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Abstract 
This paper presents an alternative approach for the determination of Cramer-Rao Lower Bound 

(CRLB) and Minimum Variance Unbiased Estimator (MVUE) using Laplace transformation. In 

this work, a DC signal in Additive White Gaussian Noise (AWGN) was considered. During the 

investigation, a number of experiments were conducted to analyze different possible outputs 

under different conditions, and then the patterns of the outcomes were studied. Finally closed-

form expressions for the CRLB and MVUE were deduced employing the Laplace 

transformation. The resulting expressions showed that the proposed method has almost the 

same number of steps as the existing method. However, the latter requires only the knowledge 

of algebra to arrive at the CRLB expressions contrary to the existing approach where a strong 

mathematical background is required and hence making it superior over the existing method, in 

that sense.  
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Introduction 

In communication and signal processing, 

it is common to encounter signal estimation 

problems. In so doing, it is very useful to 

place a lower bound on variance of any 

unbiased estimator in use. This lower bound 

can easily help select the best estimator for a 

given problem in hand based on the minimum 

variance it can attain. On the other language, 

the bound tells how best one can achieve 

during a given estimation problem (Alslaimy 

and Smith 2019, Huang et al. 2020, Hung et 

al. 2020, Kay 1993, Khorasani et al. 2020, Li 

et al. 2021, Mao et al. 2020, Tian et al. 2020).  

There are many lower bounds in the 

literature, but the most famous bound, 

attractive and relatively easy to evaluate is the 

Cramer- Rao Lower Bound (CRLB). The 

CRLB, which is defined as the inverse Fisher 

Information Matrix (FIM), is a useful tool to 

find the smallest variance estimates for 

unbiased estimators. In radar applications in 

which the CRLB depends on the geometry of 

the bistatic configuration, it is normally used 

to determine the optimal transceiver locations 

so that the estimation accuracy is improved 

(Alslaimy and Smith 2019). Among its 

features, CRLB can readily give a Minimum 

Variance Unbiased Estimator (MVUE), if it 

exists (Alslaimy and Smith 2019, Kay 1993, 

Tian et al. 2020). 

From the literature, the CRLB 

determination requires good knowledge of 

calculus to evaluate the second derivative, 

which is not only cumbersome, but error-

prone. Furthermore, a strong knowledge of 

probability and statistics is necessary as well 

to help evaluate the expected value. It is true, 

with no doubt, that probability is marked by 

many scholars as among the difficult branches 
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in mathematics (Kay 1993, Tian et al. 2020). 

In short, even though the CRLB is preferred 

compared to other lower bounds existing in 

the literature, its procedure is not 

straightforward for the reasons outlined 

earlier (Kay 1993, Khorasani et al. 2020, Mao 

et al. 2020).  

The Laplace transform has a number of 

engineering applications and found 

considerable attention in science and 

engineering due to its capability to solve 

complex engineering problems. The Laplace 

transform, named after Pierre-Simon Laplace, 

is an integral transform that converts a 

function of a real variable to a function of a 

complex variable. The Laplace transform is a 

tool for solving differential equations and in 

particular, it transforms differential equations 

into algebraic equations and convolution into 

multiplication (Phillips and Parr 2008, Schiff 

1999). Laplace transform has also found 

applications in probability theory. In pure and 

applied probability, the Laplace transform is 

defined as an expected value of a given 

random variable, say 𝑋. By convention, this is 

referred to as the Laplace transform of the 

random variable 𝑋 itself. Here, replacing 𝑠 by 

−𝑡 gives the moment generating function of 

𝑋 (Williams 1973, Schiff 1999, Phillips and 

Parr 2008).  

The objective of this work was therefore, 

to investigate the possibility of utilizing the 

capability of Laplace transformation to 

determine the CRLB of parameter estimators 

as well as the determination of their 

corresponding Minimum Variance Unbiased 

Estimators (MVUEs). With the application of 

Laplace transform, all complicated 

procedures including second derivative will 

be mapped into simpler algebraic 

manipulations (Schiff 1999). 

 

Materials and Methods 

Cramer-Rao lower bound  

In a nutshell, CRLB states that the 

variance of any unbiased estimator is at least 

as high as the inverse of the Fisher 

information measure. Consider a DC signal 

contaminated with Additive White Gaussian 

Noise (AWGN) having zero mean and known 

variance. If 𝑁 observations were made during 

the estimation process, the data model can be 

expressed mathematically as shown in 

Equation (1) (Kay 1993): 

 𝑥(𝑛) = 𝐴 + 𝑤(𝑛)  (1) 

where, w(𝑛)~𝐺(0, 𝜎2) , 𝜎2 is the known 

variance of the noise 𝑤(𝑛), 𝐴 is the DC signal 

to be estimated and 𝑛 = 0,1,2 ⋯ 𝑁 − 1. 

Assuming all observations are independent 

and identically distributed (iid), then the 

CRLB for the estimated DC signal, �̂�, is 

given by Equation (2): 

 𝑉𝑎𝑟(�̂�) ≥
1

𝐼(𝐴)
 (2) 

 

and 𝐼(𝐴)

= −𝐸 [
𝜕2 ln 𝑝(𝑥, 𝐴)

𝜕𝐴2
] 

(3) 

where 𝐼(𝐴) is the Fisher Information measure, 

and ln 𝑝(𝒙, 𝐴) is the log-likelihood of the pdf 

of 𝒙 indexed by 𝐴, which is taken to be 

Gaussian in this study. 

From the given expressions, it is clear that the 

CRLB determination requires a good 

knowledge of calculus and probability 

theories making it difficult to evaluate. This 

calls for an alternative, tractable approach, 

and in this paper, Laplace transform is used to 

address the challenges.  

 

Proposed approach for CRLB 

determination 

A. CRLB for 𝜶 = 𝑨 

Consider a DC signal, 𝐴, contaminated with 

AWGN having zero mean and known 

variance, 𝜎2. If multiple observations were 

made during the estimation process, the data 

model can be expressed mathematically as 

Equation (1). Assuming all observations are 

iids. The following proposed theorems help to 

determine the CRLB for 𝐴: 

 

Theorem 1 

Given a DC signal, 𝐴 defined under 𝑓(A) 

corrupted by AWGN with zero mean and 

known variance, σ2. If multiple observations 

made are iid’s then CRLB and MVUE of A 

are respectively.  
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𝐶𝑅𝐿𝐵𝐴 = −
1

𝑓"(𝐴)

= −
1

𝐿−1[𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)]
 

(4) 

and   

 

�̂� =
𝑓′(0)

𝑓"(𝐴)

=
𝑓′(0)

𝐿−1[𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)]
 

(5) 

with  

 𝐹(𝑠) = −
𝑁

2𝜎2
[
�̅�2

𝑠
−

2�̅�

𝑠2
+

2

𝑠3
] (6) 

 
𝑓(0) = −

𝑁�̅�2

2𝜎2
 

(7) 

and 

  𝑓′(0) =
𝑁�̅�

𝜎2
 (8) 

 

Proof  

Consider a DC signal, 𝐴, contaminated with 

Additive White Gaussian Noise (AWGN) 

having zero mean and known variance, 𝜎2. If 

multiple observations were made during the 

estimation process, the data model expressed 

mathematically as in Equation (1). Assuming 

all observations are independent and 

identically distributed (iid). To determine the 

CRLB for 𝐴 Equation (9) can be used. 

𝑝(𝒙, 𝐴)

=
1

(2𝜋𝜎2)
𝑁

2⁄
exp [−

1

2𝜎2
∑(𝑥[𝑛]

𝑁−1

𝑛=0

− 𝐴)2] 

(9) 

 

Taking the logarithm on both sides, gives 

Equation (10). 

 

ln 𝑝(𝒙, 𝐴) +
𝑁

2
ln 2𝜋𝜎2

= −
1

2𝜎2
∑(𝑥[𝑛] − 𝐴)2

𝑁−1

𝑛=0

 

(10) 

 

Now, defining a new function of  𝐴, 𝑓(𝐴) =

ln 𝑝(𝒙, 𝐴) +
𝑁

2
ln 2𝜋𝜎2, which is a shifted 

log-likelihood, gives Equation (11). 

 

𝑓(𝐴)

= −
1

2𝜎2
∑(𝑥[𝑛]

𝑁−1

𝑛=0

− 𝐴)2 

(11) 

with 

 

𝑓(0)

= −
1

2𝜎2
∑ 𝑥[𝑛]2

𝑁−1

𝑛=0

 

∴ 𝑓(0) = −
𝑁�̅�2

2𝜎2
 

(12) 

Differentiating Equation (11) with respect to 

𝐴, gives Equation (13). 

 
𝑓′(𝐴) = ∑ (

1

𝜎2
𝑥[𝑛]

𝑁−1

𝑛=0

− 𝐴) 

(13) 

 ∴ 𝑓′(0) =
𝑁�̅�

𝜎2
 (14) 

Suppose the Laplace transform of 𝑓(𝐴) with 

respect to 𝐴 exist and is defined as Equation 

(15): 

 𝐹(𝑠) = ∫ 𝑓(𝐴)𝑒−𝑠𝐴𝑑𝐴

∞

0

 (15) 

Then from equation (11), with the linearity 

property of Laplace transformation, gives 

Equation (16). 

𝐹(𝑠) = −
𝑁

2𝜎2
[
�̅�2

𝑠
−

2�̅�

𝑠2
+

2

𝑠3
] (16) 

From the properties of Laplace transform, we 

have Equation (17) and 

substituting 𝐹(𝑠), 𝑓(0), and 𝑓′(0) gives 

Equation (18). 

𝐿{𝑓"(𝐴)} = 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0) (17) 

𝐿{𝑓"(𝐴)} = −
𝑁

𝜎2𝑠
 (18) 

Taking inverse Laplace transform, gives 

Equation (19). 

 𝑓"(𝐴) = −
𝑁

𝜎2
 (19) 
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Intuitively, this is equal to the Fisher 

Information measure. Then, CRLB of 𝐴 is 

defined as shown in Equation (20). 

 

𝐶𝑅𝐿𝐵𝐴 = −
1

𝑓"(𝐴)

= −
1

𝐿−1[𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)]
 

(20) 

From the Equation (20), CRLB determination 

has been simplified notably, only algebraic 

manipulation of known functions is required, 

as summarized in Figure 1. Consequently, the 

MVUE can be readily obtained from the 

relation shown in Equation (21). 

 

 

�̂� = −
𝑓′(0)

𝑓"(𝐴)

= −
𝑓′(0)

𝐿−1[𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0)]
 

⇒ �̂� = �̅� 

(21) 

 

 
Figure 1: summary procedure to determine 

CRLB of a DC signal.  

 

 

B. Generalization of CRLB for 𝜶 = 𝑨𝒏 

Theorem 2 

If CRLB of 𝐴 is 𝐶𝑅𝐿𝐵𝐴 then, the CRLB of 

𝛼 = 𝐴𝑛, for positive values of 𝑛 will be: 

𝐶𝑅𝐿𝐵�̂�

= 𝐶𝑅𝐿𝐵𝐴  × 𝐿−1 (
𝑇[𝑛]

𝑠2𝑛−1
)    ; 𝑛

> 0 

(22) 

𝑇[𝑛] = 𝑛2𝑛! (23) 

The function 𝑇[𝑛] is termed as T-function and 

its values for the first five values of the 

positive integers, 𝑛, are summarized in Table 

1. 

 

Table 1: T-function values 

n 1 2 3 4 5 

T(n) 1 8 54 384 3000 

 

 

Observations  

Testing the theorem for 𝑛 = 1, meaning 

𝛼 = 𝐴 and compared with the existing 

approach.  

 

 

A. Existing method 

𝐶𝑅𝐿𝐵�̂� = (
𝜕𝛼

𝜕𝐴
)

2

× 𝐶𝑅𝐿𝐵𝐴 (24) 

𝐶𝑅𝐿𝐵�̂� = 𝐶𝑅𝐿𝐵𝐴 (25) 

Similarly, when 𝑛 = 2, i.e. 𝛼 = 𝐴2, again 

using (24), gives 

𝐶𝑅𝐿𝐵�̂� = 4𝐴2 × 𝐶𝑅𝐿𝐵𝐴 (26) 

 

B. Proposed method 

Using the T-function table, given in Table 1, 

gives 𝑇[1] = 1. Then, using Equation (22), 

yields 

𝐶𝑅𝐿𝐵�̂� = 𝐶𝑅𝐿𝐵𝐴  

× 𝐿−1 (
1

𝑠
) 

(27) 

When using the table of Laplace transform 

(Schiff 1999) with 𝑡 replaced by 𝐴, also gives 

(25). For 𝑛 = 2, meaning 𝛼 = 𝐴2. Again, 

using T-function table from Table 1 gives 

𝑇[2] = 8. Again using Equation (22), gives 

𝐶𝑅𝐿𝐵�̂� = 𝐶𝑅𝐿𝐵𝐴  × 𝐿−1 (
8

𝑠3
) (28) 

Using the Laplace transform table (Schiff 

1999) with 𝑡 replaced by 𝐴, gives: 
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𝐿−1 (
8

𝑠3
) = 4𝐴2 

∴ 𝐶𝑅𝐿𝐵�̂� = 4𝐴2 × 𝐶𝑅𝐿𝐵𝐴 

(29) 

 

In the proposed approach, only algebraic 

manipulations are needed to arrive at the 

same solution.  

 

Theorem 3 

If the CRLB of A, (CRLBÂ), is known, then 

the CRLB of 𝛼 for negative values of 𝑛 is 

shown by Equation (30).  

𝐶𝑅𝐿𝐵�̂�

= 𝐶𝑅𝐿𝐵𝐴  ×
𝐿−1 (

𝑇[−𝑛]

𝑠2|𝑛|−1)

𝐿−1 (
(4|𝑛|)!

𝑠4|𝑛|+1)
   ; 𝑛 < 0 

(30) 

 

Observations  

For 𝑛 = −1, meaning 𝛼 = 𝐴−1 

 

A. With existing method 

Using Equation (24), gives 

 
∴ 𝐶𝑅𝐿𝐵�̂�

= 𝐴−4 × 𝐶𝑅𝐿𝐵𝐴 
(31) 

Similarly, when 𝑛 = −2, again, using 

Equation (22), we have 

(
𝜕𝛼

𝜕𝐴
)

2

= 4𝐴−6 

∴ 𝐶𝑅𝐿𝐵�̂� = 4𝐴−6 × 𝐶𝑅𝐿𝐵𝐴 

(32) 

 

B. With proposed method 

Using Table 1, gives 𝑇[1] = 1. Then, using 

Equation (31), yields Equation (33). When 

using the table of Laplace transform given in 

Schiff (1999) with 𝑡 replaced by 𝐴, also gives 

Equation (31). Then, from Equation (30), we 

have 

𝐶𝑅𝐿𝐵�̂� = 𝐶𝑅𝐿𝐵𝐴  ×
𝐿−1 (

1

𝑠
)

𝐿−1 (
4!

𝑠5)
 

∴ 𝐶𝑅𝐿𝐵�̂� = 𝐴−4 × 𝐶𝑅𝐿𝐵𝐴 

(33) 

 

For 𝑛 = 2, meaning 𝛼 = 𝐴2. Again, using T-

function table from Table 1 gives 𝑇[2] = 8 

and therefore, Equation (30), gives 

 

𝐶𝑅𝐿𝐵�̂� = 𝐶𝑅𝐿𝐵𝐴  ×
𝐿−1 (

8

𝑠3)

𝐿−1 (
8!

𝑠9)
 

∴ 𝐶𝑅𝐿𝐵�̂� = 4𝐴−6 × 𝐶𝑅𝐿𝐵𝐴 

(34) 

 

The procedure to obtain the CRLB of a 

function DC signal, 𝛼 = 𝐴𝑛 for both positive 

and negative values of 𝑛 is summarized in 

Figure 2.  

 
Figure 2: Summary procedure to determine CRLB of 𝜶 = 𝑨𝒏.  
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Results Discussions 

Though the proposed method has 

relatively long expressions compared to the 

existing ones, the two methods seem to have 

almost the same number of steps. 

Additionally, the latter requires only algebraic 

manipulations and look-up tables to arrive at 

the same solution as the existing method. As 

depicted in the previous section, all complex 

mathematical manipulations performed in the 

former approach have been mapped to simpler 

algebraic expressions making the proposed 

approach superior over the traditional method. 

With the new approach, only Laplace 

transform and T-function tables are used 

making the method easy to handle. Once the 

expression for the CRLB is obtained using 

Theorems 1-3, then MVUE can be deduced. 

Definitely, the idea presented by this paper 

will stimulate more research work in 

mathematical applications in engineering 

problem solving using the capability of 

Laplace transformation. 

From the above observations, the CRLB 

was found to be degraded with the increasing 

DC values for a fixed number of observations 

in case of positive integer values of 𝑛 as 

shown in Figure 3 (a). But, with negative 

integer values, the bound seems to be 

improved with increasing DC value as in 

Figure 3 (b). As the magnitude of integer 

value increases, the bound becomes worse 

than before. 

However, the bound improves 

significantly if the integer value 𝑛 is negative 

as depicted in Figure 3 (b). It is also evident 

that the bound improves as more and more 

observations are made keeping the estimated 

signal value constant for both cases: positive 

and negative integer values as shown in 

Figure 4 (a) and (b), respectively. Though, a 

better estimate is expected for large negative 

integers contrary to positive integers. The 

CRLB is even function of 𝐴, meaning the 

CRLB for negative values of 𝐴 can easily be 

obtained by using positive range of 𝐴. That is, 

reflection through the vertical axis can be used 

to determine the CRLB in case of negative 

DC values. This reflecting behaviour of the 

CRLB makes the analysis sensible by 

avoiding the analysis of negative range of 𝐴. 

  

(a) (b) 

Figure 3: Variations of CRLB with DC values with (a) positive integer power (b) negative 

integer power. 
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(a) (b) 

Figure 4: Variations of CRLB with the number of observations (a) positive integer values (b) 

negative integer values. 

 

Conclusions 

This work investigated the possibility of using 

Laplace transformation technique to 

determine the expressions of the Cramer-Rao 

Lower Bound (CRLB) and Minimum 

Variance Unbiased Estimator (MVUE) for 

the DC signal corrupted by AWGN. One 

advantage of the Laplace transformation is its 

ability to map all complicated mathematical 

manipulations into simple algebraic 

expressions. From the analysis, closed-form 

expressions for the determination of the 

CRLB and the MVUE by means of Laplace 

transformation were presented. Also, the more 

generalized forms of expressions for different 

values of integer powers of the DC value 

employing the Laplace transformation were 

developed. Contrary to the existing approach, 

the proposed alternative provides an easy and 

user-friendly method for the determination of 

the CRLB and MVUE for the DC signal under 

AWGN with very basic knowledge of 

mathematics required, as supported by 

Theorems 1-3. 
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