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Abstract 

In the context of generalized linear models, most of the recent studies were on logistic regression 

models and many of them focussed on optimal experimental designs with concentration on D-

optimality. In this research, two- and three-variable Poisson regression models were considered for 

E-optimization on restricted design space [0, 1]. The two-variable Poisson regression model was 

not optimal at 3-design points, but was found to be E-optimal at 4-design points (1, 1), (0, 0), (0, 1) 

and (1, 0) with equal design weights of 0.25. The three-variable Poisson regression model was E-

optimal at 4-design points (0, 0, 1), (0, 1, 0), (1, 1, 1) and (1, 0, 0) with each design point having 

design weights of 0.25. The prediction error variance (PEV) for the two-variable Poisson 

regression model is 0.35 and that of the three-variable Poisson regression model is 0.68. From this 

research, the two-variable Poisson regression model is preferred to the three-variable Poisson 

regression model because of smaller PEV.  

 

Keywords: E-optimality, Fisher Information Matrix, Poisson Regression Model, Prediction Error 

Variance. 

 

Introduction 

Arrays of designs with high efficiency in 

relation to some statistical measures are 

referred to as optimal designs. The basics of 

experimental designs originated from Smith 

(1918) in his innovative mathematical 

derivation. The significance of nonlinear 

models in applied fields cannot be 

underestimated. Experimental designs for 

practical situations usually comprise at least a 

number of nonlinear components. The ease that 

comes with the construction of optimal designs 

for linear models is not valid for nonlinear 

models due to parameter dependency in the 

latter. Optimal experimental designs play vital 

roles in several fields of applications. For 

instance, they are widely applied in medicine, 

biology, agriculture and industries. Generation 

of optimal experimental designs is model-

dependent and optimization process involves 

the Fisher information matrix. For example, 

when examining a compound in dose-response 

studies, adequate knowledge in addition to 

proper characterization of dose as well as its 

reactions is a major step to be considered 

because poor understanding of the dose 

response records can have an undeviating 

effect when estimating the chosen level of 

dose. In the case of drug development settings, 

choosing a very high quantity of dose may lead 

to intolerable toxicity and harmfulness, while 

selecting very few quantity of dose can reduce 

the possibility of having effectiveness in the 

confirmatory stage. This can therefore reduce 

the possibility of obtaining endorsement and 

approval for the drug from the regulatory body. 
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Studies on optimal designs commenced 

with Smith (1918) through his amazing paper 

on the generation of G-optimum designs for a 

sixth-order polynomial model in one variable. 

T-optimum designs for integrated variance are 

designs concerned with the minimization of 

variance component in the theoretical 

framework of optimum experimental design 

(Studden 1977). Chaudhuri and Mykland 

(1993) examined proper design of nonlinear 

experiments that will enable the construction of 

efficient parameter estimates. Emphasis was on 

a very broad nonlinear structure which includes 

many models that are usually faced in practice. 

Two essential stages were considered for the 

experiments: the static design phase and 

completely adaptive sequential phase where 

support points were sequentially selected to 

explore design optimality for D-criterion 

through the estimates of parameters obtained 

from accessible information. Exploration of the 

performance of maximum likelihood estimator 

using the generated data from such experiment 

was considered. The two core procedural 

obstacles encountered are the nature of data 

dependency from the adaptive sequential 

experiment as well as the experimental 

randomness contained in the overall Fisher 

information. Likelihood-based structure of 

martingale was explored through the analysis. 

Derivations of necessary conditions in ensuring 

convergence of the selected design to D-

optimality as first trial increases were 

considered. The average Fisher information 

converges to provide a condition of ergodicity 

associated with the martingale process growth 

and has intrinsic association with the likelihood 

as well as ensuring optimality of the design for 

large sample. This major observation 

ultimately produced the first-order efficiency of 

estimate obtained by the maximum likelihood 

technique through the central limit theorem of 

martingale process and the validation of 

statistical inference for large sample based on 

the likelihood was confirmed. Krewski et al. 

(2002) developed optimal designs for 

estimating effective dose in growing toxicity. 

The dose-response for prenatal death and foetal 

malformation were jointly modelled through 

the Weibull distribution. Approximate optimal 

designs were generated for prenatal death, 

malformation and total toxicity, especially 

when the series of developmental studies were 

extended. The designs comprise three groups of 

doses, which include: the control group, the 

low and high doses. The effects on optimal 

designs when the number of implants and 

degree of intra-litter correlation are varied were 

examined. Though, only three dose groups are 

being considered for optimality in most cases, 

considerations of practicability, especially 

when it involves the estimation of the dose-

response curve shape and lack of fit of the 

model endorses the use of suboptimal designs 

involving more than three doses in practice. 

Han and Chaloner (2003) considered 

exponential decay models involving one, two 

and three parameters for the derivation of 

locally D- and C-optimal designs using 

analytical approach. The locally optimal 

designs were observed to be invariant to 

reparameterization. The approach was 

illustrated via Bayesian optimal designs. 

Myung and Pitt (2009) observed that 

experimental discrimination among models of 

psychological processes is problematic because 

of the difficulty in determining the values of 

the critical factors that provides most 

information in differentiation. Possible 

determination of the values can be accounted 

for through current advancements in sampling-

based search approaches, thereby leading to 

identification of an optimal experimental 

design. Demonstration was considered through 

application of the method on retention and 

categorization that constitute two gratified 

areas of studies in cognitive psychology 

wherein models are competitively feasible. The 

quality of designs considered in literature was 

compared with the optimal design. From the 

results, the efficiency of experimental method 

is potentially increased through design 

optimization. Yang and Stufken (2009) 

proposed a new technique in identifying 

support points of a locally optimum design that 

pertains to a nonlinear model. The basis of the 
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approach forms the algebraic features and was 

comparatively studied with the frequently used 

geometric method. Models containing two 

parameters were considered and applications of 

the general findings to common special cases 

of some nonlinear regression models. The 

Michaelis-Menten, probit, logistic, double 

reciprocal, double exponential and a loglinear 

Poisson regression models were the nonlinear 

models considered. The technique which is 

greatly important in conducting multi-stage 

experiments performs well with both restricted 

as well as unrestricted design spaces and can be 

easily and relatively implemented.  Dette et al. 

(2010) estimated the slope of mean response in 

a regression model through experimental 

designs. The locally and standardized minimax 

optimal designs were fully discussed. A 

generalization of the findings concerning the 

number of support points of locally optimal 

designs was produced through the formation of 

a Chebyshev system from the regression 

functions. Polynomial and Fourier regression 

models of arbitrary degrees were explicitly 

considered for the construction of optimal 

designs in estimating the slope of the 

regression function.  

Burghaus and Dette (2014) investigated design 

optimality using Bayesian approach with non-

informative prior distributions. The Berger-

Bernardo and Jeffreys priors for non-concave 

optimality criteria were particularly studied. 

Boukouvalas et al. (2014) considered a normal 

linear regression model having input-dependent 

noise for the generation of optimal design for 

parameter estimation. The field of computer 

experiments, where simulators that are 

computationally challenging are approximated 

by means of normal emulators in acting as 

statistical surrogates motivated the research. 

Recurrent assessments play supportive role by 

using replicated observations in experimental 

designs especially for stochastic simulators that 

yield varying responses for some model inputs. 

The normal regression and kriging models 

were widely considered in the framework of 

experimental design for application. 

Minimization of the variance of estimated 

normal parameters forms the basis for 

generating designs. A normal linear model with 

heteroscedasticity was considered for 

optimization. The approximation error of the 

variance of parameters is reduced through the 

inverse of the Fisher information as replication 

points increased, which was shown through 

empirical studies. Results from series of 

simulation experiments on both synthetic and 

systems biology data showed that optimal 

designs with replicated observations performed 

better than space-filling designs. A major 

review on E-optimality is the work of Dette et 

al. (2004) when a general set of nonlinear 

regression model for the investigation of the 

local E- and C-optimal designs were 

considered. The Chebyshev points representing 

the local extrema of the equi-oscillating best 

approximation of the function f0≡0 through a 

normalized linear combination of the 

regression functions in the equivalent 

linearized model provide the support points 

generated for the E- and C-optimal design 

criteria in several cases. Logistic, exponential 

and rational models were the considered 

models. The E- and C-optimal design problems 

were solved explicitly in several cases for the 

rational regression models. 

Most researches on optimal design of 

experiments focus on the D-optimality 

criterion. This paper examines the E-optimal 

design criterion which aids the maximization of 

the least eigenvalue of the information matrix. 

 

Materials and Methods 

Poisson regression models 

Poisson regression model can be largely 

written as: 

                          (  )                         ( ) 

The mean response    can be expressed as: 

              (  
   )                              ( ) 

where,      are the response variables,     is the 

expectation of the response variable at the i
th

 

design point,   
  is the design matrix containing 

factors    (i = 1, 2, …), and    is a vector of 

parameters. 
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Construction of E-optimal designs for two-

variable Poisson regression model 

A typical Poisson regression model in two 

variables can be represented by:  

       (               )                 ( ) 

A basic assumption of a Poisson regression 

model is the positive nature of the response 

variables. 

An optimal or a near-optimal design,      , in 

design space, χ, containing definite design 

points is denoted by:  

 

     {
           

          
}                              ( ) 

  

where,       χ (the support points) is a compact 

subset of real numbers,    are the weights of 

the design at each support point satisfying 

         and ∑   
 
     . 

Considering the two-variable Poisson 

regression model in Equation (3),  

 

                                           ( ) 

Here,  

    (  )  (           )                             ( ) 

where,    (  ) is the i
th

 row of X, a known 

function of predictor variables. 

The element of the Fisher information matrix is 

therefore obtained and presented as:  

 

             [

     

    
     

        
 

]       ( )  

 

The Fisher information matrix can be 

expressed in compact form as:  

  (           )
  ∑      (  )  

 (  )                        ( ) 

and more compactly as: 

   (           )  
                                                          ( ) 

 where,     represents the weights of the 

support points,        (  ), is the mean 

response of the i
th

 design point,    is the design 

measure, and       *     + , and    
, (  )  (  )- . 

 

Explicitly, the Fisher information matrix for Equation (3) is therefore obtained as:  

 (           )     

[
 
 
 
 
 ∑    ∑       ∑       

∑        ∑       
 ∑           

∑        ∑           ∑        
 

]
 
 
 
 
 

      (  )

  
 

Suppose the Eigenvalue of the Fisher 

information matrix in Equation (10) is   , the 

E-optimality design criterion seeks the 

minimization of the variance of the least well 

estimated linear combination    ̂ conditionally 

upon the constraint that      . It maximizes 

the minimum eigenvalue of the information 

matrix. This equivalently minimizes the 

maximum relating to the inverse of eigenvalue 

of the information matrix. 

i.e.,  

                   
 

  
. 

 

 

 

Construction of E-optimal designs for three-

variable Poisson regression model 

A three-variable Poisson regression model can 

be defined as: 

           (                
      )                                 (  )    

The same procedure used in obtaining the 

Fisher information matrix and eigenvalue for 

the two-variable Poisson regression model in 

Equation (3) is employed in the case of a three-

variable Poisson regression model presented in 

Equation (11). 
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Thus, the Fisher information matrix is obtained as:  
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In terms of eigenvalues,  

                    
 

  
. 

 

Results and Discussion 

 

 

 

E-optimal designs for two-variable Poisson 

regression model 

The constructed E-optimal designs relating 

to Poisson regression model with two predictor 

variables in Equation (3) is presented as: 

        
   {

 (        )           (        )          (         )               (        )  

         
 

 
                      

 

 
                   

 

 
                            

 

 
         

}                 (  ) 

  

Considering the two-variable Poisson 

regression model, the design is not optimal at 

3-point design, which necessitated an increase 

in the number of design points. At 4-point 

design, the design is found to be E-optimal. 

After 1000 iterations, the optimal design points 

are          ;          ;    
      ; and          . The constructed 

E-optimal design weights at each optimal 

design point are        ,        , 

       , and        , respectively. 

This means that 25% of the total experimental 

runs are allocated to each optimal design point. 

Figure 1 shows the E-optimal criterion 

value to be 4.0. The positive nature of this 

value and being   , supports the choice of the 

design space considered in this study. 
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Figure 1: E-optimal criterion value for two- variable Poisson regression model. 

  

Figure 2 gives the prediction error variance of 

the two-variable Poisson regression model to 

be 0.35, which verifies the E-optimality of the 

design at 4-design points.  

 
Figure 2: Prediction error variance of e-optimal design for two-variable Poisson regression model. 

 

E-optimal designs for three-variable Poisson 

regression model 

The findings of E-optimal designs for the three-

variable Poisson regression model in Equation 

(11) are presented as: 

     
   {

(           )      (           )       (           )         (           )

         
 

 
                      

 

 
                        

 

 
                         

 

 
         

}                      (  ) 
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The design is E-optimal at 4-design points. 

After 1000 iterations, the optimal design 

involves collection of optimal points    
           ;               ; 

              ; and         
      . The generated E-optimal design 

weights at each optimal design point are 

       ,        ,        , and 

       , respectively. This means that 25% 

of the total experimental runs are allocated to 

each optimal design point. 

Figure 3 shows the E-optimal criterion 

value to be 4.0. The positive nature of this 

value and being   , corroborates the choice of 

the design space considered in this study. 

 
Figure 3: E-optimal criterion value for three-variable Poisson regression model. 

  

Figure 4 gives the prediction error variance of 

Equation (11) to be 0.68, which confirms that 

the design is indeed E-optimal at 4-design 

points. 

 
Figure 4: Prediction error variance of E-optimal design for three-variable Poisson regression 

model. 
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Conclusion 

This research investigated and generated E-

optimal experimental designs for Poisson 

regression models containing two and three 

variables in linear terms. Both the two- and 

three-variable Poisson regression models were 

found to be E-optimal at 4-design points with 

equal weights and they both have equal criteria 

values. The prediction error variance for the 

two-variable Poisson regression model was 

observed to be smaller than that of the three-

variable Poisson regression model, thus making 

the two-variable Poisson regression model 

more preferred. 
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