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ABSTRACT

The variation in subsidence rate during rift basin development
is a good indication for the Geodynamic history of a
sedimentary basin. The sedimentary section of Ivuna Well is
herein used to explain the structural evolution of Rukwa Basin
within the Western Rift of the East African Rift System. The
sedimentary record of Ivuna Well is extracted from published
information. The effects of sedimentary load, corrected for
compaction and variation in water depth, and lake-level have
been removed to obtain the "tectonic subsidence.” Curves
show two phases of accelerated subsidence related to the fault
controlled rifting phases: The Karoo rifting and the Late
Cenozoic rifting. Though several phases of rifting are
proposed within Karoo time in eastern and southern Africa, it
is difficult, with the present information from Ivuna well, to
infer them. But the change of gradient of the Geohistory plots
within the Karoo section does suggest at least variations of
sedimentation rates. The Karoo rifting phase is followed by a
steady subsidence which resulted from thermal contraction of
the lithosphere thinned during Karoo crustal and lithospheric
stretching, while Late Cenozoic rifting is still young at its
initial phase of rifting (1t = 0).

INTRODUCTION

Although it was long observed that thick sedimentary piles in sedimentary
basins cannot be explained by the mechanical load (sediments and water load)
alone (Bowie 1927, Sleep 1971), basin subsidence was not well understood
until after the theory of plate tectonics was put forward (Dewey & Bird 1970,
Dewey 1972, McKenzie 1972). It was then realised that contraction due to a
cooling lithosphere plays an important role in the vertical lithospheric motions.
McKenzie (1978) first proposed two causes of basin subsidence: the initial
crustal and mantle thinning, and then later thermal lithospheric contraction.
Regional studies (Steckler & Watts 1978, Sclater & Christie 1980, Bond &
Kominz 1984) have shown that this two-stage subsidence prediction is
generally consistent to first order, with patterns observed in many rifts and
passive margins. Modifications to various aspects of McKenzie's model have
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been proposed (Royden & Keen 1980, Allen & Allen 1990). However, it is so
far agreed that the formation of extensional sedimentary basins is a function
of crustal thinning and thermal lithospheric contraction modified by
lithospheric strength. Thus, the driving forces of basin subsidence include the
mechanical loads and the ability of the lithosphere (flexural rigidity) to
support these forces (Weissel & Karner 1989, Kooi 1991). Understanding
the basin subsidence is therefore essential in trying to explain the mechanics
of lithospheric activities in a particular basin.

By removing the subsidence due to the mechanical load over the basement, the
tectonic subsidence is isolated and analysed. This process is known as
backstripping (Watts & Steckler 1981). The tectonic subsidence so obtained
is the true basin subsidence that would have occurred in the absence of
sedimentation. It is, therefore, more directly related to the mechanical origin of
the basin. The aim of backstripping is therefore, to extract this component of
basin subsidence from the stratigraphic record for various geologic times in
the history of the basin evolution.

Tectonic Setting

Rukwa Basin forms part of the western arm of the East African Rift System
(Fig. 1). The sedimentary units in this basin reach up to 12 km deep in some
places (Morley et al, 1992, Kilembe & Rosendahl 1992), this load must have
contributed significantly to the basin subsidence. The structural evolution of
Rukwa Basin has in the past years been a subject of debate (Kilembe &
Rosendahl 1992, Dypvik & Nesteby 1992). This is in part due to lack of
fauna in the Red Bed Formation, thus hampering their age determination. The
basin has often been considered as a three-stage rift basin (Mbede 1991). In
this paper the structural evolution of the Rukwa Basin is explained using the
subsidence curves of Ivuna Well drilled within the basin. This is the only well
in this basin, which had reached basement (Morley ef al. 1992), and which can
therefore provide a complete picture of the basin history. A two fold rift
development model is proposed. It has to be noted, however, that since this
study is based on a single well drilled on a basement high, the results can only
tentatively be applied to the whole basin.

The NW-SE trending Rukwa Rift traverses the similarly trending Early
Proterozoic Ubendian tectonic belt {2500 -1800 Ma} (Nanyaro ef al. 1983).
The oldest sedimentary formation known is the Late Carboniferous to
Triassic Karoo Super Group (Spence 1954), first deposited when the great
Late Paleozoic ice sheet of Gondwana was retreating (Frakes & Crowell
1970, Wopfner 1991). The Late Jurassic/Early Cretaceous time is known to
have been a period of active tectonic movements in most parts of the African
continent, probably related to the opening of the South Atlantic ocean
(Fairhead & Green 1989, Lambiase 1989) which was preceded by the
opening of the Proto-Indian ocean. Sedimentation in the Rukwa Basin during
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Jurassic/Cretaceous times is still controversially discussed (Kilembe &
Rosendahl 1992).
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. 11 The Geological Map of South-Western Tanzania showing the location of study
area: IW = Ivuna Well; GW = Galula Well; GCF = Galula Coal-Field; MCF =
Muasa Coal-Filed; N/MCF = Namwele/Mkomola Coal Field

Various red sandstone occurrences in the basin have in the past been
correlated on a lithostratigraphic basis. Their Jurassic and/or Cretaceous age
was assumed through questionable long-distance correlation with the
Malawian Dinosaur Beds (Dixey 1928). However, Wescott ef al. (1991)
have shown that samples from the Red Sandstone Formation (obtained
from the recently drilled Ivuna and Galula wells), which can be tied via
seismic profiles with outcropping Red Beds at the southern edge of Rukwa
Basin, are of Late Miocene age. Jurassic and/or Cretaceous sediments,
though probably deposited in the vicinity of Rukwa Basin, may have, in
some parts, been reworked during Late Miocene time.
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Late Cenozoic sedimentation in Rukwa Basin therefore started with the
reworking of Cretaceous red sandstones in a mainly fluvial environment
during Late Miocene time (Wescott ef al. 1991). This is the age when rifting
is said to have been initiated in other parts of the Western Rift (Ebinger ef al.
1989b, Pickford & Senut 1990). The present Lake Rukwa was established
during Plio-Pleistocene, when the Lake Bed Formation was deposited
(Wescott et al. 1991). Uplift of the rift flanks evidenced by the changes in
drainage pattern across the East African plateau, is said to have been
accelerated at the Plio-Pleistocene boundary (Ebinger ef al. 1989a).

MATERIALS AND METHODS

Backstripping

The process of backstripping was carried out using a program developed at
the Free University of Amsterdam (Janssen et al. 1993). Backstripping
requires delithification or decompaction of the stratigraphic section, even
though in reality when sediments are uplifted and the load on top is removed,
decompaction will not necessarily be complete. The program "bmod"
calculates "basement subsidence" and "tectonic subsidence” for a given well-
stratigraphy, incorporating three delithification processes to establish
minimum and maximum values for the sediment loaded subsidence (Sclater &
Christie 1980, Bond & Kominz 1984, Bessis 1986). The program simulates
decompaction of the stratigraphic section by first assuming maximum
mechanical compaction in the relationship between porosity and depth.
Secondly, it assumes minimum mechanical compaction, and thirdly, it assumes
cementation with cement originating from outside the basin, making use of
minimum porosity. Because no overpressured sections had been reported for
Ivuna Well, the simulated decompaction process was accomplished by moving
sediment layers vertically up the exponential porosity-depth relationship of
Athy (1930):

¢= ¢oe~k°

where @ is the surface porosity (normally dependent on the type of

lithology), k is a compaction factor constant for a particular lithology and z is
the depth. Actually, when depth of the decompacted stratigraphic section is
plotted against porosity a clear exponential relationship is obtained (Fig. 2).
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Fig. 2: The original and decomposed stratigraphic unit of lvuna well and the

porosity/depth relationship. [t reveals the exponential relationship between
porosity and depth

Because the lithology of different sections in the well are mainly shaly

sandstone, only fractions of net sand and shale were entered to define the
lithology (Table 1).

Table 1:  Net sand in meters and Log calculated porosities for Ivuna Well (Anon
1988). Notice that because the lithology is mainly shaly sandstone only
net sand is displayed.

INTERVAL NET SAND POROSITY
M) (M) (%)

305 — 699 96.0 27-30
699 — 1588 675.7 27 - 30
1588 — 1737 39.6 19 -26
1737 — 1929 28.0 2527
1929 — 2292 96.0 25 -27

After decompaction, the total load of sediments must be estimated and
removed from the basin, in which case the basement will rebound isostatically
to give the "tectonic subsidence". Notice that the paleo water depth and the
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level changes must also be accounted for on 1solating the tectonic subsidence
(Steckler & Watts 1981). For the purpose of this work it 1s assumed that the
water depth (W) throughout the basin's development is zero. This is because,

lithologically, in the section of Ivuna well, both Karoo and Red Beds are
suggested to be of mainly alluvial to fluvial origin (Wescott ef al. 1991).
Moreover the present Lake Rukwa is shallow (13 m deep at the most).
Sediment facies and fauna within the Lake Beds suggest that the lake has
remained shallow through most of its history (Morley ef al. 1992). It has to be
noted however that the assumption is actually over simplification of the
decompaction process because elsewhere the K1, K2, K4 and K3 section are
suggested to have been deposited under more or less permanent water covers
(Spence 1954, Dypvik & Nesteby 1992). However the lack of detailed
paleontological information in Ivuna well has hampered the sub-division of the
various Karoo sections.

Being a rift basin at its early stage, an Airy-type mode! is assumed for
backstripping, i.e. sediment and water load are locally supported by the
basement. However, it is important to note that the geometry of the basin and
the strength of the lithosphere (flexural rigidity) determine whether, upon
loading, the basement response can be described flexurally or according to an
Airy-type model. The local isostatic basement response assumed in this
calculation is only for simplicity. The assumption made is not always valid
because the young rift basins 1n East Africa show considerable strength
(Ebinger et al. 1991).

RESULTS AND DISCUSSION

The difference between the original and the decompacted stratigraphic section
(Fig. 2) shows that there was more than 20% increase of the sediment
thicknesses on decompaction. The subsidence curves (Fig. 3) show the
"tectonic subsidence" which represents effective (unloaded) basement depth at
the time when the sediments were first deposited. It is this subsidence with
time that is the real subsidence which results into the basin development. The
"basement subsidence” is the total basement subsidence taking into account
compaction.
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Fig. 3: Tectonic and basement subsidence curves of Ivuna Well. Notice the rapid initial
fault controlled subsidence stages during Karoo rifting followed by a long period
of thermal subsidence. The late cenozoic rifting is still at its initial rifting phase.

The decompaction curves (Fig. 3) suggest a two-phases rifting during Karoo
time; first a rapid subsidence during the early part of Karoo time which can be
related to the initial fault-controlled subsidence. This is followed by a slow
subsidence phase in the later part of Karoo time which represents the post-rift
thermal subsidence phase. The Karoo thermal subsidence phase in eastern
Africa, is also dated by apatite fission track data (Mbede et al. 1993, Van der
Beek er al. 1998) that date the erosional surfaces of the country surrounding
Karoo basins (Dixey 1945). The last part of figure 3 is characterized by a
steep curve which represents the rapid subsidence which the basin is still
undergoing on its initial phase of the Late Cenozoic rifting. The geohistory
plots (Fig. 4) were prepared by considering the |1 km sediments eroded on top
of Karoo unconformity ( Dypvik et al. 1990). This represents an uplift phase
after the initial fault-controlled subsidence had ceased. The intra-rift
unconformities within Karoo are represented by the changes in slope of the
geohistory plots; this probably implies variation of sedimentation rates in the
various Karoo sequences or they may have been induced by changes in
tectonic subsidence and represent various rift phases. Also, it is to be noted
that, sediments removed on top of intra Karoo rift unconformities were not
taken into consideration. Their inclusion would have given a clear picture of
tectonic activities at that time. The Late Cenozoic Rukwa Basin is at its initial
stage of rifting (t = 0), so the present Late Cenozoic subsidence can be
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considered as the fault-controlled initial subsidence of McKenzie (1978).
Seismic interpretations (Morley er al. 1992, Kilembe & Rosendahl 1992,
Mbede 1993) support this because most Late Cenozoic faults cross-cut the
Late Tertiary to recent sedimentary section and are still active.
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Fig. 4: Geohistory plots of the Ivuna Well prepared by taking into account the | km of
sediment eroded on top of unconformity while the intrarift uncomformities within
Karoo are noticeable by the change of the slope of the subsidence.

The process of backstripping takes into consideration a number of factors
which have to be interpreted from geological information. Such parameters are
normally subject to error, depending on the availability and reliability of
information used for interpretation. To reduce the error, backstripping is
normally carried out on several wells within the basin where sequences are
thick and the sedimentary record is as complete as possible. Ivuna Well was
drilled on a basement; subsidence patterns here may not be representative of
the entire basin. Wells in deeper parts of the basin would have given a more
complete subsidence history. However, this was the only well with a complete
stratigraphic information so far in this basin.

The largest error is perhaps contributed by assuming local (T, = 0) rather than
regional flexural isostatic compensation when carrying out this study.
Observations within extensional basins suggest that some basins are
isostatically, regionally compensated rather than locally (Weissel & Karner
1989, Ebinger et al. 1991, Kusznir & Ziegler 1992, Karner et al. 1992). Even
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if local isostatic compensation can be assumed for the syn-rift stage, the post-
rift Karoo thermal subsidence stage should have been flexurally compensated.
Inclusion of flexure term would tend to predict larger subsidence for smaller
amount of extension (Weissel & Karner 1989).

Uncertainties in the porosity-depth relationship used for computation can also
contribute to an error in the calculated tectonic subsidence. Sclater and
Christie (1980) assume that the mass of the column remains constant during
decompaction. Porosity modifying mechanisms such as cementation may
contribute a potentially significant load to the compacting sediments
(Gallagher 1989). Even for normally pressured sections the exponential
relationship has proved to be appropriate only for shale and chalk (Sclater &
Christie 1980). Effects of diagenetic processes are known to produce curves
that deviate from the exponential relationship (Selley 1978, Mangara 1980).
Other porosity-depth relationships put forward include that of Falvey and
Deighton (1982):

Vo =1/¢y+cz

and of Baldwin and Butler (1985):

o=1+z/a)
where a and b are both lithological parameters, z is depth and ¢ is a constant.

The decompaction program used in this study considers the effect of
cementation, with cement originating from outside the basin. The calculated
subsidence which takes into account cement from an external source shows
that if the impact of cementation was taken into consideration in the
mechanical compaction, the computed subsidence would have been much
higher. Calculations gave an error of 36% and 14% for the maximum and
minimum tectonic subsidence, respectively, and 16% and 5% for the
maximum and minimum basement subsidence curves, respectively. However,
this error is uniform for the whole curve and should not affect the present
interpretations which are based on comparison of the subsidence curves at
various geologic intervals.

The analysis of stratigraphic sequences and subsidence curves has enabled the
following scheme of Rukwa Basin development to be proposed. The primary
graben system was initiated during Late Carboniferous at the beginning of
Karoo tectonic events. Corrected unannealed apatite fission track ages suggest
that general uplift was initiated at about 300 Ma (Mbede et al. 1993). Analysis
of erosional patterns and fission track ages (Mbede 1993) suggest that Lupa
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Fault may represent a Karoo border fault of Rukwa Basin which has been
reactivated during the Late Cenozoic rifting, while the Ufipa Scarp represents a
Late Tertiary feature. The higher rift flank uplift on Lupa Fault during Karoo
rifting, may have exposed the upper crustal rocks we observe today.

Subsidence within Ivuna Well argues for the primary graben which must have
been centred within the present basin, and later became a region of major
faulting. This gave way to the Early Permian rapid subsidence, with areas of
greater extension subsiding more rapidly (c.f. Morley er al. 1992). The rift
flanks were gradually uplifted and when extension terminated, a general
subsidence took over as a result of thermal contraction. The originally uplifted
rift flanks were therefore subsequently eroded and by the end of Karoo rifting
the lithosphere had stabilised. This suggests that the Late Jurassic/Cretaceous
Red Beds were deposited in basin caused by the Karoo thermal subsidence
stage in a mainly fluvial environment, and are probably preserved in the deeper
parts of the basin adjacent to Lupa border fault. In some parts, the Red Beds
have probably been reworked in the Late Tertiary time as is the case in the
northern Nyasa Rift (Mbede 1993).

Active rifting accompanied with rapid subsidence started again in the Upper
Miocene time. The oldest Late Cenozoic fauna recorded in this basin are of
this age (Wescott ef al. 1991). This was the beginning of the Late Cenozoic
rifting episode which is still at its initial fault-controlled subsidence. Reflection
seismic studies suggest that most faults of this age extend into the underlying
basement (Morley et al. 1992). This implies that the crust has undergone
brittle failure producing isostatic fault-controlled subsidence and reactivating
most of the Karoo faults (Kilembe & Rosendahl 1992). The extent of the Late
Cenozoic rift relative to Karoo rift is not yet clearly explained, while on the
western flank outcrops of Karoo rocks are preserved, it is possible that the
higher erosion rates on the eastern flank during Karoo thermal subsidence
may account for their absence. But the fact that Lupa is the Karoo border fault
for this basin probably explains their absence on the eastern flank.
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