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Abstract
In this paper, we established the generalizations of integral inequalities similar to Hardy’s
inequality.
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Introduction

Hardy (1920) established his famous
inequality for integrable functions as follows: if
p>1and f is a non-negative p —integrable
function on (0, o), then f(x) is integrable over
the interval (0, x) for each positive x and

© /1 x 14
J; (;J; f(t)dt) dx
<2 [

p
where (ﬁ) is the best possible constant. The

Hardy inequality, from its origin and its
subsequent  development has  attracted
numerous mathematicians. From 1906 to 1928,
other mathematicians such as Landau, P olya,
Schur and Riesz were actively involved in the
development of the Hardy inequality (Kufner et
al. 2006). Since then, a lot of books and papers
have been published in this area of research.
Some of the notable literature in this area are
the works due to Muckenhoupt (1972), Bradley
(1978), Persson and Stepanov (2002),Wedestig

(2003), Persson (2018) and Ajisope and Rauf
(2019).

Hardy-type integral inequalities have
various practical applications in mathematics
and related fields. Some of the applications are
found in solvability of elliptic equations in
Sobolev  spaces, hydrodynamic problems,
Partial differential equations and spectral gaps
on trees.

An important inequality which we will use
frequently in this paper is the Hdolder's
inequality and we present it as a lemma.

Lemma 1: Let X be a measure space and let
p,q € [1,] where %+$= 1. Then for all

measurable real-(or complex) valued functions
fandgonX, llfglly < lIfll,llgllq-

Sulaiman (2012) presented and proved the
following results similar to Hardy’s inequality:
Theorem 1: Let f be a positive function
defined on [a, b] < (0, ) and define F(x) =
J7 f®dt. Then,
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(i forp=>1,

pjj(5§9)p¢xs(b—wnpj¢(f§9)pdx——fb(1——0 7 ().

a a

(i) for0<p<b1 . .
pf (?) 1—— ffp(x)dx—bipL(x—a)pfv(x)dx.

a

Sroysang (2013) presented the generalizations of some integral inequalities similar to Hardy’s
inequality into the following two forms:
Theorem 2: Assume that f > 0 defined on [a, b] € (0,%) and p = 1,q > 0. Define F(x) =

J f(t)dt. Then
b pp b fp b — )P
pf (x) f(qx)dx_f(x a)

dx < (b — a)?

a a

fP(x)dx,

and by considering the reverse integral inequality, the generalization is the following result:
Theorem 3: Assume that f > 0 defined on [a, b] € (0,0) and 0 < p < 1,q > 0. Define F(x) =

J f(t)dt. Then
b —
) j FP(x) dx (b a)?

x4 br

b
jf”(x)dx— f(x—a)pfp(x)dx.

Wu and Sroysang (2015) established a further generalization of certain integral inequalities similar
to Hardy’s inequality into the following assertion:
Theorem 4: Letp = 1 and g > 0. Assume that f,g > 0 on [a, b] € (0, ) such that g is non-
decreasing. Define F(x) = f;f(t)dt for all x > a. Then, the inequality;
PFP(x) PP (x) P (x —a)?
- 7 < — 14 — p
P ], g @S - | Gyt - | gy e M
holds, and by considering the reverse integral inequalities similar to Hardy’s inequality, Wu and
Sroysang (2015) stated the following result:
Theorem 5: Let 0 <p <1 and g > 0. Assume that f,g > 0 on [a, b] < (0, ) such that g is

non-decreasing. Define F(x) = f;f(t)dt for all x > a. Then, the following inequality holds:

be”(x)d Jb-a)

b
a 99(x) r= g1(b) f (x —a)PfP(x)dx. 2)

b
pr(x)dx _gq(b) )

In this paper, the improvements and generalizations of both inequality (1) and inequality (2) are
established by the use of Holder’s inequality, the reverse Holder’s inequality and other measure
theoretical techniques.

Main Results
Theorem 6: Letp = 1 and g > 0. Assume that f,g > 0 on [a, b] € (0, ) such that g is non-
decreasing. Define F*(x) = fxbf(t)dt forall b > x. Then
P (E)P00) w—awfb L
P(x)dx — f (b —x)PfP(x)dx.
. @, !

dx <
Proof. Since g is non-decreasing and by the Holder’s inequality, we obtain that

Pl. 7970 = Tg@
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b (F*)P b b p
f %dxzf g‘q(x)(f f(t)dt) dx

b b 1 b p—1 P
Sf y‘q(x)<<f fp(t)dt)p U dt) ,,) dx
1 14
b b p p-1
=f g“*(X)(U f”(t)dt) (b —x) p) dx

- f:g-q(x) <Lbfp(t)dt) (b — )P 'dx
_ f: f:g-q(x)(b — )P P () dtdx
_ L ’ L 100 (b — )PP (D ddt
< fa ’ fa @b — )P P Odxde

b t
= g'q(a)f fP(t) (f b - x)”‘ldx> dt
<(b — )P — (b - t)”) y
p

b
= g(a) f 700
@

b b
((b - a)”f fP(t)dt —f (b - t)”f”(t)dt) #

Corollary 1: Let p =1, and assume that f,g > 0 on [a,b] € (0,%) such that g is non-
decreasing. Define F*(x) = fxbf(t)dt forall b > x. Then

fb(F*(x))pd - (b_a)pfbfp( Y 1 fb(b N
X = x)ax — — X xX)ax.
P)e Vo @ Jg @),

Proof. Since g is non-decreasing and by the Holder’s inequality, we have that

Lb <1;*(g))>p dx = J bg"’(x) ( f bf(t)dt>p dx

b b 1 b p-1 p
Sf g"’(x)<<f fp(t)dt)p U dt) ,,) dx
1 p
b b D p-1
=J g"’(ﬁf)((J fp(t)dt) (b —x) p) dx

b b
- [ or@ < | f”(t)dt) (b —x)P~1dx

b b
= [ [ 9700 -xp= froatax
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b t
= [ [or@e-0r o
< J;b J:g"’(a)(b — )P fP(t)dxdt

b t
=g7P(a) f Pt U (b — x)P—ldx) dt
<(b —a)’ —(b— t)”) it
p

b
= g‘?’(a)f e
_ b b
_9 :,(a) <(b - a)pja fP)dt — L (b - t)pfp(t)dt) #

Corollary 2: Let p = 1, and assume that f > 0 on [a, b] < (0, ). Define F*(x) = fxb f(t)dt for
all b > x. Then

PEGONY b (P Lp
p[ (5) ar<G-1) [ e -5 [ oo
Proof. Using the Hdlder’s inequality, one has,

fb(F*(x))p _ "’<f f(t)dt>

LA
B

% - 1>p
f ”(t)dt b=-—x)r dx
f”(t)dt) (b —x)P"dx
b b
f f x7P(b —x)P7L fP(t)dtdx —f f x7P(b —x)P7L fP(t)dxdt
<

J J P(b—x)P7L fP(t)dxdt = a” pj fP(@) (J (b — x)P~ 1dx)d
i <(b—a)p—(b—t)p> t
p

Il
h

= a_pf fp(t)
a—pa b b
= — — 14 p — _ \PfD
> ((b a) fa fP(t)dt L (b —t)Pf (t)dt)
P b b

- %((g - 1) fa FP(0)dt — %fa b — x)”f”(t)dt.) "

Corollary 3: Letp = 1 and g > 0. Assume that f > 0 on [a, b] < (0, ). Define F*(x) =
[? ()t forall b > x. Then

b (f b b
) EI; ng? dx < (b - a)p_qfa fP(x)dx — ﬁj; (b —x)PfP(x)dx.
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Proof. Using the Hglder’s inequality, we obtain that
PEPE [ b ’
dx =f (b—x)"1 < f(t)dt)
a (b - X)q a
1 -1

b b D ==
< [6-n (( [‘rroa) ([a)’ ) i
1 p
b b v p-1
=f (b—x)"1 ((f fp(t)dt> (b—x)7> dx

b b
= f (b—-x)"1 <f f”(t)dt) (b—x)P"'d

b b

= f f (b—x)"9(b —x)P71 fP(t)dtdx
U e

= j f (b—x)"9(b — x)P71 fP(t)dxdt
Yoot

< fa fa (b—a) (b — x)P" fP(t)dxdt

b t
=Mb-a)1 f fP(t) <f b - x)p_ldx) dt
’ Cbi@p—w—ww>ﬁ
p

b
=w—wﬂff%w
b-a)

b b
<(b - a)”f fP(t)dt — f - t)”f”(t)dt) #

Corollary 4: Letp = 1 and assume that f > 0 on [a, b] < (0, ). Define F*(x) = fxbf(t)dt for
all b > x. Then

pfa <[; Ex; dx <f fP(x)dx —ﬁf:(b — X)PfP(x)dx.

Proof. The Holder’s inequality gives,
b P b b P
J (fo;) dx:J (b —x)~P (j f(t)dt) dx
b b % b ijl ’
Sf (b—x)"? <f f”(t)dt) <f dt) dx

b b % p-1 ’
=J (b—x)7P (J fp(t)dt) (b-x)p | dx

b b
= f (b—x)"P <f f”(t)dt) (b — x)P~dx

b b
=f f (b—x)"P(b — x)P" L fP(t)dtdx

X
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b ot
=f f (b—x)"P(b—x)P" fP(t)dxdt

a

< J-b ft(b —a)P(b — x)P7! fP(t)dxdt
a a b ¢
=(b-— a)‘pf fP(t) <f - x)p‘ldx) dt
L (b=—aP—(b-0P
—(b-a) pfa f%:)( ; )dt
— )P
_b-a) ((b ) j (e - j ® —t)pr(t)dt)

1/ (P 1 b
= — p - —t)PfP
P(L fP®)dt C a)”fa (b - t)Pf (t)dt) #

Corollary 5: Let p =1 and g > 0. Assume that f > 0 on [a,b] S (0,»). Define F*(x) =
fxbf(t)dt forall b > x. Then

b * _
p[[ 2D < O i -2 [ 6 -0p e

Proof. From the Holder’s inequality, we have,

b * b b p
! (F iz(x)dx=fax-q (L f(t)dt) dx
b b % b p,.%l g
SJ x4 <j f”(t)dt) (J dt) dx
b b ! -1 P
=f x4 <f f”(t)dt) (b—x) p dx
b b
=f x4 <f f”(t)dt) (b —x)Ptdx

l]-b fbx'q(b —x)P7L FP(t)dtdx
fb ftx‘q(b —x)P7L fP()dxdt

a
b

<
a

fta'q(b —x)P7L fP(D)dxdt

=a qufp(t)<j (b — x)P~ 1dx)dt

b

- a-qf 700 <(b —aF ; b - t)p) de

a4 b b
=— —a)? P — — )P FP
> <(b a) faf (t)dt J;(b tPf (t)dt) #
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Theorem 7: Let 0 < p < 1 and g > 0. Assume that f,g > 0 on [a, b] < (0, ) such that g is
non-decreasing. Define F*(x) = f:f(t)dt forall b > x. Then

P (F)P(x) PP (x) (b —x)?

dx = (b —a)P dx —f P(x)dx.

P), o ® RTICS Rl AT eoud

Proof. Since g is non-decreasing and by the use of reverse Holder’s inequality, we obtain that
p

b(F*)p(x) ~ b ) b
fa g9(x) dx = L g7 (x) (L f(t)dt) dx
b b % b ijl P
Zf g971(x) <f fp(t)dt) (f dt) dx

1 14
b b P p—1
=j g (x) ((j fp(t)dt) (b—x)T> dx

b b
- f 910 ( f f”(t)dt) (b — x)P~1dx
a b b X
= j f g6 (b — 0P P () dtdx

b t
= [ [ we-0r o
ab at
2] jg_q(t)(b—x)p_lfp(t)dxdt
ba a ,
=f g imfr@) <f (b—x)”'ldx)dt
b * o
- [ soro (“’ oL t)p>dt
_1 ) bEr(e) b (b —t)P
_5<(b_a)pL 9°(®) dt_L 97(0) fp(t)dt) f

Corollary 6: Let 0 <p <1 and assume that f,g > 0 on [a, b] € (0, ) such that g is non-
decreasing. Define F*(x) = fxbf(t)dt forall b > x. Then

[[E ez 0-0r [ (9] ac - [ (£2) peoa

X =2 —a — X — — xX)ax.

Pl Ve o 9@ . Vg

Proof. Since g is non-decreasing and by the use of reverse Holder’s inequality, we obtain that
P

f: Cg)))p ax= | g ( | bf(t)dt> dx
1 p=1\ P
> fbg_p(x) ((fbfp(t)dt)p <J-bdt)pp ) dx

b b % p-1 ’
_ f 9P () < f f”(t)dt) (b-x)7 | dx
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b b
- [ or@ < | f”(t)dt) (b — x)P~1dx
a b b X
= f f 9P (b — 0P P () dtdx

fb ftg"’(x)(b — x)P7L fP(t)dxdt

bt
> j g P@®)(b —x)P7L fP(t)dxdt

Q

b t
=f gPOfr@) (f (b—x)p‘ldx)dt
b o
- [ sroro <(b oL t)p>dt

Yo [CFOY 4 [ (oY

=5 <(b > | o) |, Go) 1 p“””) #
Corollary 7: Let 0 < p < 1 and assume that f > 0 on [a, b] < (0, ). Define F*(x) = fxbf(t)dt
forall b > x. Then

o[ (E arz -0 [ (2 an - [ () oo

a
Proof. Making use of the reverse Holder’s inequality, we observe that

[E2 o= [ [r0u) o
1 p=1\ P

> fbx-r’ ((fbfv(t)dt>p <fbdt)pp ) dx

fbx'p ((fbfp(t)dt>% (b — x)p?_’1>p dx

= be‘p <jbfp(t)dt> (b — x)Pdx

b rb
_ J J X (b — )P P () dedx

b ,t
_ f xP(b — )P~ fP(t)dxdt

a

b pt
> J t™P(b — x)P7 fP(t)dxdt

a

= f tPfP(t) <jt(b - x)p_ldx) dt

= Jb t7PfP(t) ((b — ; i t)p) dt

S
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1 b —ay? fb <f(t))” it fb (b - t)p vode) #
P e )
Corollary 8: Let 0 <p < 1and g > 0. Assume that f > 0 on [a, b] < (0, ). Define F*(x) =
fxbf(t)dt forall b > x. Then

b (F*)p b £p b
p . Ebz,gz? dx = (b—a)pL (l];—(fc))q dx _-L (b — x)P7fP(x)dx.

Proof. By the use of reverse Holder’s inequality, we obtain that

b (F*yp b b P
] El)zi;;?dxzil(b—x)_q(jx f(t)dt) dx
b b % b p,.%l ?
Zf (b—x)"1 <f f”(t)dt) (f dt) dx
b b % p-1 ’
=f (b—x)"1 (f fp(t)dt> (b—x)? | dx

b

b
=| (b—x)1 <j fp(t)dt> (b — x)Ptdx

* b b
J J (b—x)"9(b — x)P* fP(t)dtdx

fa b J (b =07 — 27 O dxde
2 jb Jt
- | “b- o ( | - x)”-ldx) dt

b _ — —
I ((b a)? . (b t)p) ”

b b
= 5<(b —a)? ) (l{p_(?)q dt — L - t)p_qu(t)dt> "

(b—t)"9(b — x)P~1 fP(t)dxdt

Corollary 9: Let 0 < p < 1 and assume that f > 0 on [a, b] < (0, ). Define F*(x) = fxbf(t)dt
forall b > x. Then

b F*(x) 14 b f(x) p b
——) dx=(b—-a)’ ( ) d —J. P(x)dx.
p[ (G=5) arz@-ar [ (755) ax- [ rreoas
Proof. By the use of the reverse Holder’s inequality, we obtain that

fb (};*Exi)p dx = fb(b —x)7? <J-bf(1:)dt)lJ dx
> Lb(b —x)7? ((Lbfp(t)dtf <Lbdt>p;1>p dx
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b b % p-1 ’
=f (b—x)7P <f fp(t)dt> (b-x)p | dx

b

b
= (b—x)"? (J- fp(t)dt> (b — x)Ptdx

b

* b
f f (b —x)"P(b — x)P~* fP(t)dedx
L,
> f (b= )P (b — x)P~* FP(t)dxdt
ba . t
= f b -0 (f - x)p‘ldx) dt
[ w-vrro <(b —a)? ; b - t)P) it
1a b p b
=5<(b —a)vfa (%) dt—fa f”(t)dt) #

Corollary 10: Let0 < p < 1 and g > 0. Assume that f > 0 on [a, b] € (0, ). Define F*(x) =
J? f(®)dt forall b > x. Then

b b b —
pf (F)" ) dx = (b — a)”f 7 dx —f (b~ fP(x)dx.

x4 o X9 x4

S

t

(b—x)"P(b —x)P" fP(t)dxdt

J
J

Proof. By the use of reverse Holder’s inequality, we obtain that

Jb (F*iZ(x) dx = jbx_q (be(t)dt>p dx

oo (o m”")p i

_ j o << j bfp(t)dt)% b — x)pvl>p dx
_ fbx-q <fbfp(t)dt) (b — x)P~tdx

b rb
_ f f x=U(b — x)P~1 P (6)dedx

b ot
f x~9(b — x)P7L fP(t)dxdt

b ,t
f t~9(b — x)P~1 fP(t)dxdt
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- fb P (2) (ft(b - x)P—ldx) dt

dt

= fb t9fP(¢)

1 S0
=£<(b—a)pL ta dt

Conclusion
In this paper, we managed to generalize the
integral inequalities similar to Hardy’s

inequality. In so doing, we have answered the
open problem stated in Wu and Sroysang
(2015).
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