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Abstract 
An age-structured (children and adults) model for the transmission dynamics of malaria with 

asymptomatic carriers and infected immigrants has been analyzed. We first analyze a model 

without infected immigrants. It shows that the disease-free equilibrium exists and is stable when 

𝑅0 < 1 and unstable for 𝑅0 > 1. Also, we compute the sensitivity indices of the basic reproduction 

number. The basic reproduction number is most sensitive to the mosquito biting rate. Besides, the 

sensitivity of the basic reproduction number shows that the children's class parameters are more 

sensitive than those of adults. In the presence of infected immigrants, the model does not admit a 

disease-free equilibrium. The sensitivity of endemic equilibrium shows that the asymptomatic 

carrier parameters are more critical than that of infected immigrants. Also, the inflow of infectious 

immigrants is sensitive than that of infected immigrants. The results obtained indicate that 

strategies that target asymptomatic carriers and infected immigrants can help control malaria. 
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Introduction 
Malaria is a life-threatening vector-borne 

disease caused by a Plasmodium parasite and 

transmitted to humans by infected female 

Anopheles mosquito. Despite the efforts to 

prevent, control, and eradicate the disease, 

malaria is a public health problem globally and 

mainly in the tropics and subtropics regions. In 

2019, malaria was estimated to be 229 million 

cases and 409000 deaths worldwide (WHO 

2019). The disease is more severe to children 

under five years old, with two-thirds of the 

reported deaths being children (WHO 2019). 

Several factors contribute to malaria 

transmission. These include infected 

immigrants, asymptomatic carriers and age. 

Malaria burden depends on the age-structure of 

the human population as children under five 

years old bear more burden than adults (WHO 

2019). Children under five years are more 

vulnerable to malaria than adults since they 

have not developed immunity to infections 

(Schumacher and Spinelli 2012). Hence, age-

structure is an important factor for the 

transmission of malaria in a population. 

Immigration contributes to the spread, 

reemergence and introduction of the parasite 
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into the community (Martens and Hall 2000). 

Asymptomatic carriers are individuals who 

have lower parasite density and do not show 

symptoms (Babiker et al. 2013).  

Asymptomatic infections occur as a result of 

repeated exposure to disease (Cai et al. 2017). 

The asymptomatic carrier serves as a reservoir 

of parasites for malaria transmission (Kern et 

al. 2011). Therefore, the inclusion of 

asymptomatic carriers in a model becomes 

important. Numerous mathematical models 

have been developed to quantify the impacts of 

immigrants, for instance, Tumwiine et al. 

(2010), Mukandavire et al. (2010) and Makinde 

and Okosun (2011), age by Addawe and Lope 

(2012a) and Forouzannia and Gumel (2014) 

and asymptomatic carriers in Águas et al. 

(2008) and Mandal et al. (2013). Apart from 

these studies on each factor, Filipe et al. (2007) 

and Mwanga et al. (2015) incorporated 

asymptomatic carriers and age. The studies 

with infected immigrants have shown not to 

have a disease-free equilibrium (Tumwiine et 

al. 2010, Mukandavire et al. 2010). With age 

structure, the study by Addawe and Lope 

(2012b) suggested that strategies to lower the 

number of bites on humans aged five years and 

below by using insecticide-treated nets (ITN's) 

and indoor residual spraying (IRS) would be 

considered to control the disease. Mwanga et 

al. (2015) analyzed an age-structured model 

with two classes and asymptomatic carriers on 

both classes in the presence of control 

strategies to obtain an optimal control strategy 

to control malaria. The control strategies used 

were long-lasting insecticide-treated nets, 

treatment of symptomatic and asymptomatic 

infectives and indoor residue spraying. Their 

results showed that the disease could be 

brought to stable disease equilibrium when all 

four controls are used. However, none of these 

studies considered age, infected immigrants 

and asymptomatic carriers. The model 

formulated in this study is an extension of the 

model by Forouzannia and Gumel (2014), 

which included asymptomatic carriers and 

infected immigrants. Unlike in Mwanga et al. 

(2015), the model considered here comprises of 

individuals who can contract the disease 

(susceptible), individuals who have been 

infected but not infectious (exposed), infectious 

individuals who are capable of transmitting the 

disease (infectious) and the recovered are 

individuals with temporary immunity- (SEIR). 

Since malaria burden is more to children below 

five years (WHO 2019) and symptomatic is 

higher for a lower age (Mandal et al. 2013), we 

assume that individuals below five years are 

only symptomatic. Therefore, asymptomatic 

carriers in this study are only in the adult class. 

However, it has been shown that children 

living in the area with moderate and high 

malaria transmission may become 

asymptomatic from three years (Wamae et al. 

2019). The model also incorporates infected 

immigrants.  

This study develops an age-structured 

mathematical model incorporating infected 

immigrants and asymptomatic carriers to 

understand their combined effects on malaria 

transmission dynamics.  

 

Materials and Methods 

The current study used a flow diagram 

(Figure 1) to describe the movements of 

humans and mosquitoes from one compartment 

to another depending on their disease status. 

The flow diagram was then used to formulate 

an age-structured mathematical model for 

malaria transmission that incorporates infected 

immigrants and asymptomatic carriers. 

 

Model formulation 
The model with human and mosquito 

compartments is formulated as follows: The 

human population 𝑁ℎ is divided into two 

classes, children 𝑁𝑐 and adults class 𝑁𝑎 ; that is  

𝑁ℎ = 𝑁𝑐 + 𝑁𝑎. The children class is a 

subgroup of the host population whose 

members are less than five years old. These 

members are vulnerable to the disease. The 

adult class is the group of individuals aged five 

years and above. The idea of grouping the 

human population into children and adults is 

consistent with other studies by Forouzannia 

and Gumel (2014), Addawe and Pajimola 
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(2016) and Okuneye and Gumel (2017). We 

group the human population into children and 

adults because children are more prone to 

malaria than those aged five years and above. 

Each group is further subdivided into four 

classes; the susceptible 𝑆, exposed 𝐸, 

infectious 𝐼  and recovered class 𝑅. The 

infectious class for adults is then divided into 

asymptomatic 𝐴𝑎 and symptomatic 𝐼𝑎. The 

asymptomatic class represents individuals who 

are infectious but do not show symptoms. 

These individuals are not affected by the 

disease but can transmit it to mosquitoes. 

On the other hand, the symptomatic class 

(𝐼𝑎) represents infectious individuals who show 

symptoms, can infect and are themselves 

affected by the disease. The classes are 

categorized with subscript 𝑐 for individuals 

aged below five years and with subscript 𝑎 for 

individuals with five years and above. Hence, 

the total human population 𝑁ℎ = 𝑆𝑐 + 𝐸𝑐 +
𝐼𝑐 + 𝑅𝑐 + 𝑆𝑎 + 𝐸𝑎 + 𝐼𝑎 + 𝐴𝑎 + 𝑅𝑎. The rate of 

infections of a susceptible individual is 

dependent on the mosquito's biting rate 𝑏 and 

the proportion of bites by infectious 

mosquitoes on susceptible humans (𝛽
𝑐
, 𝛽

𝑎
) 

that produce infections for children and adults, 

respectively. Upon infections, children and 

adults move to the exposed class 𝐸𝑐 and 𝐸𝑎, 

respectively; at this stage, individuals cannot 

transmit the disease to susceptible mosquitoes 

since they do not have gametocytes. Exposed 

children and adults progress at a rate 𝜎𝑐 and 

𝜎𝑎 respectively to infectious class in which 

they can infect susceptible mosquitoes because 

they have gametocytes in their bloodstream. 

For the exposed compartment in the adult 

group, a proportion 𝜃 (0 < 𝜃 < 1) progresses 

to symptomatic class and the remaining 
(1 − 𝜃) joins the asymptomatic class. A 

proportion 𝜙 of symptomatic adult recovers at 

a rate 𝛾
𝑠
 and the remaining (1 − 𝜙) joins the 

asymptomatic class at a rate α upon developing 

partial immunity due to continuous exposure to 

malaria. Asymptomatic individuals may 

recover naturally with temporary immunity at a 

rate 𝛾
𝑎
 and children may recover through 

treatment or naturally with temporary 

immunity at a rate 𝛾
𝑐
. The recovered 

individuals with temporary immunity lose 

immunity and become susceptible at a rate 𝜂
𝑐
  

for children and  𝜂
𝑎

 for adults. Individuals in 

every compartment suffer natural death at a 

rate 𝜇. Individuals in the infectious class suffer 

disease-induced death at a rate 𝛿 except for the 

asymptomatic class who are not affected by the 

disease. The disease-induced death rate for 

children is 𝛿𝑐 and for adults is 𝛿𝑎. The per 

capita birth rate for human is 𝛬𝑐 and the 

immigration rate is 𝜋. We assume that 

immigrants are only adults for simplicity, 

whereby a fraction 𝜌
1
 of immigrants are 

exposed, a fraction 𝜌
2
 are asymptomatic, and 

the remaining fraction (1 − 𝜌1 − 𝜌2) are 

susceptible. We also assume that children 

mature and join the corresponding adult class 

at a rate 𝜁. 

The adult mosquito population is divided 

into three compartments: susceptible 𝑆𝑚, 

exposed 𝐸𝑚 and infectious 𝐼𝑚. Thus, the total 

mosquito population 𝑁𝑚 = 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚. The 

per capita recruitment rate for mosquitoes is 

𝛬𝑚. The infection rate of a susceptible 

mosquito depends on the mosquito's biting rate 

𝑏 and the proportion of bites by susceptible 

mosquitoes on infected humans, resulting in 

infection 𝛽
𝑚

. We assume that 𝐴𝑎 are less 

infectious than 𝐼𝑐  and 𝐼𝑎 by a factor  𝑟 
(𝑖. 𝑒. , 0 < 𝑟 < 1). During blood meals, 

susceptible mosquitoes take up gametocytes 

from infectious humans and move to the 

exposed class. At this stage, mosquitoes do not 

have sporozoites in their salivary gland and 

therefore are not contagious. When 

gametocytes developed into sporozoites, 

mosquitoes are considered infectious and move 

to infectious class at a rate 𝜎𝑚. We did not 

consider clearance of sporozoites in 

mosquitoes due to their life expectance (Chitnis 

et al. 2006, Addawe and Lope 2012a). In every 

class, mosquitoes die naturally at a rate 𝜇
𝑚

 and 

no disease-induced death since infected 

mosquitoes are not harmed by the infections. 
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Model assumptions 

(i) The death related to the disease is 

different between children and adults (i.e., 

𝛿𝑐 > 𝛿𝑎). 
(ii) Asymptomatic carriers have a low 

probability of infecting susceptible 

mosquitoes than symptomatic adults by a 

factor 𝑟, so that 0 < 𝑟 < 1. This is 

because symptomatic adults are more 

infectious than the asymptomatic carriers 

(Águas et al. 2008) and have low parasite 

density (Babiker et al. 2013). 

(iii) There are no asymptomatic carriers in 

children class because malaria in children 

is always clinical due to a lack of 

immunity (Chiyaka et al. 2007, 

Schumacher and Spinelli 2012). 

(iv) Asymptomatic carriers can recover 

naturally because of the low parasites in 

which immune response can effectively 

control and eliminate the parasites 

(Babiker et al. 2013).  

(v) Symptomatic individuals can develop 

partial immunity and become 

asymptomatic. 

(vi) No immigration for children (for 

simplicity) and in symptomatic (since 

they are sick (Chitnis et al. 2006)). The 

description of the model and assumptions 

lead to a compartmental diagram in 

Figure 1. 

 
Figure 1: Flow diagram for the dynamics of malaria in the two age groups. 

 

The bold arrows indicate individuals and 

mosquitoes' movements from one compartment 

to another, while the dash lines represent the 

interactions between humans and mosquitoes. 

Description of variables and parameters in the 

model are given in Table 1 and Table 2, 

respectively.

 

Table 1: Description of variables used in the model (1) 
Variable    Description 

𝑆𝑐 Susceptible children aged below five years 

𝐸𝑐 Exposed children aged below five years 

𝐼𝑐 Infectious children aged below five years 

𝑅𝑐 Recovered children aged below five years  

𝑆𝑎 Susceptible adults aged five years and above 

𝐸𝑎 Exposed adults aged five years and above 

𝐼𝑎 Infectious adults aged five years and above with symptomatic malaria 

𝐴𝑎 Infectious adults aged five years and above with asymptomatic malaria 

𝑅𝑎 Recovered adults aged five years and above 

𝑆𝑚 Susceptible mosquitoes 

𝐸𝑚 Exposed mosquitoes 

𝐼𝑚 Infectious mosquitoes 
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Table 2: Description of parameters used in the model equation (1) 

Parameter Description 

𝛽𝑎 
 

The probability of transmission from an infectious mosquito to a 

susceptible adult given that contact between the two occurs 

𝛽𝑐 
 

The probability of transmission from an infectious mosquito to a 

susceptible child given that contact between the two occurs 

𝛽𝑚 
 

The probability of transmission from an infectious human to a 

susceptible mosquito given that contact between the two occurs 

𝜆𝑗 , (j = c, a, m)  The infection rate for susceptible children, adult and mosquito 

𝜎𝑗 , (j = c, a, m)  Progression rate from the exposed to infectious class for children, adult 

and mosquito 

𝜋 Immigrants recruitment rate 

𝛾𝑘 (k = c, a, s) The recovery rate of children, asymptomatic carriers and symptomatic 

individuals from malaria 

𝑟 Relative infectivity of 𝐼𝑎 when compared to 𝐴𝑎 

𝜁 Maturation rate of children to adult 

𝑏 Average per capital biting rate of mosquitoes 

𝜂𝑐, 𝜂𝑎 Rate of loss of immunity for children and adult 

𝛿𝑐, 𝛿𝑎 Disease induced death rate for symptomatic malaria in children and adult 

𝛬𝑚 , 𝛬𝑐 Mosquito recruitment rate and human per capita birth rate, respectively 

𝜌1, 𝜌2 The proportion of immigrants who are exposed and asymptomatic, 

respectively 

𝜃 The proportion of exposed adults who show clinical symptoms 

𝜙 The proportion of symptomatic adults who recover  

𝜇, 𝜇𝑚 The natural mortality rate for human beings and mosquitoes, respectively 

𝛼 The rate at which symptomatic adults become asymptomatic  

𝑚 Vector-human ratio 
𝑁𝑚

𝑁ℎ
 

 

Model equations 
Based on the flow diagram in Figure 1 and the 

model parameters and variables provided in 

Table 1 and Table 2, respectively, the 

following system of ordinary differential 

equations (1) describes the dynamics of malaria 

in the two human sub-populations and the 

mosquito population. 

Analysis of the model 
In this section, we analyze the model (1) to get 

insights into malaria dynamics. Also, we use 

the model to assess the effects of age, 

immigrants, and asymptomatic carriers on 

malaria transmission.  
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𝑆�́� = 𝛬𝑐𝑁ℎ + 𝜂𝑐𝑅𝑐 − (𝜇 + 𝜆𝑐 + 𝜁)𝑆𝑐 ,                                                              

𝐸�́� = 𝜆𝑐𝑆𝑐 − (𝜇 + 𝜎𝑐 + 𝜁)𝐸𝑐 ,                                                                               

𝐼�́� = 𝜎𝑐𝐸𝑐 − (𝜇 + 𝛿𝑐 + 𝜁 + 𝛾𝑐)𝐼𝑐 ,                                                                      

𝑅𝑐´ = 𝛾𝑐𝐼𝑐 − (𝜇 + 𝜁 + 𝜂𝑐)𝑅𝑐 ,                                                                                

𝑆�́� = (1 − 𝜌1 − 𝜌2)𝜋 + 𝜁𝑆𝑐 + 𝜂𝑎𝑅𝑎 − (𝜇 + 𝜆𝑎)𝑆𝑎 ,                                       

𝐸�́� = 𝜋𝜌1 + 𝜆𝑎𝑆𝑎 + 𝜁𝐸𝑐 − [𝜇 + 𝜎𝑎𝜃 + 𝜎𝑎(1 − 𝜃)]𝐸𝑎 ,                                   

𝐼�́� = 𝜎𝑎𝜃𝐸𝑎 + 𝜁𝐼𝑐 − [𝜇 + 𝛿𝑎 + 𝛾𝑠𝜙 + 𝛼(1 − 𝜙)]𝐼𝑎 ,                                       

𝐴�́� = 𝜋𝜌2 + 𝜎𝑎(1 − 𝜃)𝐸𝑎 + 𝛼(1 − 𝜙)𝐼𝑎 − (𝜇 + 𝛾𝑎)𝐴𝑎,                               

𝑅�́� = 𝛾𝑎𝐴𝑎 + 𝛾𝑠𝜙𝐼𝑎 + 𝜁𝑅𝑐 − (𝜇 + 𝜂𝑎)𝑅𝑎,                                                       

𝑆�́� = 𝛬𝑚𝑁𝑚 − (𝜇𝑚 + 𝜆𝑚)𝑆𝑚,                                                                             

𝐸�́� = 𝜆𝑚𝑆𝑚 − (𝜇𝑚 + 𝜎𝑚)𝐸𝑚 ,                                                                              

𝐼�́� = 𝜎𝑚𝐸𝑚 − 𝜇𝑚𝐼𝑚 ,                                                                                             

𝑁ℎ´ = 𝜋 + (𝛬𝑐 − 𝜇)𝑁ℎ − 𝛿𝑐𝐼𝑐 − 𝛿𝑎𝐼𝑎 ,                                                               

𝑁�́� = (𝛬𝑚 − 𝜇𝑚)𝑁𝑚,                                                                                            }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   (1)     

where  𝜆𝑐 =
𝑏𝛽𝑐𝐼𝑚

𝑁ℎ
, 𝜆𝑎 =

𝑏𝛽𝑎𝐼𝑚

𝑁ℎ
 and 𝜆𝑚 =

𝑏𝛽𝑚[𝐼𝑐+𝐼𝑎+𝑟𝐴𝑎]

𝑁ℎ
. 

 

Existence of equilibrium 

Before we investigate the existence of 

equilibrium points, we normalize the 

population in each class by dividing with their 

respective total populations (i.e., 𝑒𝑐 =
𝐸𝑐

𝑁ℎ
, 𝑒𝑎 =

𝐸𝑎

𝑁ℎ
 , 𝑒𝑚 =

𝐸𝑚

𝑁𝑚
  etc.) as in Chitnis et al. (2008) . 

Then differentiating with respect to 𝑡, we 

obtain 
𝑑𝑒𝑐

𝑑𝑡
=

1

𝑁ℎ
[
𝑑𝐸𝑐

𝑑𝑡
− 𝑒𝑐

𝑑𝑁ℎ

𝑑𝑡
], 

𝑑𝑒𝑎

𝑑𝑡
=

1

𝑁ℎ
[
𝑑𝐸𝑎

𝑑𝑡
− 𝑒𝑎

𝑑𝑁ℎ

𝑑𝑡
], 

𝑑𝑒𝑚

𝑑𝑡
=

1

𝑁ℎ
[
𝑑𝐸𝑚

𝑑𝑡
− 𝑒𝑚

𝑑𝑁ℎ

𝑑𝑡
]. 

We repeat the process for the remaining 

variables. Solving for the derivatives of scaled 

variables and employing the technique by 

Tumwiine et al. (2010), we obtain

  

𝑠�́� = 𝛬𝑐 + 𝜂𝑐𝑟𝑐 − (𝑚𝑏𝛽𝑐𝑖𝑚 + 𝜁 + 𝜇)𝑠𝑐                                                                         
 𝑒𝑐´ = 𝑚𝑏𝛽𝑐𝑖𝑚𝑠𝑐 − 𝑔2𝑒𝑐 ,                                                                                                       
𝑖�́� = 𝜎𝑐𝑒𝑐 − 𝑔3𝑖𝑐 ,                                                                                                                 
𝑟�́� = 𝛾𝑐𝑖𝑐 − 𝑔4𝑟𝑐 ,                                                                                                                  

𝑠�́� = (1 − 𝜌1 − 𝜌2)(𝛿𝑎𝑖𝑎 + 𝛿𝑐𝑖𝑐 − 𝛬𝑐 + 𝜇) + 𝜂𝑎𝑟𝑎 + 𝜁𝑠𝑐 − (𝜇 +𝑚𝑏𝛽𝑎𝑖𝑚)𝑠𝑎 ,    

𝑒�́� = 𝜌1(𝛿𝑎𝑖𝑎 + 𝛿𝑐𝑖𝑐 − 𝛬𝑐 + 𝜇) + 𝜁𝑒𝑐 − (𝜇 + 𝜎𝑎)𝑒𝑎 +𝑚𝑏𝛽𝑎𝑖𝑚𝑠𝑎 ,                         
𝑖�́� = 𝜎𝑎𝜃𝑒𝑎 + 𝜁𝑖𝑐 − 𝑔1𝑖𝑎,                                                                                                    

𝑎�́� = 𝜌2(𝛿𝑎𝑖𝑎 + 𝛿𝑐𝑖𝑐 − 𝛬𝑐 + 𝜇) + 𝜎𝑎(1 − 𝜃)𝑒𝑎 + 𝛼(1 − 𝜙)𝑖𝑎 − (𝜇 + 𝛾𝑎)𝑎𝑎 ,    

 𝑟�́� = 𝛾𝑎𝑎𝑎 + 𝛾𝑠𝜙𝑖𝑎 + 𝜁𝑟𝑐 − (𝜇 + 𝜂𝑎)𝑟𝑎 ,                                                                         

𝑠�́� = 𝛬𝑚(1 − 𝑠𝑚) − 𝑏𝛽𝑚(𝑖𝑐 + 𝑖𝑎 + 𝑟𝑎𝑎)𝑠𝑚 ,                                                                

𝑒�́� = −𝛬𝑚𝑒𝑚 − 𝑒𝑚𝜎𝑚 + 𝑏𝛽𝑚(𝑖𝑐 + 𝑖𝑎 + 𝑟𝑎𝑎)𝑠𝑚 ,
𝑖�́� = 𝜎𝑚𝑒𝑚 − 𝑖𝑚𝛬𝑚                                                   

                                                       
}
 
 
 
 
 
 

 
 
 
 
 
 

   (2) 

where, 𝑔1 = 𝛿𝑎 − 𝛼𝜙 + 𝛼 + µ + 𝜙𝛾𝑠, 𝑔2 = 𝜎𝑐 + 𝜁 + µ, 𝑔3 = 𝛾𝑐 + 𝛿𝑐 + 𝜁 + µ, 𝑔4 = 𝜂𝑐 + 𝜁 + µ, 

𝑚 =
𝑁𝑚

𝑁ℎ
, subject to the conditions 𝑠𝑚 + 𝑒𝑚 + 𝑖𝑚 = 1, 𝑠𝑐 + 𝑒𝑐 + 𝑖𝑐 + 𝑟𝑐 + 𝑠𝑎 + 𝑒𝑎 + 𝑖𝑎 + 𝑎𝑎 +

𝑟𝑎 = 1. All the feasible solutions of system (2) enter the region of biological interest defined by 

𝛺 = {(𝑠𝑐 , 𝑒𝑐 , 𝑖𝑐 , 𝑟𝑐 , 𝑠𝑎 , 𝑒𝑎 , 𝑖𝑎, 𝑎𝑎 , 𝑟𝑎 , 𝑠𝑚 , 𝑒𝑚, 𝑖𝑚 ∈ 𝑅+
12: 𝑠𝑐 , 𝑒𝑐, 𝑖𝑐 , 𝑟𝑐 , 𝑠𝑎 , 𝑒𝑎, 𝑖𝑎 , 𝑎𝑎 , 𝑟𝑎 , 𝑠𝑚 , 𝑒𝑚, 𝑖𝑚 ≥

0, 𝑠𝑐 + 𝑒𝑐 + 𝑖𝑐 + 𝑟𝑐 + 𝑠𝑎 + 𝑒𝑎 + 𝑖𝑎 + 𝑎𝑎 + 𝑟𝑎 = 1, 
𝑠𝑚 + 𝑒𝑚 + 𝑖𝑚 = 1 }. 



Tanz. J. Sci. Vol. 47(3) 2021 

959 

We consider two scenarios; first, we analyze 

the model system (2) in the absence of infected 

immigrants (i.e., 𝜌
1
= 𝜌2 = 0); and secondly, 

we analyze the model in the presence of 

infected immigrants (i.e., 𝜌
1
, 𝜌2 > 0). 

 

Malaria transmission in the absence of 

infected immigrants 

Substituting 𝜌
1
= 𝜌2 = 0 in model equations 

(2), we obtain the model with only susceptible 

immigrants. Equating the derivatives in 

equations (2) equal to zero, we get the disease-

free equilibrium (𝐸0) as 

𝐸0 = (𝑠𝑐
∗, 𝑒𝑐

∗, 𝑖𝑐
∗, 𝑟𝑐

∗, 𝑠𝑎
∗, 𝑒𝑎

∗ , 𝑖𝑎
∗ , 𝑎𝑎

∗ , 𝑟𝑎
∗, 𝑠𝑚

∗ , 𝑒𝑚
∗ , 𝑖𝑚

∗ )

= (
𝛬𝑐
𝜁 + 𝜇

, 0,0,0,
𝜁 + 𝜇 − 𝛬𝑐
𝜁 + 𝜇

, 0,0,0,0,1,0,0). 

 

Basic reproduction number and local 

stability of the disease-free equilibrium (𝐸0) 

The basic reproduction number 𝑅0 represents 

the average number of secondary cases that one 

infected human (mosquito) can generate during 

the infection duration in a susceptible 

population. We determine the basic 

reproduction number 𝑅0 using the next-

generation matrix as described in Van den 

Driessche and Watmough (2002). The matrices 

for new infection terms (𝐹) and the transfer 

terms (𝑉) evaluated at 𝐸0  are given by 

𝐹 =

(

 
 
 
 
 
 0
0
0
0
0
0
0

0
0
0
0
0

 𝑏𝛽𝑚
0

0
0
0
0
0
 0
0

0
0
0
0
0

 𝑏𝛽𝑚 
0

0
0
0
0
0

𝑟𝑏𝛽𝑚
0

0
0
0 
0
0
0
0

𝑚𝑏𝛽𝑐𝛬𝑐
𝜁 + 𝜇
0

𝑚𝑏𝛽𝑎(𝜁 + 𝜇 − 𝛬𝑐)

𝜁 + 𝜇
0
0
0
0 )

 
 
 
 
 
 

, 

𝑉 =

(

 
 
 
 

𝑔2
−𝜎𝑐
𝜁
0
0
0
0

0
𝑔3
0
−𝜁
0
0
0

0
0

𝜇 + 𝜎𝑎
−𝜃𝜎𝑎

−(1 − 𝜃)𝜎𝑚
0
0

0
0
0
0

−𝛼(1 − 𝜙)

0
0

0
0
0
0

𝜇 + 𝛾𝑎
0
0

0
0
0
0
0

𝛬𝑚 + 𝜎𝑎
−𝜎𝑎

0
0
0
0
0
0
𝛬𝑚)

 
 
 
 

, 

respectively. The reproduction number (𝑅0) represents the dominant eigenvalue of the generation 

matrix 𝐹𝑉−1 which works to be:  

𝑅0 = √(𝑅𝑐 + 𝑅𝑎)𝑅𝑚,  
where 

𝑅𝑐 =
𝑚𝑏𝛽𝑐𝛬𝑐
𝜁 + 𝜇

{
𝜁𝑟𝜎𝑚 (𝛼(1 − 𝜙)𝜎𝑐(𝜎𝑎 + 𝜇) + 𝑔3𝜎𝑎(𝛼𝜃(1 − 𝜙) + 𝑔1(1 − 𝜃)))

𝑔1𝑔2𝑔3(𝜎𝑎 + 𝜇)(𝛾𝑎 + 𝜇)
 

                       +
(𝜎𝑐(𝜁+𝑔1)(𝜎𝑎+𝜇)+𝜁𝑔3𝜃𝜎𝑎)

𝑔1𝑔2𝑔3(𝜎𝑎+𝜇)
}, 

𝑅𝑎 =
𝑚𝑏𝛽𝑎

𝜁+𝜇
{
𝑟𝜎𝑎(−𝛬𝑐+𝜁+𝜇)(𝛼𝜃(1−𝜙)+𝑔1(1−𝜃))

𝑔1(𝛾𝑎+𝜇)(𝜎𝑎+𝜇)
+

𝜃𝜎𝑎(−𝛬𝑐+𝜁+𝜇)

𝑔1(𝜎𝑎+𝜇)
}, 

𝑅𝑚 =
𝑏𝛽𝑚𝜎𝑚

𝛬𝑚(𝛬𝑚+𝜎𝑚)
.

𝑅𝑐 is the number of secondary infections in 

children by one infectious mosquito, 𝑅𝑎 is the 

number of secondary infections in adults by 

one introduced infectious mosquito and 𝑅𝑚 is 

the number of secondary infections in 

mosquitoes by a newly introduced infectious 
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child or adult. Using Theorem 2 of Van den 

Driessche and Watmough (2002), the following 

result is established: 

Theorem 1. The disease-free equilibrium point 

𝐸0, is locally asymptotically stable if 𝑅0 < 1 

and unstable otherwise. 

 

Sensitivity analysis of 𝑅0 

The sensitivity analysis of 𝑅0 is used to 

determine the relative importance of different 

factors contributing to disease transmission to 

best control it. Sensitivity indices of the basic 

reproduction number with respect to 

parameters are computed following the method 

by Chitnis et al. (2008). For instance, the 

normalized forward sensitivity of 𝑅0 with 

respect to parameter 𝛽
𝑚

 is defined and 

computed as 𝛶𝛽𝑚
𝑅0 =

𝜕𝑅0

𝜕𝛽𝑚

×
𝛽𝑚

𝑅0
= 0.5, which 

does not depend on the values of parameters. 

The rest of the sensitivity indices are evaluated 

numerically using the parameter values in 

Table 3, and the results are presented in Figure 

2. 

 

Table 3: Parameter values used in the numerical simulations 

Parameter Range Value Units Source 

βa 0.24-0.64 0.27 
Days

−1
 

Okuneye and Gumel (2017) 

βm 0.02-0.64 0.64 
Days

−1
 

Okuneye and Gumel (2017) 

βc 0.24-0.64 0.27 
Days

−1
 

Okuneye and Gumel (2017) 

δa 0.00001-0.0004 0.0002 
Days

−1
 

Okuneye and Gumel (2017) 

δc 0.00001-0.0005 0.0005 
Days

−1
 

Okuneye and Gumel (2017) 

γa 0.0006-0.01 0.002 
Days

−1
 

Okuneye et al.  (2019) 

γs 0.0014-0.011 0.01 
Days

−1
 

Addawe and Lope (2012a) 

γc 0.0014-0.03 0.0014 
Days

−1
 

Addawe and Lope (2012b) 

Λc  0.000027-0.00014 0.000097 
 Days

−1
 

Chitnis et al. (2008) 

Λm 0.020-0.27 0.13 
Days

−1
 

Chitnis et al. (2008) 

α 0-1 0.05 
Days

−1
 

Okuneye et.al (2019) 

ρ1 0-1 0.4  Assumed 

ρ2 0-1 0.4  Assumed 

σa 0.06-0.203 0.07 
Days

−1
 

Okuneye and Gumel (2017) 

σc 0.06-0.203 0.203 
Days

−1
 

Okuneye and Gumel (2017) 

σm 0.029-0.33 0.1 
Days

−1
 

Chitnis et al. (2008) 

r 0-1 0.68  Assumed 

µ   0.00003-0.00006 0.00004 
Days

−1
 

Okuneye and Gumel (2017) 

ζ 0.000144-0.000183 0.000183 
Days

−1
 

Okuneye and Gumel (2017) 

 

φ 0-1 0.4  Assumed 

ηa 0.0014-0.011 0.0027 
Days

−1
 

Addawe and Lope (2012a) 

ηc 0.0014-0.011 0.0027 
Days

−1
 

Addawe and Lope (2012b) 

b 0.1-1.0 0.5 
Days

−1
 

Okuneye and Gumel (2017) 

θ 0-1 0.637  Assumed 



Tanz. J. Sci. Vol. 47(3) 2021 

961 

 
Figure 2: Sensitivity indices of 𝑅0 with respect to the parameters. 

 

The sign of sensitivity index in Figure 2 

indicates whether 𝑅0 is an increasing (or 

decreasing) function of the corresponding 

parameter. A positive index sign shows that 𝑅0 

is an increasing function of the corresponding 

parameter, whereas a negative sign shows that 

𝑅0 is a decreasing function of that parameter. 

The magnitudes of sensitivity indices indicate 

how sensitive 𝑅0 is to the parameter. From 

Figure 2, the most sensitive parameter is the 

biting rate 𝑏 followed by 𝛬𝑚, 𝛽
𝑚

 , 𝛽
𝑐
 , 𝛾

𝑐
, 

𝛬𝑐, 𝜎𝑚 and 𝜁. The sensitivity indices are in 

line with our expectation that decreasing the 

biting rate reduces the number of infected 

humans and mosquitoes and decreases disease 

transmission. Also decreasing 𝛽
𝑚

 and 𝛽
𝑐
 

reduces the probability of mosquitoes and 

children being infected. Consequently, it 

reduces the number of infected mosquitoes and 

human beings, respectively, and reduces 

malaria transmission. 

 

Existence of endemic equilibrium 

The endemic equilibrium can be obtained by 

solving equation (2). However, the solution in 

a closed-form is not possible analytically. 

Using the parameter values in Table 3 when 𝑅0 

= 1.1370, we obtain numerical values for 

endemic equilibrium given by 

(𝑠𝑐
∗, 𝑒𝑐

∗, 𝑖𝑐
∗, 𝑟𝑐

∗, 𝑠𝑎
∗ , 𝑒𝑎

∗ , 𝑖𝑎
∗ , 𝑎𝑎

∗ , 𝑟𝑎
∗, 𝑠𝑚

∗ , 𝑒𝑚
∗ , 𝑖𝑚

∗ )
= (0.2395,0.000169,0.01531,0.007049,0.7077, 
 0.0009654,0.002724,0.002006, 0.02463,  
0.9918, 0.005466, 0.002734). 
 The stability of the endemic equilibrium is 

presented in Figure 4, whereby the proportion 

of the total number of infected humans (i.e., the 

sum of 𝑖𝑐 , 𝑖𝑎 and 𝑎𝑎 ) is plotted as a function of 

time with different initial conditions to show 

that the endemic equilibrium is stable when 

𝑅0 > 1. 

 

A model with infected immigrants 
To examine the combined effects of 

asymptomatic carriers and immigrants on an 

age-structured model, we now analyze the 

model system (2) with 𝜌
1
 , 𝜌

2
> 0. The 

system has no disease-free equilibrium due to 

the presence of infected immigrants. The 

system's complexity has prevented us from 

finding an explicit solution for endemic 

equilibrium (EE). We, therefore, evaluate EE 

numerically using the parameter values in 

Table 3 to obtain (3)

(𝑠𝑐
∗, 𝑒𝑐

∗, 𝑖𝑐
∗, 𝑟𝑐

∗, 𝑠𝑎
∗, 𝑒𝑎

∗ , 𝑖𝑎
∗ , 𝑎𝑎

∗ , 𝑟𝑎
∗, 𝑠𝑚

∗ , 𝑒𝑚
∗ , 𝑖𝑚

∗ ) = (0.0071,0.0010,0.0944,0.0435,0.0317,0.0141, 
0.0188,0.4473,0.3421,0.4933,0.2864,0.2203).    (3) 



Kalula et al. - An Age-Structured Model for Transmission Dynamics of Malaria  

962 

Sensitivity indices for the endemic 

equilibrium point 

Sensitivity indices for the endemic equilibrium 

point are calculated using the method described 

by Chitnis et al. (2008). Since we cannot 

explicitly determine the endemic equilibrium, 

we use the system (2) and the endemic 

equilibrium values in equation (3). We replace 

the variables in the system (2) with proportions 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12 and 

the parameters 

𝛽
𝑎
, 𝛽𝑚, 𝛽𝑐 , 𝛿𝑎, 𝛿𝑐, 𝛾𝑎, 𝛾𝑠, 𝛾𝑐, 𝛬𝑐 , 𝛬𝑚, 𝛼, 𝜌1, 𝜌2, 𝜎𝑐 

𝜎𝑎, 𝜎𝑚, 𝑟, 𝜇, 𝜁, 𝜙, 𝜂𝑎, 𝜂𝑐 , 𝑏, 𝜃,𝑚 by 

𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19, 𝑝20, 𝑝21, 𝑝22, 𝑝23, 𝑝24, 𝑝25. 
So the system (2) at equilibrium becomes 

𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥12; 𝑝1 , 𝑝2 , . . . , 𝑝25) = 0,    (4)  

where 𝑖 = 1, . . .12. We need to compute 
𝜕𝑥𝑗

𝜕𝑝𝑘

 with 𝑗 = 1, . . . ,12 and 𝑘 = 1, . . . ,25 for 

parameter values in Table 3 and the endemic 

equilibrium (3). Differentiating the equilibrium 

equations (4) with respect to 𝑝𝑘 we obtain 
𝑑𝑓𝑖

𝑑𝑝𝑘
= ∑

𝜕𝑓𝑖

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑝𝑘

12
𝑗=1 +∑

𝜕𝑓𝑖

𝜕𝑝𝑙

𝜕𝑝𝑙

𝜕𝑝𝑘

25
𝑙=1 = 0,       (5)  

 for 𝑖 = 1, . . .12 and 𝑘 = 1, . . .25 in which 
𝜕𝑝𝑙

𝜕𝑝𝑘

= 0 if 𝑙 ≠ 𝑘. Hence each equation in (5) 

reduces to  ∑
𝜕𝑓𝑖

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑝𝑘

12
𝑗=1 =

𝜕𝑓𝑖

𝜕𝑝𝑘
.     (6) 

 

 

The equation (6) can then be written as 𝐴𝑋𝑘 = 𝑧𝑘           (7) 

where 𝐴 is a (12 x 12) Jacobin matrix of the system (3) with entries 
𝜕𝑓𝑖

𝜕𝑥𝑗
∗ , 

𝑋𝑘 = [
𝜕𝑥1

∗

𝜕𝑝𝑘
,
𝜕𝑥2

∗

𝜕𝑝𝑘
,
𝜕𝑥3

∗

𝜕𝑝𝑘
,
𝜕𝑥4

∗

𝜕𝑝𝑘
,
𝜕𝑥5

∗

𝜕𝑝𝑘
,
𝜕𝑥6

∗

𝜕𝑝𝑘
,
𝜕𝑥7

∗

𝜕𝑝𝑘
,
𝜕𝑥8

∗

𝜕𝑝𝑘
,
𝜕𝑥9

∗

𝜕𝑝𝑘
,
𝜕𝑥10

∗

𝜕𝑝𝑘
,
𝜕𝑥11

∗

𝜕𝑝𝑘
,
𝜕𝑥11

∗

𝜕𝑝𝑘
]

𝑇

 

and 

𝑧𝑘 = [
−𝜕𝑓1
𝜕𝑝𝑘

,
−𝜕𝑓2
𝜕𝑝𝑘

,
−𝜕𝑓3
𝜕𝑝𝑘

,
−𝜕𝑓4
𝜕𝑝𝑘

,
−𝜕𝑓5
𝜕𝑝𝑘

,
−𝜕𝑓6
𝜕𝑝𝑘

,
−𝜕𝑓7
𝜕𝑝𝑘

,
−𝜕𝑓8
𝜕𝑝𝑘

,
−𝜕𝑓9
𝜕𝑝𝑘

,
−𝜕𝑓10
𝜕𝑝𝑘

,
−𝜕𝑓11
𝜕𝑝𝑘

,
−𝜕𝑓12
𝜕𝑝𝑘

]
𝑇

 

 

with 𝑖 = 1, . . .12and 𝑘 = 1, . . .25. Solving the 

system (7), we obtain the required 𝑋𝑘 where A 

is evaluated at endemic equilibrium (3) and 𝑧𝑘 

with the parameter values in Table 3. Finally 

multiplying 𝑋𝑘 by 
𝑝𝑘

𝑥𝑗
, we obtain sensitivity 

indices of endemic equilibrium with respect to 

parameters. Table 4 represents sensitivity 

indices for 𝑖𝑐 , 𝑖𝑎 and 𝑎𝑎. 

 

Interpretation of sensitivity indices of the 

endemic equilibrium 
The five most sensitive parameters for endemic 

equilibrium, 𝑖𝑐 are 𝛬𝑐, 𝛿𝑐, 𝜁, 𝜇 and 𝛾
𝑐
, for 𝑖𝑎are 

𝜃, 𝛼, 𝜙, 𝛾𝑎and 𝜂
𝑎

and for 𝑎𝑎 are 𝛾
𝑎
, 𝜂𝑎, 𝛬𝑐, 𝛿𝑐 

and 𝜙. The direction of the sensitivity indices 

of the endemic equilibrium with respect to 

most of the parameters is consistent with the 

intuitive expectation except for the  𝛬𝑚 which 

we expect that as mosquitoes are increased, the 

number of infected humans will also increase. 

An explanation for counterintuitive expectation 

is that an increase in the number of mosquitoes 

would affect the total number of mosquito bites 

on humans, hence reducing the number of 

infected humans. The least sensitive parameter 

for endemic equilibrium is the proportion of 

immigrants who are infective but not infectious 

𝜌
1
.
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Table 4: Sensitivity indices of the endemic equilibrium for infectious individuals 

 𝑖𝑐  𝑖𝑎 𝑎𝑎 

βa 0.00000 0.00218 0.002103 

βm 0.00067 0.00116 0.00113 

βc 0.00138 0.00022 0.00023 

δa -0.000003019 -0.01010 -0.00583 

δc -0.511768 0.07611 0.08872 

γa -0.000205218 0.51204 -0.46999 

γs -0.00001735445 -0.08104 -0.03207 

γc -0.16361 -0.03018 -0.03067 

Λc 1.02437 -0.15308 -0.17838 

Λm -0.00144452 -0.00252 -0.002445 

α -0.00000087021 -0.93039 0.05554 

ρ1 0.00000004821950 0.000100 0.000097 

ρ2 0.000000397061 -0.04487 0.00361 

σa 0.0013266246 0.000215 0.00022 

σc 0.00002571585 0.053490 0.05164 

σm 0.000778021 0.00136 0.001328 

r 0.000487464 0.00085 0.00083 

µ -0.23008 0.07926 0.06547 

ζ -0.26650 0.06020 0.04517 

φ -0.00001677426 0.53922 -0.06910 

ηa 0.0002044560 0.42527 0.41054 

ηc 0.14237 0.02633 0.02675 

b 0.0020429 0.00356 0.003458 

θ 0.000000970378 1.03747 -0.06193 

m 0.001376502 0.00240 0.00233 

 
Results and Discussion 

Numerical simulations of the model equations 

(2) were carried out to verify the analytical 

results obtained on the stability of equilibrium 

points. The models are simulated using fourth-

order Runge Kutta in Matlab. All figures are 

generated using parameter values given in 

Table 3 obtained from different kinds of 

literature. Considering the model without 

infected immigrants, when 𝑅0 < 1, for 𝑅0 =
0.9972, the proportion of total infected 

individuals converges to the disease-free 

equilibrium as shown in Figure 3. 

 
Figure 4 shows the dynamics of the model for  

𝑅0 = 1.1370, where the proportion of the total 

number of infected individuals  tends to the 

endemic equilibrium point, which indicates the 

persistence of disease in the community when 

𝑅0 > 1.  
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Figure 3: Simulation of the model without infected immigrants for 𝑅0 = 0.9972 using various 

initial conditions. 

 

 

Figure 4: Simulation of the model without infected immigrants for 𝑅0 = 1.1370, showing the 

proportion of the total number of infected individuals as a function of time using 

various initial conditions.  

 

With the model that incorporated infected 

immigrants, Figure 5 represents the dynamics 

of infectious children, adults, and mosquitoes. 

The results show that all populations persist 

throughout the disease's duration, which 

suggests the existence of an endemic 

equilibrium point. Thus, no disease-free 

equilibrium exists, as shown analytically. 
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Figure 5: Long term dynamics of infectious children, adults and mosquito population, with 

parameter values defined in Table 3 and five different initial conditions were used. 

  

Effects of infected immigrants and 

asymptomatic carriers 
Here we assess the impacts of infected 

immigrants and asymptomatic carriers on an 

age-structured model (2) numerically. We 

compare the dynamics of the model with and 

without infected immigrants and asymptomatic 

carriers. The age-structured model without 

infected immigrants and asymptomatic carriers 

is determined by setting 𝑟 = 𝜌1 = 𝜌2 = 𝑎𝑎 =
0, 𝜙 = 𝜃 = 1 in the system (2). The results are 

presented in Figure 6 (a) in four cases. Case 1 

is the prevalence of the age-structured model in 

the absence of infected immigrants and 

asymptomatic carriers. Case 2 is the prevalence 

of an age-structured model with infective 

immigrants (i.e. 𝜌1 > 0 but 𝜌2 = 0). Case 3 is 

the prevalence of an age-structured model with 

asymptomatic carriers. Case 4 is the prevalence 

of an age-structured model (2) with both 

infected immigrants and asymptomatic carriers. 

Figure 6 (a) shows that the pick of prevalence 

increases as we incorporate more factors as 

expected. This is because the population with 

no inflow of infected individuals and the 

asymptomatic carrier would have fewer 

malaria cases than those with infected 

immigrants and asymptomatic carriers. The 

observation implies that including more factors 

contributing to the malaria dynamics improves 

our understanding and helps determine the 

control strategies to contain the disease. Figure 

6 (b) represents the prevalence of malaria with 

four cases which shows how prevalence varies 

with the model's changes. Case 1 is when 

model (2) is reduced to have the adult 

population only without children, immigrants 

and asymptomatic carriers. The case is 

obtained by setting 𝑠𝑐 = 𝑒𝑐 = 𝑖𝑐 = 𝑟𝑐 =
0, 𝛬𝑐 = 𝛽𝑐 = 𝛿𝑐 = 𝜂𝑐 = 𝜎𝑐 = 𝛾𝑐 = 𝜌1 = 𝜌2 =
𝑟 = 𝑎𝑎 = 0 and 𝜙 = 𝜃 = 1. In case 2, we have 

a model in case 1 incorporating infective 

immigrants (𝜌1 = 0.4). Case 3 is the model 

with asymptomatic carrier 𝑟 = 0.68, 𝜙 =
0.4, 𝜃 = 0.637, 𝛼 = 0.05, 𝛾𝑎 = 0.002, whereas 

case 4 includes both infected immigrants and 

children classes 𝛽𝑐 = 0.27, 𝛿𝑐 = 0.0005, 𝜂𝑐 =
0.0027, 𝛿𝑐 = 0.203, 𝛬𝑐 = 0.000097, 𝛾𝑐 =
0.0014.  

Furthermore, in the two figures, Figure 6 (a 

& b) case 1, represents the prevalence of 

malaria in an age-structured and adult-only 

model, respectively. Case 2 includes infective 

immigrants in both figures, and Case 3 

incorporates asymptomatic carriers. This 

enables us to compare an age-structured and 

adult-only model with the inclusion of infected 

immigrants and asymptomatic carriers. We 

observe that an age-structured model has high 

peak than the model without age-structure in 

both cases. 
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(a) 

 
(b) 

Figure 6: Malaria prevalence for different cases. In (a): Case 1 is an age-structure only, Case 2 

is an age-structure with infective immigrants, Case 3 shows an age-structure with 

asymptomatic carriers and Case 4, age-structure, immigrants (both infective and 

infectious) and asymptomatic carriers. In (b): Case 1 is for adults only (without 

asymptomatic carriers and immigrants), Case 2 has adults and infective immigrants, 

Case 3 includes adults, immigrants (both infective and infectious), and asymptomatic 

carriers, and Case 4 incorporates adults with asymptomatic carriers and immigrants, 

and children. 

 

Conclusion 
In this paper, a deterministic, age-structured 

model for malaria transmission incorporating 

infected immigrants and asymptomatic carriers 

was formulated. The model was used to assess 

their combined effects on malaria dynamics. 

The model was analyzed analytically without 

the inflow of infected immigrants. The basic 

reproduction number 𝑅0 was calculated 

numerically and indicated that for the 𝑅0 < 1, 

the disease-free equilibrium point is 

asymptotically stable. For 𝑅0 > 1 the endemic 

equilibrium exists. Sensitivity analysis for 𝑅0 

reveals that the biting rate is the most important 

parameter; the same result was reported in 

Chitnis et al. (2008), which suggest that 

reducing it will reduce disease transmission. 

Also, we observe that malaria is more sensitive 

to children's parameters than the corresponding 

parameters in adults. These results are 

consistent with the observations by Addawe 

and Lope (2012a). Therefore, controlling the 

disease in children will have more impact than 

controlling the disease in adults.  On the other 

hand, the model with the inflow of infected 

immigrants shows that there is no disease-free 

equilibrium, as in other studies that include the 

inflow of infected immigrants such as 

Tumwiine et al. (2010), Mukandavire et al. 

(2010) and Makinde and Okosun (2011). 

Sensitivity analysis of endemic equilibrium 

was carried out. The numerical results indicate 

that the asymptomatic carriers have more 

impacts than the infected immigrants on 

malaria dynamics. These results imply that the 

control strategies targeting asymptomatic 

carriers will significantly impact the reduction 

of prevalence compared to targeting infected 

immigrants. Furthermore, it has been observed 

that neglecting age, infected immigrants, and 

asymptomatic carriers underestimate malaria's 

transmission dynamics as both play significant 

roles in the transmission dynamics of malaria. 

Although the study helps us assess the 

combined effects of infected immigrants and 

asymptomatic carriers on an age-structured 
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malaria transmission dynamics model, the 

model can be extended to include immigrants 

and asymptomatic carriers in children and 

factors related to climate change, which have 

significantly contributed to the transmission of 

malaria. 
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