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Abstract 

Ebola virus (EBOV) infection is a hemorrhagic and hazardous disease, which is among the most 

shocking threats to human health causing a large number of deaths. Currently, there are no 

approved curative therapies for the disease. In this study, a mathematical model for in-vivo Ebola 

virus transmission dynamics was analyzed. The analysis of the model mainly focused on the 

sensitivity of basic reproductive number, 0R pertaining to the model parameters. Particularly, the 

sensitivity indices of all parameters of 0R  were computed by using the forward normalized 

sensitivity index method. The results showed that a slight change in the infection rate immensely 

influences 0R  while the same change in the production rate of the virus has the least impact on 

0R . Thus, 0R , being a determining factor  of the disease progression, deliberate control measures 

targeting the infection rate, the most positively sensitive parameter, are required. This implies that 

reducing infection rate will redirect the disease to extinction. 

______________________________________________________________________________ 
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Introduction 

Ebola virus (EBOV) is a single-stranded 

and negative sense RNA virus, which is a 

horrendously infectious, hemorrhagic and 

lethal disease, threatening to be a world tragedy 

to human health so far. The disease is among 

the most dangerous and shocking threats to 

human health, triggering a large number of 

deaths. It was first discovered in 1976 near 

Ebola River in Democratic Republic of Congo 

(DRC) (Fritz 2012, WHO 1978). Since then, 

over 20 outbreaks of EBOV infection have 

occurred in the world (Reece et al. 2016) and 

most of them appeared in South Sudan, Gabon 

Ivory Coast, South Africa and Uganda (CDC 

2014). In West Africa, outbreaks of EBOV 

infection (EBOVI) emerged as well, which 

commenced in Guinea and later spread to 

Liberia and Sierra Leone; and by the end of 

2014, the outbreak intensity had reached 

13,268 cases. Of these, 27 cases had spread to 

neighboring and overseas countries in Senegal, 

Mali, Nigeria, Spain and United States (WHO 

Ebola Response Team 2014).Recently, 

outbreaks of EBOVI have relapsed in the 

eastern part of DRC, threatening to spread to 

neighboring and nearby countries such as 

Cameroon, Uganda, Rwanda, Burundi, Kenya, 

Tanzania, Zambia, Congo and South Sudan. 

Outbreaks of EBOVI in Central and East 
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African countries have not been significantly 

experienced though most of them, being 

neighboring countries to DRC, are at risks of 

the disease outbreaks. 

The incubation period of EBOV ranges 

from 2 to 21 days and the infectious period 

ranges from 4 to10 days. In the meantime, it 

takes about 31 days to quarantine a patient for 

investigation of the virus. The virus impairs an 

enormous variety of cell types including 

monocytes, macrophages, dendritic cells, 

endothelial cells, fibroblasts, hepatocytes and 

several types of epithelial cells; but it primarily 

targets the dendritic cells, monocytes and 

macrophages cells (CDC 2014). It is frequently 

hypothesized that EBOV infection arouses 

lymphocyte apoptosis that deters development 

of an effective adaptive immune response, 

which causes overwhelming state and 

subsequent death. 

The EBOVcan be transmitted from animal 

to animal, human to human and animal to 

human. It can be transmitted from bats to other 

animals, usually gorillas, chimpanzees and 

baboons (Acha and and Szyfres 2003).It can 

also be transmitted to humans by contact with 

body fluids of the animals; and susceptible 

humans can be infected through direct contact 

with the saliva, mucus, vomit, faeces, sweat, 

tears, breast milk, urine and semen of infected 

people. EBOVI is typically manifested by 

headache, fever, vomiting, bleeding, diarrhea 

and rash (Fauci 2014); and in an infected 

person, severe bleeding and shock follows, 

which causes death. The risk of death from 

EBOVI is about 60% and increases as the 

infection progresses to the hemorrhage 

(bleeding) stage; and an infected individual 

becomes infectious at this stage. On the other 

hand, the transmission of the virus and 

subsequent death of infected people largely 

reduces through early discovery and effective 

contact tracing (Beeching et al. 2014). 

Presently, there are no approved therapies 

specific for EBOV infections (Wong and Uyeki 

2015). The major strategies currently used in 

the treatment of the disease are confined to 

symptomatic and supportive care of infected 

individuals, by maintaining fluids, electrolytes 

and acid-base balance of blood, and treatment 

of secondary infections (Tseng and Chan 

2015).  

Mathematical modeling has played a 

substantial role in understanding the dynamics 

of different virus infections (Nowak and May 

2000). Amongst existing models, the most 

prevalent dynamics models are HIV (Kirschner 

1996, Duffin and Tullis 2002, Perelson 2002, 

Hernandez‐Vargas et al. 2011, Hernandez-

Vargas and Middleton 2013); hepatitis virus 

(Ribeiro et al. 2002, Reluga et al. 2009, Guedj 

et al. 2013); influenza virus (Baccam et al. 

2006, Handel et al. 2010, Smith and Perelson 

2011, Pawelek et al. 2012, Hernandez-Vargas 

et al. 2014). Literatures show that several 

mathematical models have been developed to 

investigate the transmission dynamics of 

EBOV in human populations and human cell 

populations. But, there exist few mathematical 

models that describe the virus transmission 

dynamics in vivo with different dynamical 

effectors (Wester 2015, Martyushev et al. 2016, 

Lasisi et al. 2018), which accounts for 

inadequate understanding of the virus 

dynamics. This advocates the necessity for 

further research in order to fully understand it. 

Thus, in this article, a deterministic 

mathematical model is formulated to study the 

effect of weakened response of cytotoxic T-

lymphocytes on the transmission dynamics of 

EBOV. 

 

Materials and Methods 

Model formulation and description of 

dynamics 

In this section, a mathematical model for 

the in-vivo transmission of EBOV is 

formulated. The model is developed to study 

the transmission dynamics of the virus in an 

infected human body. It consists of 

heterogeneous populations, which are classified 

as uninfected cells  U , infected cells  I  

cytotoxic T-lymphocytes  Z  and Ebola viruses 

)(B .Uninfected cells, U , are increased by a 

production rate   and die naturally at a rate 
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U1 . Free viruses, B , interact with 

uninfected cells at a rate BU  progressing to 

the infected cells class; and die naturally at a 

rate I1 . Also, they attack cytotoxic T-

lymphocytes exterminating them at a rate BZ . 

Infected cells reproduce free viruses at a rate 

I , which  die naturally at a rate B2 . 

Cytotoxic T-lymphocytes increase by a rate 

IZ , kill infected cells at a rate IZ  and die 

naturally at a rate Z3 . 

The following assumptions guided the 

formulation of the model:   

i. Uninfected cells are produced at a 

constant rate. 

ii. Uninfected cells are equally likely 

infected by the virus. 

iii. Uninfected cells and infected cells die 

naturally at equal constant rates. 

iv. Viruses are produced from infected cells 

at a constant rate. 

v. Viruses die naturally at a constant rate. 

vi. Cytotoxic T-lymphocytes are produced 

and die naturally at constant rates. 

vii. Cytotoxic T-lymphocytes eliminate 

infected cells at a constant rate. 

viii. The virus wipes out cytotoxic T-

lymphocytes at a constant rate. 

For simplicity of analyses and discussions, 

the model variables are usually expressed as 

U , I , B  and Z  to represent the population 

sizes )(tU , )(tI , )(tB  and )(tZ  at time t , 

respectively. Besides, these variables and all 

model parameters are briefly described in 

Table 1 and Table 2, respectively. 

 

Table 1: Variables of the model 

Variable Description 

)(tU  Number of uninfected cells 

)(tI  Number of infected cells 

)(tB  Number of infectious viruses 

)(tZ  
Number of cytotoxic T-

lymphocytes 

 

 

Table 2: Parameters of the model 

Parameter Description 

1  Natural death rate of uninfected cells and uninfected cells 

2  Natural death rate of the virus 

3  Natural death rate of cytotoxic T-lymphocytes 
  Eradication rate of cytotoxic T-lymphocytes 

  Reproduction rate of uninfected cells 

  Infection rate of uninfected cells 

  Reproduction rate of cytotoxic T-lymphocytes 

  Reproduction rate of the virus 

  Clearance rate of infected cells by cytotoxic T-lymphocytes 

 

 

Model flow diagram 

The transmission dynamics of EBOV can 

be illustrated with a model flow diagram as 

shown in Figure 1, where the role of each 

dynamic effector can be easily conceived. 
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Figure 1: Model flow diagram for in-vivo EBOV dynamics. 

 

Equations of the model 

The dynamics of Ebola virus, having been 

thoroughly described and briefly illustrated in a 

flow diagram, can further be represented by a 

system of non-linear ordinary differential 

equations. At this juncture, the model system 

has Equations (1) –(4), which model uninfected 

cells population, infected cells population, 

virus population and cytotoxic T-lymphocytes 

population. Therefore, the system of equations 

is hereby presented.  

    UBU
dt

dU
1 

          
)1(

 

   
IIZBU

dt

dI
1 

          
)2(  

    BI
dt

dB
2 

                      
)3(  

    

ZBZIZ
dt

dZ
3 

         
)4(  

and initial conditions: 0)0( UU  , 0)0( II  , 

0)0( BB  , and 0)0( ZZ   

 

Basic properties of the model 

Here, the basic properties of the model are 

presented. Systematic discussions have been 

made to verify non-negativity of the model 

state variables for all 0t , assuming that the 

model parameters are all positive. Also, the 

invariant region (domain) that contains all 

feasible solutions of the model system 

variables has been determined. 

 

Positivity of solutions   

Since the system )1( - )4(  models 

heterogeneous populations, all state variables 

and parameters must be non-negative for all 

0t . Then the required task, here, is to attest 

that the variables )(tU , )(tI , )(tB  and )(tZ  

are nonnegative for all 0t . This has been 

done through Lemma 1. 

Lemma 1: Given a model system with initial 

values })0(),0(),0(),0({ 5
RZBIU , the 

solution set )}(),(),(),({ tZtBtItU  contains 

nonnegative values for all 0t . 

Proof: 

At this juncture, the proof means analytical 

process of verifying the positivity of the model 

state variables for all 0t . Thus, from the 

model system of Equations )1( - )4( , the 

following results have been obtained: 

(i)      Ebola virus population 

From Equation )3( , the result is given by  

                          
B

dt

dB
2

                
)5(  

Integrating Equation )5( with respect to time t  

produces  

                      12)(ln KttB   ,        )6(  
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where 1K  is a constant.  

Then the general solution of Equation )6( is  

 tBtB 20 exp)(  ,   

where 0B  represents the initial size of Ebola 

viruses population.  

This implies that 

                   
  0exp)( 20  tBtB  ,      )7(  

(ii)     Uninfected cells population 

Considering )1( , the result is 

                   
UBU

dt

dU
1 

               
)8(  

Integrating Equation )8( with respect to time t  

produces 

           

3

0

1))((ln KdssBU

t

   ,      )9(  

where 3K is a constant.  

Then the general solution of Equation )9(  is    














  dssBUU

t

))((expln 1

0

0  , 

where 0U  represents the initial size of 

uninfected cells population 

This implies that 

           

0))((expln 1

0

0 













  dssBUU

t



 

)10(  

(iii) Cytotoxic T lymphocytes population 

Analysis of Equation )4( produces 

                        
ZB

dt

dZ
)( 3 

             
)11(  

Integrating Equation )11( with respect to time t  

produces   

              

34

0

))((ln KdssBZ

t

   ,    )12(  

where 4K  is a constant. 

Then the general solution of Equation )12( is 














 

t

dssBZtZ

0

30 ))((exp)(  , 

where 0Z  represents the initial size of 

cytotoxic T lymphocytes population  

This implies that 

       

0))((exp)(

0

30 













 

t

dssBZtZ 

    

)13(  

(iv)  Infected cells population 

Analysis of  Equation )2(  produces 

                  
IIZ

dt

dI
1 

                     
)14(  

Integrating Equation )14( with respect to time t  

produces 

            
 

t

KdssZtI

0

51))(()( 

     

)15(  

where 5K  is a constant. 

Then the general solution of )15( is 

0))((exp)(

0

10 













 

t

dssZItI  , 

where 0I  represents the initial size of infected 

cells population. 

This implies that 

             

0))((exp)(

0

10 













 

t

dssZItI 

   

)16(  

Hence the results )7( , )10( , )13(  and )16(  

validate that set )(),(),(),({ tZtBtItU  

comprises non-negative values. In respect of 

this, the model )1( - )4(  is epidemiologically 

and mathematically realistic (Hethcote 2000). 

 

Invariant regions   

Since the system of non-linear differential 

Equations )1( - )4(  involves modeling of target 

cells population, Ebola viruses population and 

cytotoxic T lymphocytes population, it is 

assumed that the model variables and 

parameters are non-negative for all 0t . At 

this stage, an invariant region for the model 

containing all feasible solutions is determined. 

This is achieved through Lemma 2. 
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Lemma 2: All forward solutions of the model 

system )1( - )4( , are contained in the region 

4
 R , 0t  ,  

where ZBN   , in which  

              
  NIURIUN   :, 2 , 

              
)4(:{ 1

 RBB  is satisfied}
 

              
)4(:{ 1

 RZZ is satisfied } 

where  is a positive invariant region for the 

whole system )1( - )4( .
 

Proof  

Here, the invariant region for the whole 

system has been established by initially 

determining the bounded regions for individual 

populations. 

(i) Target cells population 

In this case, the bounded region containing all 

possible solutions for the target cells 

population is determined, Let N  be the 

bounded region; and let   2,  RIUN  be 

any solution of the system with non-negative 

initial conditions 0U  and 0I  for all 0t . 

Then, the variables: N , U  and I  are related 

in the following manner: 

                         
)()()( tItUtN 

           
)17(  

where N denotes the target cells population 

size at time t . 

This implies that 

                         dt

dI

dt

dU

dt

dN


             
)18(  )18(  

Substituting Equations )1(  and )2(  into 

Equation )18(  produces 

                    
IZN

dt

dN
  1

          
)19(  

This further produces 

                      
N

dt

dN
1 ,                 )20(     

Integrating Equation )20(  with respect to t  

produces  

              

)exp()( 16
1

tKtN 





 ,        )21(  

where 6K  is a constant. 

Hence the general solution of Equation )21(  is: 

           

)exp()( 1
1

0
1

tNtN 














 





   

)22(  

where 0U denotes the initial quantity of target 

cells population evaluated at the initial 

conditions   000 UU  and   000  II . 

Analysis of Equation )22(  results in the 

following two cases at 0t .  

Case 1: If 
1

0



N , the largest value of right 

hand side (RHS) of Equation )22( is obtained at 

0t ; and the value is 0N . Thus, 0)( NtN   

Case 2: If 
1

0



N , the value 

)exp( 1
1

0 tN 











 


 

is negative and tends to 

zero as t . So, the largest value in the 

RHS of Equation )22(  is 
1


. Thus, 

1

)(



tN  

This implies that 

},max{)( 0
 NNtN , 0t  and whatever 

value of 0N , where 1N . So, )(tN  is 

bounded above. 

Thus, all possible solutions for the target cells 

population are contained in the region N , 

where: 

        NtNtNN )(:)( ,  0t    )23(  

(ii) Ebola virus population 
At this point, the bounded region containing all 

possible solutions for Ebola virus population is 

determined. Let B  is the bounded region; and 

let 
1)(  RBB  be any solution of the 

system with non-negative initial conditions 0B  

for all 0t . 

Analysis of Equation )3(  with Equation )23(  

produces 

                    BN
dt

dB
2           )24(  
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Here, a bounded region containing all possible 

solutions for cytotoxic T-lymphocytes 

population has been determined.  Let z  be 

the bounded region; and let   1
 RZZ  be 

any solution of the system with non-negative 

initial condition 0Z  for all 0t . 

Then Equation )4( , with Equations )23(  and 

(24), change to  

               
ZZBZN

dt

dZ
3  

     
)25(  

Integrating Equation (25) with respect to t  

produces 

          
 tBNKZ )(expln 8   

,  )26(  

where 8K  is a constant. 

The general solution of Equation (26) is  

            tBNZtZ )(exp)( 30    ,   )27(  

where 0Z  denotes the initial quantity of 

cytotoxic T-lymphocytes population. 

If 03    BN , analysis of (27) is 

achieved through two cases, which are: 

Case 1: The value of the right hand side (RHS) 

of (27) obtained at 0t  is 0Z .  

Case 2: The value  tBNZ )(exp 30   
in 

the RHS of (27) becomes positively larger as 

t .  

This implies that )(tZ  has a lower bound. 

Hence all possible solutions for Ebola virus 

population are contained in the region Z , 

where 

       
 0)(:)( ZtZtZZ  , 0t       )28(  

Thus, the invariant region for the entire 

system )1( - )4(  is given by 

ZBN   , 

where })(:)({  NtNtNN ,  

})(:)({  BtBtBB  

and     })(:)({ 0ZtZtZZ  , 0t . 

 

 

 

Results and Discussion 

In this section, the model is systematically 

analyzed to produce some fundamental results: 

disease free equilibrium, 0E , and basic 

reproductive number 0R , which is also known 

as basic reproductive ratio (BRR). Here, the 

sensitivity of BRR relating to the model 

parameters is performed as well. 

 

Disease free equilibrium: 

Definition 1: Disease free equilibrium,
0E , is 

a state of dynamic equilibrium that describes 

the absence of an infectious disease in a 

susceptible population (in this case, human 

target cells). 

Analytically, this is obtained by making the 

differential coefficients of the model variables 

equal to zero. That is,  

                
0

dt

dZ

dt

dB

dt

dI

dt

dU

    
)29(  

This implies that 

                  




















0

0

0

0

3

2

1

1

ZBZIZ

BI

IIZUB

UUB









       

)30(  

In the absence of disease, the human cells 

population becomes virus-free ( 0B ), which 

implies no production of infected cells ( 0I ). 

Besides, the cytotoxic T-lymphocytes are not 

produced ( 0Z ) in the absence of infected 

cells. Therefore, the system remains merely 

with susceptible target cells, implying that the 

variable U  takes a non-zero value ( 0U ). 

This is obtained from the first equation of the 

system (33) and given by 

000 11  UUBU   

01  U  

This produces 
1


U . 

Hence the system becomes free from disease at  













 
 0,0,0,),,,(

1

0000
0


ZBIUE
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Basic reproductive number, 0R  

Definition 2: The basic reproduction 

number, 0R , is the expected number of 

secondary cases produced by a typical infected 

individual during its entire infectious period, in 

population consisting of only susceptible 

individuals (Heesterbeek and Dietz 1996). In 

this case, it can be defined as the expected 

number of secondary infections generated by a 

single infected cell in a susceptible target cells 

population during its infectious period. 

The quantity 0R describes the ability of an 

infectious disease to attack susceptible 

individuals. It explains the disease dynamical 

behaviour, where 10 R  means the disease 

cannot establish itself in the population; only a 

small number of individuals are infected. But, 

if 10 R , there is a possibility of a larger 

disease outbreak and prevails in a population. 

Besides, it is a measure to determine the 

amount of efforts required for a given control 

measure to eradicate an epidemic. 

This can be obtained by the method of next 

generation matrix (Diekmann and Heesterbeek 

2000, Van den Driessche and Watmough 2002) 

as follows: 

If we assume F  as a non-negative 

mm  matrix and V  as a non-singular 

M matrix such that 



















j

i

x

EF
F

)( 0

 

and 



















j

i

x

EV
V

)( 0

 

with mji  ,1

 
where iF  is the occurrence of new infections 

in compartment i ,   iii VVV  in which 


iV
 

is the rate of transfer of entities into 

compartment i  by all other means while 
iV is 

the rate of transfer of entities out of 

compartment i  and 0E  is the disease free 

equilibrium point, it follows that the effective 

reproductive number 0R  is the spectral radius 

(dominant eigenvalue) of the matrix 
1FV , 

which is denoted by )( 1
0

 FVR  . 

Rearranging the equations of the system 

)1( - )4( in such a way that the infectious 

classes occur first, produces a system of 

equations of the form: 

)()()( xVxFxfx iiii  , ni ,...,2,1  

At this juncture, it is assumed that each 

function
if  is continuous and at least twice 

differentiable in the region defined by . Then 

iF  and iV  are derived as follows: 



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IZI
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 Thus, the Jacobean matrices F and V at 0E  

are given by 
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The inverse of )35(  is given by  

         1V
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Multiplication of (31) and (33)
 
produces 



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The characteristics equation of 
1FV is given 

by 0)( 1  FV , implying that 
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The largest eigenvalue (the spectral radius of 
1FV ) is  

2
2

1 





  

Thus, the basic reproductive number, 0R is 

given by 

                            
2

2
1

0



R

        

)34(  

The analytical result (34) shows that the value 

of 0R at time 0t  depends on infection rate, 

virus production rate, production rate of 

susceptible cells and natural death rates of 

uninfected cells, infected cells and virus. On 

the other hand, the immune system does not 

determine disease progression as the parameter 

for cytotoxic T-lymphocytes is not embedded 

in 0R .  

 

Sensitivity analysis 
At this juncture, it is necessary to perform 

an investigation to realize how sensitive the 

threshold quantity basic reproduction number, 

0R  is with regard to its parameters. This 

analysis tells us how crucial and important each 

of the parameters is to the disease transmission. 

Particularly, this focuses on finding sites in the 

disease dynamics where intervention strategies 

can be directed to. This will assist scientists in 

the making of new drugs and pharmacists in 

choosing a suitable therapeutic prescription for 

preventing and controlling the disease 

transmission in-vivo. This is accomplished 

through normalized forward sensitivity index 

method, where the sensitivity index of 0R  

relating to each parameter embedded in it is 

calculated. 

 

Definition 3: If a variable C  depends 

differentially on a parameter W , then the 

normalized forward sensitivity index of C  

with respect to W is denoted by CX . This is 

defined as:  

                           C

W

W

C
X C

W





        
)35(  

Removing C  for 0R  in (35) and then 

performing computations results in an 

expression for the sensitivity of 0R  with 

respect to W . This is  

                           
W

R

R

W
X e

e

R
W

e






        

)36(
 

In this study, the method and the threshold 

quantity parameters have been used to calculate 

the sensitivity indices of 0R , where almost all 

parameter values have been adopted from 

literatures and are itemized in Table 3. 

 
Table 3: Parameter values used for sensitivity analysis 

Parameter Value Unit References 

  5.05 Cell/ml/day Wester 2015 

  0.1 Cell/ml/day CDC 2014 

  40.9 Virus cell
-1

day
-1

 Wester 2015 

  0.1 Cell/ml/day Banton et al. 2010 

  0.1 Cell/day Wester 2015 

1  0.5 Cell/day Estimated 

2  1.15 Cell/day Nguyen et al. 2015 

3  0.5 Cell/day Wester 2015 

  0.1 Cell/day Estimated 

 



Tanz. J. Sci. Vol. 47(4) 2021 

1473 

The sensitivity index of 0R with respect a 

specific model parameter is normally obtained 

by replacing  W  in (36) with the parameter. 

This is accomplished by substituting the 

corresponding parameter value in the resulting 

expression and then performing computation. 

Thus, in this study, the sensitivity index of 0R  

with respect to every parameter (embedded in 

0R ) is calculated using parameter values 

itemized in Table 3. Then the resulting indices, 

corresponding to the threshold quantity 

parameters, are altogether enumerated in Table 

4. 

Table 4: Sensitivity of 0R  relating to model 

parameters 

Parameter Sensitivity index 

  42.3798 

1  −16.9519 

2  −3.6852 

  0.8392 
  0.1036 

 

In Table 4, it is observed that the parameter 

for the virus production rate   is most 

sensitive, followed by the parameter for natural 

death rate of human cells 1 , followed by the 

parameter for the natural death rate of the virus 

2  while the parameter of infection rate   is 

least sensitive one. That is, 

000

2

0

1

0 RRRRR
XXXXX     

 

Note that the absolute value of a particular 

sensitivity index has been used for the 

comparison. 

It is further observed that the parameter for 

the virus production rate is most positively 

sensitive, while the parameter for infection rate 

is the least positively sensitive one. 

Conversely, the parameter for natural death rate 

of human cells is most negatively, while the 

parameter for natural death rate of the virus is 

the least negatively sensitive one. This suggests 

that an increase of the virus production rate by 

100% triggers a corresponding increase of 0R  

by 4237.9% and vice versa. Conversely, a 

decrease of the virus natural death rate by 10% 

causes a corresponding increase of 0R  by 

36.9% and vice versa. 

 

Numerical simulations 

For further understanding of the dynamical 

behaviour of the model system )1( - )4( at 

various situations, numerical simulations have 

been performed. This has been achieved using 

the parameter values itemized in Table 3.  

Here, variations of the basic reproduction 

number 0R  with respect to all parameters it 

contains are illustrated, which substantiates the 

analytical results obtained in the previous 

section. 

Figures 2, 3 and 4 illustrate variations of the 

basic reproductive number, 0R  with respect to 

parameters: infection rate,  ; virus production 

rate,   and production rate of uninfected 

human cells,  , respectively. This implies the 

parameters  ,   and   are proportional to 

0R , which means that an increase of the value 

of  ,   or   causes an increase of 0R  and 

vice versa. Epidemiologically, the increase of 

0R  means more uninfected cells get infected 

and ultimately the disease becomes prevalent in 

the body, while the decrease of it implies the 

number of infected cells reduces, which can 

result in the disease extinction in the long run. 

On the contrary, Figures 5 and 6 show 

variations of 0R  with natural death rate of 

human cells, 1  and natural death rate of the 

virus, 2  respectively. It is observed that an 

upsurge of the value of 1  or 2  triggers a 

decrease of 0R  and vice versa. 
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Figure 2: Variation of the basic reproduction number 0R  with infection rate  . 
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Figure 3:Variation of the basic reproduction number 0R  with virus production rate  . 
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Figure 4: Variation of the basic reproduction number 0R  with production rate of uninfected 

cells  
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Figure 5: Variation of basic reproduction number 0R  with natural death rate of human cells 1 . 
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Figure 6: Variation of basic reproduction number 0R  with natural death rate of the virus 2 . 

 

Conclusion 

This study has presented a deterministic 

mathematical model to study the transmission 

dynamics of Ebola virus in vivo. The analysis 

of the model has provided extra understanding 

of the disease natural course during infections 

and facilitated identification of sites in the 

dynamics that can be potentially targeted for 

inteventation. The results indicate that the 

model is both mathematically and 

epidemiologically realistic as all variables of 

the model have been proven to be non-negative 

for all 0t , assuming that all parameters are 

positive. Moreover, the model system of 

equations were used to find the state of no 

disease at equilibrium, that is represented 

by )0,0,0,( 10 E , meaning that the system 

consists of only uninfected target cells at this 

state.  

At disease free equilibrium, 0E , the 

threshold quantity 0R   is computed, which 

describes the disease progress. The quantity 

0R  depends on the infection rate, virus 

production rate, production rate of target cells, 

natural death rate of target cells and infected 

cells, and natural death rate of Ebola virus. On 

the other hand, the immune response does not 

determine the disease progression though it 

plays a foremost role in the entire disease 

dynamics. This is attributable to absence of the 

parameter for cytotoxic T-lymphocytes in 0R . 

Also, sensitivity analysis has been performed 

with normalized forward sensitivity index 

method, where the sensitivity index of each 

parameter of 0R  has been calculated. The 

results indicate that the parameter for infection 

rate   has the greatest index, while the 

parameter for virus production rate  has the 

least index. This implies that a slight change of 

  triggers a considerable change of 0R , 

which varies slightly as   varies a little. 

Numerical simulations are performed as well, 

which substantiate the analytical results. 

In this study, the sensitivity analysis 

provides further understanding of the in-vivo 

dynamics of EBOV. Since a slight change of 

the parameter with greatest sensitivity index 

prompts a drastic change in the disease 

progression, special attention should be 

directed to it. Consequently, it is recommended 

that deliberate control measures should be 

taken targeting on the rate of infection. The 

control measures are expected to decrease 

infection rate, and therefore redirect the disease 

to extinction.  
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