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The aim of this paper is to show the connection existing between a
commutative symmetric loop and an euclidean space.

Let Q(o) be a locally analytic loop (Mal’cev 1955) with mappings
S:x « x~land Rx - xox, where x—! is the right inverse of x, x € Q and
the operation (o) is introduced locally. We define ny = XOoYy

Definition 1

A locally analytic loop Q(o) is called a symmetric loop (Karanda
1972, 1975) if for all x, y € Q, the following conditions are fulfilled:

(a) S(xoy) = SxoSy, that is, S is an automorphism.

(b) S = id, thatis, S is involutive

(c) Sa(x,y)= 2(x,y)S, that is, S commutes with
...]_ [

2(x = L L L
(x,y) (oy) “x ¥ € QSRQ

(d) x0(Sxoy) = y or Ly~! = Lyx~' = Lgy, thatis, the loop Q(o)
has the left inverse property.

(e) xo(xoy) = (xox)oy or L; = sz = I"Rx' that is, the loop

Q(o) is left alternative.
(f) The mapping R is locally a bijection.

Definition 2
A quasigroup Q(*) with the identity
(x*y) * (u*v) = (x*u) * (y'v)
is called a medial quasigroup, (Beloasov 1969).

Definition 3

A symmetric space (Karanda, 1972, 1975) is a manifold Q with a
differential mapping, 1:Q x (Q - Q, defined as K (xy) = xy = S)y
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and properties :
1. x (yvz) = (xy). (x2)

2.0 X (X¥N) =¥
3. XX=X
4. Every point x has a neighbourhood Ux:x.y =Yy

implies that y = x for all y in Ux.

It is now easy to show the following lemma :

Lemma I

A medial Loos quasigroup Q( . ) is abelian.

Note that if Q(o) is a medial symmetric loop, then the mapping R is
an automorphism of Q(0) and Q(o) is associative. That is, let x = y and
v = uin (1). Then (xox)o(uou) = (xou)o(xou).

By the properties of the symmetric loop, it follows that
RxoRu = R(xou)

and R is an automorphism of Q (0).

And ifu = ein (1), then
(xoy)ov = xo0(yov),

and thus Q (o) is associative,

Theorem 2

A symmetric loop Q (o) with either the mapping R as an automorphism
or the associative law is commutative.

Proof

Let R be an automorphism. Then by the properties of Q(o), it
follows that
(RxoRy)oz = xo(Ryo(xo0z))
Letz = e, then
RxoRy = xo(Ryox)
But Q (o) is left alternative, therefore
xo(xoRy) = xo(Ryox).
By the left cancellation law, it follows that
xoRy = Ryox,
and Q (o) is commutative.
Q (o) with the associate law is a group and for allx,y € Q
S(xoy) = SxoSy.
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But Q(o0) as a symmetric loop has the property
S(xo0y) = SxoSy.
Thus Q (o) is a commutative group.

Theorem 3

A commutative symmetric loop Q(0; is an euclian space (locally).

Proof :
Q(o) is an analytic loop and by the Taylor’s formula

Gon) = £1065y) = xt vyt s al 138, % g X
3 k i

it follows that, [x,y ] xoy)' - ox)! = o

That is, the structure constants (* are equal to zero and the curvature
tensor of the space Q (o) vanishes,

Theorem 4

A medial symmetric loop Q(o0) with isotopy xoy = R—x.Sy is an
abelian Loos quasigroup Q (.)

Proof
By the given isotopy the medial identity can be changed into E
RIRTxsy) SRlsu = Sl lk.swSrl sy o
Let R—'x = Sy = gz, then = = = ___ -
lz SR lSuSR lz SR l(z.Su)
Inserting this into (2) we have

RlsySp R loSR sy = Splsu Splr Lo Sr-lsy

" RIR 1) = a, Rlsy = b, R lsu = c
. i b lia ] =
tien Q( ) TR SbSaSC SCSaSb
Theorem 5 3)

A medial Loos quasigroup Q(.) with isotopy x.y = RxoSy is a
commutative symmetric loop.
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Proof

By our isotopy, (3) can be written as
RboS (RaoS(RcoSd)) = RcoS(RaoS(RboSd)).
If Rb = Sd = e, thep SRaoRc RcoSRa, that is Q(0) is a commutative
symmetric loop.
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