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Abstract 

In this paper, a deterministic mathematical model was proposed and analyzed to understand the 

dynamics of tuberculosis based on the SEIRS model. The disease-free equilibrium, the endemic 

equilibrium, and their stabilities were examined. The R0 (basic reproduction number) was derived 

using the Next Generation Matrix method and its sensitivity analysis showed that the birth rate and 

infectious rate were the most sensitive parameters of R0. The behaviour of exposed individuals at 

the latent period with varied treatment rates were examined through numerical simulation. From 

the analysis carried out, the effect of variations of the treatments of latent TB shows that it affects 

the disease burden. This implies that testing and treatment of latent TB are important in preventing 

it from becoming infectious. The re-infection rate was examined to see the effect it had both on the 

recovered and susceptible populations. The study concludes by recommending the extension of the 

model to an age structured model with co-infection with another respiratory infectious disease like 

COVID-19. 

 

Keywords: Epidemiology, Latent TB treatment, Basic Reproduction Number, sensitivity 

analysis, numerical simulation. 

 

Introduction 

Tuberculosis (TB) is an infectious disease 

that poses threats to the human population in 

the world. Tuberculosis is caused by bacteria 

generally referred to as Mycobacterium 

tuberculosis and almost every organ can be 

affected, but the involvement of the lungs 

accounts for more than 80% of TB cases. 

Tuberculosis affecting the lungs is called 

Pulmonary Tuberculosis (PTB), while those 

affecting the organs are called Extra Pulmonary 

Tuberculosis (ETB). The most important 

source of infection is an untreated Pulmonary 

Tuberculosis (PTB). When such an infected 

one coughs, sneezes, talks, or spits, tiny 

droplets containing tuberculosis are released. 

Transmission is through inhaling those droplets 

(Federal Ministry of Health 2010).  

According to the World Health 

Organization, the most vulnerable to 

Mycobacterium tuberculosis are children and 

infants because their immunity cannot yet 

withstand such infections. This infectious 

disease claimed the lives of 1.5 million people 

in 2018 (including 251,000 people with HIV). 

TB remains one of the foremost of the causes 
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of death from just a single infectious disease. In 

2018, on a worldwide scale, 10 million fell ill 

due to tuberculosis. Of these 10 million, there 

were 5.7 million men, 3.2 million women, and 

1.1 million children. Also, in the same year, the 

30 high TB burden countries accounted for 

87% of new TB cases. Eight countries 

accounted for two-thirds of the total, with India 

leading the count followed by China, 

Indonesia, the Philippines, Pakistan, Nigeria, 

Bangladesh, and South Africa (WHO 2019). 

Diagnosis of latent TB infections (LTBI) 

and prompt treatments of infected cases are 

vital components of effective TB control. On 

the other hand, undetected TB infections and 

delay in the treatments of active TB cases can 

lead to more severe disease conditions in the 

infected persons which could result in wider 

disease spread in the community. Such delays 

also contribute to increased infectivity in the 

community, whereby the infected individuals 

unknowingly continue to serve as reservoirs for 

the pathogens (M. tuberculosis). Hence, this 

could lead to an increased risk of disease 

transmission in the community (Egonmwan 

and Okuonghae 2019). In the past two decades, 

the WHO has listed Nigeria as one of the 

countries with a high burden of TB and has 

stimulated targeted interventions and advocacy 

for funding and policies to improve TB control. 

It is estimated that 407,000 people in Nigeria 

have TB each year with a rate of 219 cases per 

100,000 population with 106,533 total cases 

notified in 2018 (WHO 2019). 

Tuberculosis also has serious social 

implications because those with TB and their 

families can face challenges in social 

relationships and adverse health and economic 

situations. People with TB and their relatives 

could experience prejudice and negative 

attitudes from people (Okuonghae and 

Ikhimwin 2016). In light of the alarming rates 

at which tuberculosis is being recorded every 

year, mathematical models to analyze the 

spread of TB have been widely developed. 

Epidemic models that could be stochastic or 

deterministic have allowed researchers to gain 

an understanding of many infectious diseases 

and they have also helped them to provide 

strategies for combating them. In this paper, 

compartment S is such that everyone is 

susceptible, E a latent compartment in which 

all the individuals are all infected but not yet 

infectious, and next is the I compartment in 

which all in the compartment are infectious, 

which means they are showing some symptoms 

or all the symptoms of TB, and lastly the R 

compartment where we have those that have 

recovered from TB due to treatments (Sontan 

2020). 

Many mathematical models have been 

developed and used to study the spread of TB 

in populations. For example, McCluskey and 

Driessche (2004) analyzed two tuberculosis 

models that included treatment of latent and 

infective individuals. Three parameters 

determined the existence and local stability of 

equilibria. Also, Egonmwan and Okuonghae 

(2019) modelled the spread of TB and the 

results of the numerical simulations of the 

model indicated that the treatment rates for 

latent and active TB cases significantly 

determine the impacts of the fraction of new 

latent TB cases diagnosed. 

The structure of the paper is such that: we 

formulate a simple Ordinary Differential 

Equation (ODE) model, find the Disease-Free 

equilibrium, and Endemic equilibrium, then we 

derive the R0, and the sensitivity analysis. 

The result of the basic reproduction number R0 

was estimated using the next generation matrix 

method. The sensitivity analysis results showed 

that B (birth rate) and  (transmission rate) 

have the most direct effects on R0  which can 

be used to contain the spread of TB. The work 

also confirms that once someone is treated for 

TB, it does not mean the individual is 

immunized for life, but the person can be re-

infected if the immunity is lost or the person is 

re-exposed. In conclusion, latent treatment of 

TB helps in preventing it from becoming 

infectious, hence testing for latent TB is 

important for those with compromised 

immunity. 
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Materials and Methods 

The mathematical model formulated by 

Momoh et al. (2013) was modified to 

incorporate the rate at which the recovered 

return to susceptible because TB does not 

confer lifelong immunity. Also, the infectious 

rate   (the rate at which the  susceptible 

become infected) is a function of the number of 

infectious hosts in the population at time t, and 

thus it is a non-linear term - SI . Other 

transitions were modeled as linear terms with a 

constant coefficient. Therefore, the TB 

dynamics were described by a system of ODE 

which was solved to obtain the disease-free 

equilibrium (DFE) state and endemic state. The 

stability analysis of the DFE was carried out 

using the Jacobian matrix and the endemic 

stability using the R0. 

Model equations 
As shown in the compartmental model in 

Figure 1, and with the described variables and 

parameters in Tables 1 and 2, respectively, we 

have the following system of differential 

equations:  

                (1) 

        (2) 

         (3) 

                  (4) 

     (5) 

 

Table 1:  Description of the variables and parameters of the TB model 

Variable Description  

S(t) The number of susceptible individuals at time t 

E(t) The number of exposed individuals at time t 

I(t) The number of infected individuals at time t 

R(t) The number of recovered individuals at time t 

N(t) The total number of population  

Parameter Description   

B Birth rate  

µ Natural death rate  

β Infectious rate  

α Disease progression rate from latent TB to active TB 

δ 

 

Treatment rate for individuals with latent TB 

Treatment rate of actively infected TB 

 Rate of re-infection 

Table 2: Parameter values  

B 0.03768 Estimated 

µ 0.02041 Estimated 

β 6.55000 Egonmwan and Okuonghae (2019) 

 0.00050 Egonmwan and Okuonghae (2019) 

 1.50 Egonmwan and Okuonghae (2019) 

 2.50 Assumed 

 1.20 Assumed 

  RISB
dt

dS
 

   ESI
dt

dE

   IE
dt

dI

   REI
dt

dR

)()()()()( tRtItEtStN 
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The mathematical model and diagram  

 
 

Figure 1: The transmission dynamics of the tuberculosis model is described by the compartment 

model. 

 

Results 

Disease-free equilibrium state 

We obtain the disease-free equilibrium state by 

setting Equations (2) -(4) to be equal to zero. 

 

 

Therefore, we have the disease-free 

equilibrium 

          (6) 

Basic reproduction number R0 
The basic reproduction number R0 was 

obtained with the method of the next 

generation matrix. We created a sub-model that 

only considers the ‘disease’ compartments 

(Diekmann et al. 2010). For the SEIRS model, 

a subset of the system includes both the 

exposed and infectious individuals. Therefore, 

the sub-model will only contain the E and I 

equations. 

)()( xVxF
dt

xd 


                              (7) 

is a vector of the j disease compartments in 

the SEIRS model j = 2, because the disease 

compartments are two, that is E and I. 
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0
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0
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                       (8) 

 

Next, we linearize around the DFE, which 

involves the Jacobian, i.e., the matrix of the 

partial derivative evaluated at the DFE. 

The disease-free equilibrium (E0) is given by: 

   







 0,0,0,,,,




RIES

  

 (9) 
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
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
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=          (12) 

 

                                       (13) 

















 0)(
V               (14) 

Where FV-1 is known as the next generation 

matrix 

     (15) 

  

R0 is the spectra radius of the next generation 

matrix. ρ is the eigenvalues with the largest 

magnitude. Next, we find the eigenvalues of 

Equation (15);  

 

The Eigenvalue with the largest magnitude is 

 

Hence,  (16) 

 

 

The endemic equilibrium state 
The endemic equilibrium state is the condition 

where the disease persists in the population. 

For the disease to persist in the population, the 

susceptible class, the exposed class, the 

infectious, and the recovered must not be zero 

at equilibrium state (Ugwa et al. 2013). In other 

words, if ),,,(  RIES   is the endemic 

equilibrium state, then 

)0,0,0,0(),,,(  RIES  . To obtain the 

endemic equilibrium, we solve Equations (1) -

(4) simultaneously. 

 

But writing it in terms of R0 in Equation (16) 

                                 (17) 

 








 





))(()(

)1()()(

0

0








RB

RB
E  (18) 


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 

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

))(()(

)1()(

0

0








RB

RB
I   (19) 


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 









 
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




)(
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)1(

0

0

RB

RB
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                                                               (20) 

Therefore, the endemic equilibrium state is 

),,,(  RIES . 

 

Local stability of disease- free equilibrium 

Theorem 1: If 10 R , the disease-free 

equilibrium of systems (1-4) is locally 

asymptotically stable. If 10 R , the disease-

free equilibrium is unstable. 

Proof: The disease- free equilibrium state is 

given as: 
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







 0,0,0,0




E                              (21) 

The resulting Jacobian matrix of the systems (1-4) is: 

  0EJ              (22)

 
Substituting the values of (21) into (22) 

 

   

 
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B

B

EJ                (23) 

To evaluate this, the Eigenvalues are introduced such that  

 

  (24) 

The characteristics equation is given as: 
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B
     (25) 

The eigenvalues are: 

 (26) 

  2  (27) 

The resulting quadratic equation is: 
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For negative roots, Descartes’ rule of signs, 
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  






B
1                                    (29) 

But from (16) 
  






B
R0  

If 01  , 02  , and 10 R , the disease-free equilibrium is asymptotically stable. 

 

Local stability of endemic equilibrium 

Theorem 2: If 10 R , the endemic equilibrium 
E of systems (1-4) is locally asymptotically 

stable. 

Proof: The Jacobian matrix of systems (1-4) at the endemic equilibrium 
E is: 
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(30) 

The eigen value matrix  EJ  is   1  and the resulting polynomial is: 

      SIIIII 222323 223

 

 

The above polynomial could be written in this form: 

01

2

2

3

3  oaaaa   where, 

  Ia 32
,

    SIIIIa 22232 2

1
, 

   IIIIIIIa 33222

0  
 

By Routh- Hurwitz stability criterion for third 

order polynomials .0312 aaaa   Hence the 

local stability of endemic equilibrium is locally 

asymptotically stable. 

 

Sensitivity analysis 
The sensitivity analysis helps to show how 

important every parameter is to disease 

transmission. It is regularly used to decide the 

robustness of model expectations to parameter 

values since there may be errors in data 

collection and assumed values (Berhe et al. 

2019). The normalized forward sensitivity 

index of a variable regarding a parameter is the 

proportion of the relative change in the variable 

to the relative change in the parameter. The 

normalized forward sensitivity index R0 that 

depends differentially on a parameter ρ is 

defined by: 

                     (31) 

From Equation (16)  
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Numerical solution of sensitivity analysis of 

the basic reproduction number R0 
Table 3: The sensitivity of basic reproduction 

number R0 

Parameters Signs Sensitivity 

Values 

B + 1 

 

+ 1 

 + 0.9996712494 

µ - -1.021517486 

 

- -0.9862516520 

 - -0.9919021112 

 

From table 3, the sensitivity indices of 

000 ,,
RRR

B   are all positive, while the 

remaining parameters are negative. Since all 

indices are functions of other parameters, the 

sensitivity indices will change when other 

parameter values change. The value of 0R

B
=+1 means that increasing (or decreasing) R0 

by 10% increases (or decreases) R0 by 10%. 

The same is true for 0R

 . Both have exactly 

the same effect on the basic reproduction 

number. However, the rest parameters too have 

approximately the same effect on R0 which 

implies that they all have to be carefully 

estimated. 

 

Numerical simulation 

The system of equations (1-4) cannot be solved 

analytically due to non-linearity, so the set of 

equations were solved using a numerical 

method. The finite difference method was used. 

The initial conditions S (0) = 990, E (0) = 8, I 

(0) = 2, R (0) = 0 at t = 0, h = 0.05 

 

Discussion 

Figure 2 shows the dynamics of the 

compartments population over time. We 

observed that the susceptible population was 

decreasing with time due to their moving to 

other compartments. The exposed population 

showed increasing and later decreasing due to a 

latent stage treatment. The infected population 

showed decreasing due to good treatment rate 

and hence people recovering. The rate of 

recovery over time is high. This is as a result of 

those with latent TB getting tested and treated 

and those with infectious TB receiving 

adequate treatments. All these happen 

simultaneously in a population when an 

infectious disease is in a population over time. 

Figure 3 shows the impacts of the treatments of 

latent TB on the exposed population. The 

treatment rates were steadily increased from  

= 1.5 to  = 2 to  = 2.5 and  = 3. The 

effect on the exposed population was examined 

and the exposed population reduced from 

approximately 350 people to 227 people, then 

to 200 people and to 159 people at the end of 
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the simulated time. This shows that early 

diagnosis and treatment of latent TB helps in 

reducing the exposed population over time.  

Figure 4 shows the effects of TB re-infections 

on the recovered and susceptible populations. 

The re-infection rates were reduced from  = 

1.5 to  = 0.9 to  = 0.6 and  = 0.3. The 

implication is that the recovered population 

increased from about 450 people to 503 people 

and further to 565, and then to 638 people, 

respectively at the end of the simulated time. 

Also, the susceptible population decreased 

from 167 people to 137 people and further to 

100, and finally to 55 people at the end of the 

simulated time. As the re-infection rate-  

decreases, the recovered population increases, 

and the susceptible decreases. This implies that 

if they prevent re-infection by avoiding being 

exposed again and maintaining good immunity, 

they remain recovered. 
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Figure 2: The SEIRS graph with the values of parameters on Table 2. 
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Figure 3: The graph of exposed population with treatment rates δ = 1.5, δ = 2, δ = 2.5, δ = 3 and 

other parameters fixed. 
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Figure 4: The graph of susceptible and recovered populations over time with rates of re-

infection ξ = 1.5, ξ = 0.9, ξ = 0.6, ξ = 0.3 and other parameters fixed. 

 

Conclusion and Recommendations 

From the analysis carried out, the effect of 

variation of the treatments of latent TB showed 

that it affects the disease burden. This implies 

that testing and treatment of latent TB are 

important in preventing it from becoming 

infectious. Also, the re-infection rate was 

examined to see the effect it had on the 

susceptible and recovered population. It was 

noticed that when the re-infection rate was 

reduced, many people remained recovered. 

This implies the need for those who have been 

treated to avoid being re-infected.  

It is hereby recommended that 

 Latent TB testing should be made 

compulsory for those who have 

compromised immunity diseases like HIV, 

Cancer, etc. 

 The susceptible class must be vaccinated at 

birth to prevent exposure. 

 Those with TB should remain isolated until 

they start the treatments of TB. 

 There should be ongoing public awareness 

and sensitization programmes on the effects 

of TB. 

 More realistic models that include more 

compartments and co-infections with 

respiratory diseases like COVID 19 in age 

structured models should be examined. 
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