double dose vaccine 

should be promoted to cover majority of the 

population, as this will reduce the disease's 

transmission rate. 
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