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Abstract 

The spread of COVID-19 globally has caused negative impacts to the public, making 

understanding the dynamics of transmission a necessity. Essential factors such as undetected 

cases, asymptomatic cases, and several non-pharmaceutical interventions have played 

significant roles in the spreading mechanism of COVID-19 in the human population. It is 

imperative to understand the significance of these factors in order to determine whether 

COVID-19 will be eradicated or will continue to persist in the population. A mathematical 

model is formulated to investigate the impacts of vaccination and several non-pharmaceutical 

interventions on the dynamics of a COVID-19 accounting for asymptomatic cases, detected 

(identified) and undetected (unidentified) symptomatic infected cases. Results show that 

vaccination at higher rate, infection detection and immediate quarantine or isolation of infected 

individuals have the potential to eradicate COVID-19 from the population. It is recommended 

that individuals should be encouraged to get vaccinated while the government should encourage 

(or enforce through persuasive communication) the use of non-pharmaceutical interventions 

such as face masks wearing.   
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Introduction 

Corona virus disease 2019 (COVID-19) is 

an infectious disease that emerged in Wuhan 

City of Hubei Province, China in December 

2019 and that has rapidly raged in China and 

subsequently all over the world (Huo et al. 

2021). On 30 January 2020, the World Health 

Organization (WHO) declared the disease to 

be a Public Health Emergency of international 

concerns, and then as a pandemic on 11 

March 2020. By 19 September 2021, the 

cumulative numbers of confirmed cases and 

deaths globally were nearly 228 million and 

over 4.6 million, respectively, according to 

the WHO. In Tanzania for instance, with its 

constrained healthcare resources, from 3 

January 2020 to 28 September 2021 there 

have been 25,674 confirmed cases with 714 

deaths reported to WHO and as of 23 

September 2021, a total of 389,807 vaccine 

doses have been administered. 

Essential factors such as undetected cases, 

asymptomatic cases, and several non-

pharmaceutical interventions have played 

significant roles in the spreading mechanism 

of COVID-19. Given the rapid spread of 

COVID-19 globally, it is imperative to 

understand the significance of these factors to 

determine whether COVID-19 will be 

eradicated or will continue to persist in the 

population.  

Results from a recent study by Melis and 

Littera (2021) noted that the spread of the 

COVID-19 pandemic is mostly caused by 

undetected carriers highlighting the 

significant roles that they play in the 
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transmission dynamics of COVID-19. In fact, 

the speed at which an epidemic grows cannot 

be explained if we only consider the number 

of recorded infected patients who, 

supposedly, are immediately removed from 

the circulating population by hospitalization 

or self-isolation. 

The world continues to witness that 

despite massive efforts to mitigate the spread 

of COVID-19 including introduction of 

vaccine leave alone various control measures, 

governments and health decision makers and 

implementers are continuing to face various 

challenges including optimal policies for 

vaccination. Mathematical simulations have 

long been used to gain insights into the 

mechanisms of disease transmission, and that 

the essence of modeling lies in defining a set 

of equations that mimic the complex 

transmission dynamics of diseases (Beigi et 

al. 2021). Since the onset of the epidemic, 

various mathematical models of COVID-19 

abound in the literature (Aldila et al. 2021, 

Diagne et al. 2021, Mwalili et al. 2020, 

Tchoumi et al. 2021). In this paper, a 

mathematical model is formulated to predict 

the spread of COVID-19 considering 

asymptomatic cases, detected (identified) and 

undetected (unidentified) symptomatic 

infected cases, impact of vaccination and 

several non-pharmaceutical interventions to 

mitigate the spread of COVID-19. 

 

Materials and Methods 

Model formulation 
A deterministic compartmental modelling 

approach is used to describe the disease 

transmission dynamics and a homogeneously 

mixing population is considered where 

individuals in the population have equal 

probability of contact with each other. 

Vaccination strategy to minimize the 

probability of disease transmission is 

accounted for as well as detected (identified) 

and undetected (unidentified) symptomatic 

cases. To accommodate these factors, at any 

time t, the total population )(tN  is 

subdivided into seven compartments 

depending on individuals’ disease status as 

follows: susceptible ),(tS  vaccinated ),(tV  

exposed ),(tE asymptomatic having no 

clinical symptoms but can infect susceptible 

people ),(tA  detected (identified) 

symptomatic infected ),(tID  undetected 

(unidentified) symptomatic infected ),(tIU

and recovered ).(tR  The total population 

)(tN  is given by 

)()()()()()()()( tRtItItAtEtVtStN UD  . 

Susceptible population ),(tS  is 

increased by recruiting individuals into the 

population at a rate , and through a 

proportion of vaccinated and recovered 

individuals that return to susceptible 

compartment after losing their immunity to 

the virus at the rate   and  , respectively.  

This population is decreased because of either 

vaccination of individuals at a rate ,   or 

through infections induced by the disease 

with the force of infection . Infection with 

COVID-19 is acquired via effective contacts 

with infected (contagious) individuals or 

direct contact with infectious individual 

contaminants or droplets. The force of 

infection is given as 

 
N

IIAE UD 
 321 

 , 

where ,1 2  
and 3  are modification 

parameters to reduce infectiousness of 

exposed, asymptomatic, and detected 

(identified) symptomatic individuals. The 

parameter 3  is associated with precautions 

like mask wearing, physical distancing, 

handwashing, and the hygiene consciousness.  

Vaccination is given only to susceptible 

individuals at the rate , which will transfer 

them into )(tV . It is assumed that the 

vaccine has a validity period of 
1 and does 

not protect people perfectly from COVID-19 

infections (because the COVID-19 vaccine 

does not provide 100% prevention against 

infections). Thus, vaccinated individual may 

get infected by COVID-19, but the 

transmission rate  is reduced by )1(   
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where ]1,0(
 

is the efficacy of the 

vaccine, ( 1  represents a vaccine that 

offers 100% protection against infection, 

while 0  means the vaccine offers no 

protection at all). The vaccinated population 

)(tV is increased by those vaccinated from 

the susceptible class at the rate  . It is 

decreased by infections following contact 

with infectious individual at a rate  )1(   

and by becoming susceptible again after 

losing their immunity to the virus at the rate 
.
  
A proportion ,A  of the exposed 

individuals who do not develop symptoms 

after the incubation period  exits by 

progressing to asymptomatic population 

)(tA  at the rate .  A proportion ,D  of the 

exposed individuals who develop symptoms 

and are detected move to )(tID  class at the 

rate .  It is assumed that the detected 

symptomatic infected individuals are isolated 

and move to the hospital or Intensive Care 

Units (ICU) immediately until they get 

recovered from COVID-19. Hence, we 

assume that the detected symptomatic 

individuals do not spread disease or have very 

minimum probability of disease transmission 

(disease transmission rate/ infections reduced 

by 3 ). The remaining proportion ,U  of 

the exposed individuals who develop 

symptoms and are undetected (unidentified) 

after the incubation period move to 

undetected (unidentified) symptomatic class

)(tIU at the rate .  Thus,

)1,0(),,( UDA   and 

.1 UDA 
 

Asymptomatic population )(tA  is 

increased by a proportion ,A  of the 

exposed individuals who do not develop 

symptoms after the incubation period, and 

they exit the compartment through natural 

recovery at the rate A . The detected 

symptomatic compartment )(tID  gains 

population from a proportion ,D  of the 

exposed individuals who develop symptoms 

and are detected  after the incubation period, 

and they exit the compartment through 

recovery at the rate D , or disease-induced 

death rate 1 . Furthermore, the undetected 

infected compartment )(tIU  increases 

population from a proportion ,U  of the 

exposed individuals who develop symptoms 

and are undetected after the incubation 

period. It decreases when individuals exit the 

compartment through recovery at the rate 

,U  or disease-induced death rate .2  

The recovered compartment ),(tR  gains 

population from the asymptomatic, detected 

infected and undetected infected individuals 

at the rates ,A D  and U , respectively. 

The recovered individuals are assumed to 

develop immunity to COVID-19 for a mean 

duration ,1
 

before they become 

susceptible again. Furthermore, all individuals 

in each compartment are assumed to exit their 

compartments through natural death at the 

rate .  A flow diagram of the dynamics of 

the proposed model is shown in Figure 1, and 

the model parameter values together with 

their description and source are presented in 

Table 1. 
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Figure 1: The flow diagram of the COVID-19 model. 

 

From the flow diagram in Figure 1, the model equations are derived as follows: 

RVS
dt

dS
  )( , 

 VS
dt

dV
  )1( , 

  EVS
dt

dE
)()1(   , 

AE
dt

dA
AA )(   ,

   (1)

 

DDD
D IE

dt

dI
)( 1  , 

UUU
U IE

dt

dI
)( 2  , 

 RIIA
dt

dR
UUDDA   , 

with initial conditions 

,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  RIIAEVS UD  

where
 

N

IIAE UD 
 321 

 , and .RIIAEVSN UD   
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Table 1: Description of model parameters 

Parameter Description Value Source 

  Recruitment rate of 

individuals into the population 

10000

59 × 365
 

Diagne et al. (2021), 

Tchoumi et al. (2021)  
  Natural death rate 1

65 × 365
 

Aldila et al. (2021) 

  Vaccination rate 0.02 Assumed 

  Transmission rate 0.4531 Tchoumi et al. (2021) 

  Efficacy of the vaccine 0.8 Aldila et al. (2021) 

1  Modification parameter to 

reduce infectiousness of 

exposed individual 

0.3 Chinwendu et al. (2020) 

2  Modification parameter to 

reduce infectiousness of 

asymptomatic individual 

0.2-0.3 Assumed 

3  Modification parameter to 

reduce infectiousness of 

detected symptomatic 

0.1 Chinwendu et al. (2020)  


 

Rate of progression from 

exposed state to infectious 

state 

0.13 Tang et al. (2020), 

Diagne et al. (2021) 

A  Proportion of exposed 

individuals who become 

asymptomatic 

0.3 CDC (2021), Mwalili et 

al. (2020), Diagne et al. 

(2021) 

D  Proportion of exposed 

individuals who become 

detected symptomatic 

0.3 Assumed 

U  Proportion of exposed 

individuals who become 

undetected symptomatic 

0.4 Assumed 

A  
The recovery rate for 

infectious asymptomatic 

individuals 

0.0714 Mwalili et al. (2020) 

D  
The recovery rate for 

infectious detected 

symptomatic individuals 

0.0701 Diagne et al. (2021) 

U  The recovery rate for 

infectious undetected 

symptomatic individuals 

0.05 Mwalili et al. (2020) 

1  Disease-induced death rate for 

detected symptomatic 

individuals 

0.018 Diagne et al. (2021) 

2  Disease-induced death rate for 

undetected symptomatic 

individuals 

0.018 Diagne et al. (2021) 

  Rate at which individuals lose 

immunity after recovery 

0.011 Shakhany and 

Salimifard (2021), 

Diagne et al. (2021) 


 
Rate at which vaccinated 

individuals lose immunity 

(Vaccine waning immunity) 

0.004 Assumed 
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Model analysis 

Invariant region: The solutions of the model (1) are uniformly bounded in a positive invariant 

region,  Ω = {(𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼𝐷(𝑡), 𝐼𝑈(𝑡), 𝑅(𝑡)) ∈ ℝ+
7 : 𝑁 ≤ Λ

𝜇
}. 

Proof: Let, (𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼𝐷(𝑡), 𝐼𝑈(𝑡), 𝑅(𝑡)) ∈ ℝ+
7  be any solution of the system with 

non-negative initial conditions. Then, adding the differential equations in the model system (1) 

gives   .21 NIIN
dt

dN
UD    

The given initial conditions 

,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  RIIAEVS UD ensure that 

.0)0( N  

Using a standard comparison theorem (Lakshmikantham et al. 1989) we can show that

 tt eeNtN 



 


 1)0()( . 

In particular, 



)(tN if 




)0(N . Thus, the region is positively invariant. Hence, it is 

sufficient to consider the dynamics of the flow generated by (1) in Ω. In this region, the model 

is epidemiologically and mathematically well-posed (Hethcote 2000). Thus, every solution of 

the model (1) with initial conditions in Ω remains in Ω for all .0t  

 

Positivity and boundedness of solutions 

Positivity of solutions: Since the system of equations (1) represents human populations, all 

parameters in the model are non-negative and it can be shown that, given non-negative initial 

values, the solutions of the system are non-negative. The following lemma proves that the 

solution of the model is nonnegative for .0t  

Lemma 1  

If ,0)0( and 0)0(,0)0(,0)0(,0)0(,0)0(,0)0(  RIIAEVS UD  then the 

solutions (𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼𝐷(𝑡), 𝐼𝑈(𝑡), 𝑅(𝑡)) of system (1) remain non-negative for all 

.0t  

Proof: From the first equation of system (1),   

SRVS
dt

dS
)()(   ,

 

which upon integration yields .0)(exp)0()(
0















  dtStS

t

  

Hence, )(tS  remains non-negative for all .0t  In the same way, it can be shown that the 

other equations of system (1) are also positive for all .0t  Therefore, this concludes that, the 

solutions of system (1) are positive (non-negative) for all values of .0t  

 

Boundedness of the model 

Lemma 2 All solutions of the model system (1) with non-negative initial conditions are 

bounded and 



)(tN for all .0t  

Proof: Adding the differential equations in the model system (1) gives 



Tanz. J. Sci. Vol. 47(5) 2021 

1799 

  N
dt

dN
IIN

dt

dN
UD   21

. 

Lemma 1 ensure that .0)( tN  Thus, the total population )(tN is positive for all .0t  

Clearly .)(suplim






tN

t
 

Hence, 



 )(0 tN for all .0t  This concludes that, all 

solutions of the model (1) are bounded. 

 

Computation of the reproduction numbers  0R  and  VR  

The threshold parameter  0R  is the basic reproduction number of system (1) where no 

vaccine intervention is implemented (it represents the number of secondary infections generated 

by a single infectious case in a totally susceptible population),  while  VR  is the effective 

reproduction number that can be interpreted as the number of infections generated by one 

infected individual introduced into a completely naive population when vaccination is being 

implemented. The model (1) has a disease-free equilibrium (DFE) given by, 

.0,0,0,0,0,0,
)(

,
)(

)(0


























E

 
 

The threshold quantity,  VR  is computed using the next generation operator of van den 

Driessche and Watmough (2002), and it is obtained as the spectral radius of the matrix 
1FV  

at the DFE 𝐸0 with F  and V , respectively given by 

       









































0000

0000

0000

)1()1()1()1( 321

















F

, 

and 

.

00

00

00

000

2

1







































UU

DD

AA
V

 
It follows that the effective reproduction number of the model system (1), is given by 

 























))(())(())(()()(

)1(

21

321





















U

U

D

D

A

A
VR . 

 (2)  

 

In the absence of vaccination ),0(    we have the basic reproduction number given by 

))(())(())(( 21

321
0





























U

U

D

D

A

AR

 (3)
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UD IIAE RRRR   

The basic reproduction number obtained in (3) clearly breaks down to four components: 

secondary infections generated from the exposed, infectious asymptomatic, infectious detected 

and infectious undetected symptomatic individuals, respectively. Note that, 

 























))(())(())(()(

)1(

21

321





















U

U

D

D

A

A
VR

 
00

)(

)1(
KRRRV 










      (4)

 

 From the expression of ,VR  it can be observed that 0 RRV   because 

 
.1

)(

)1(










K  

The higher the efficacy of the vaccine (large value of ]1,0( ), the smaller is the value of 

.K The parameter K represents the effect of vaccine implementation in reducing the initial 

basic reproduction number, which depends on the rate of vaccination and quality (efficacy) of 

the vaccine. Hence, it can be concluded that the implementation of a vaccination at a constant 

rate   reduces the basic reproduction number by K  percent (Aldila et al. 2021). 

 

Stability of the Disease-Free Equilibrium (DFE)  

Local stability of the DFE of COVID-19 model  

Theorem 1 The disease-free equilibrium point  𝐸0 of model system (1) is locally asymptotically 

stable if 1, VR  and unstable if 1. VR  

Proof: The local stability of the DFE of the COVID-19 model (1) is determined by its effective 

reproduction number  .VR
 
The Jacobian matrix of the COVID-19 model system (1) at the DFE 

𝐸0 is given by 

       
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 where ,1  a  ,2  a ,3  a ,4   Aa ,15   Da  

26   Ua and  7a . The five eigenvalues are ),(1  

,2   ),( 13   D ),( 24   U ),(  and 5    while the 

remaining two eigenvalues are obtained from the 22  matrix 
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Then, the eigenvalues of M  are real and negative if the Routh–Hurwitz condition is satisfied. 

Applying the Routh–Hurwitz conditions 0Tr M , and Det 𝑀 > 0, we have 
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Hence, following Theorem 2 of van den Driessche and Watmough (2002), it can be concluded 

that the DFE 𝐸0 is locally asymptotically stable when 𝑅𝑉 < 1, and unstable otherwise. 

 

From Theorem 1, there is a possibility that COVID-19 could be eradicated from the 

community if 1. VR
 
The derivative of the effective reproduction number  VR  with respect 

to the transmission rate   
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is always positive. This implies that reducing the transmission rate could reduce the 

reproduction number linearly. This could be accomplished through social distancing or 

lockdowns. 

Similarly, the impacts of vaccination to the effective reproduction number  VR can be 

analyzed.  Taking the partial derivative of  VR  with respect to vaccination rate  gives 
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which is always negative. The vaccination rate is inversely proportional to , VR  this implies 

that increasing the vaccination rate could reduce the reproduction number.  
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Global stability of the DFE of COVID-19- model 

Using the approach of Castillo-Chavez et al. (2002), the model system (1) is rewritten in the 

form  

{

𝑑𝐱

𝑑𝑡
= 𝐹(𝐱, 𝑰) ,                             

𝑑𝑰

𝑑𝑡
= 𝐺(𝐱, 𝑰),   𝐺(𝐱, 𝟎) = 0,    

 (5) 

where 𝐱 ∈ ℝ𝒎 denotes the number of uninfected individuals and 𝑰 ∈ ℝ𝒏 denotes the number of 

infected individuals including latent, infectious. Moreover,  𝑬0 = (𝐱∗, 0) denote the disease-free 

equilibrium of this system. The conditions (H1) and (H2) below must be met to guarantee 

global asymptotic stability. 

(H1) For 
𝑑𝐱

𝑑𝑡
= 𝐹(𝐱, 0),   𝐱∗is globally asymptotically stable (g.a.s.), 

(H2)𝐺(𝐱, 𝑰) = 𝐴𝐼 − �̂�(𝐱, 𝑰),   �̂�(𝐱, 𝑰) ≥ 0   for (𝐱, 𝑰) ∈ Ω, 
where 𝐴 = 𝐷𝑰(𝐱∗, 0) is an M-matrix (the off diagonal elements of A are nonnegative) and Ω is 

the region where the model makes biological sense. 

If System (5) satisfies the above two conditions, then the following theorem holds: 

Theorem 2: The fixed point 𝑬0 = (𝐱∗, 0) is a globally asymptotic stable (g.a.s.) equilibrium of 

(5) provided that 10 R (l.a.s.) and that assumptions (Hl) and (H2) are satisfied. 

Proof: (see Castillo-Chavez et al. 2002). 

Theorem 3: The DFE 
0E of model system (1) is globally asymptotically stable if 1. VR  

Proof: The model system (1) is re-written in the form of (5) by setting ),,( VSx
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This equation has a unique equilibrium point  
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which is globally asymptotically stable. Therefore, the condition (H1) is satisfied. 

The second condition (H2) can now be verified. The model system (1), has
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Clearly,  𝐴 = 𝐷𝑰(𝐱∗, 0) is an M-matrix (the off-diagonal elements of A are nonnegative). On the 
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Thus 0),(ˆ IxG  for all ,),( Ix
furthermore the conditions (H1) and (H2) are 

satisfied. By Theorem 2, the global stability 

of the DFE is obtained, thereby completing 

the proof for the global stability of the DFE 
0E  of the model system (1). 

Global stability of the DFE precludes the 

model system (1) to exhibit bi-stability also 

known as backward bifurcation (Castillo-

Chavez and Song 2004, Dushoff et al. 1998), 

a situation where both the disease-free and 

endemic equilibria coexist when 1. VR  

Since the DFE is globally asymptotically 

stable, the endemic equilibrium which exists 

when R_V>1 will also be globally 

asymptotically stable. 

 

Sensitivity analysis  

The sensitivity analysis describes how the 

model parameters influence effective 

reproduction number 𝑅𝑉 as well as the disease 

transmission. Sensitivity indices allow us to 

measure how important each parameter is to 

disease transmission, while its analysis is 

mainly used to determine the robustness of 

model prediction to the parameter values 

(since there are usually errors in the data 

collection and presumed parameter values). 

The sensitivity indices to the parameters in 

the model are calculated in order to determine 

parameters that have a high impact on 𝑅𝑉 and 

that should be targeted by intervention 

strategies (Chitnis et al. 2008). Therefore, the 

sensitivity analysis on the effective 

reproductive number  𝑅𝑉 to the parameters in 

the model are computed to quantify the 

variations in the model parameters and to 

identify the most critical parameters (that 

have a high impact on 𝑅𝑉 as well as on the 

disease transmission) that will curtail the 

spread of COVID-19. In computing the 

sensitivity analysis, the approach described by 

Chitnis et al. (2008) is used. The normalized 

forward sensitivity index of 𝑅𝑉, that depends 

differentiably on a parameter 𝑝, is defined as 

 Υ𝑝
𝑅𝑉 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0
, where Υ𝑝

𝑅0  is the sensitivity 

index of 𝑅𝑉 with respect to parameter  𝑝. 

Table 2 and Figure 2 show the sensitivity 

indices of the effective reproduction number 

 𝑅𝑉 with respect to each of the parameters 

related to 𝑅𝑉 for the model system (1). From 

Table 2, the sensitivity indices with negative 

signs indicate that the value of  𝑅𝑉 decreases 

when the parameter values are increased and 

the value of  𝑅𝑉 increases when the parameter 

values are decreased, while sensitivity indices 
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with positive signs indicate that the value of 

 𝑅𝑉 increases when the parameter values are 

increased and the value of  𝑅𝑉 decreases when 

the parameter values are decreased. The most 

positive index is 𝛽 which implies that 

increasing (decreasing) of  𝛽 by 10% will also 

increase (decrease) the value of 𝑅𝑉 by 10%. 

Thus, the increment (decrement) of any 

proportion of the amount in the transmission 

rate 𝛽 will also increase (decrease) 𝑅𝑉 by the 

same proportion. Therefore, as transmission 

rate gets lower, the disease also vanishes from 

the community. The most negative sensitive 

parameter is 𝜀, which implies that increasing 

(decreasing) of 𝜀 by 10% will also decrease 

(increase) the value of 𝑅𝑉  by 19.8952%. 
This suggests that increasing the vaccine 

efficacy will halt the spread of COVID-19 

(the higher the vaccine efficacy will give the 

rapid reduction in the effective reproduction 

number 𝑅𝑉). Therefore, the effective 

reproduction number  𝑅𝑉 can be controlled by 

reducing the disease transmission rate 𝛽 and 

by increasing the vaccine efficacy 𝜀 which 

has been shown by contour plot in the Figure 
3 (The impact of the disease transmission 

rate 𝛽 and vaccine efficacy 𝜀 on  𝑅𝑉). 

 

Table 2: Sensitivity indices of the effective reproduction number 𝑅𝑉 to parameters for the 

COVID-19 model, evaluated at the baseline parameter values listed in the Table 1 

Parameter 𝜇 𝜈 𝛽 𝜀 𝜉1 

Sensitivity index 0.00270 −0.33449 1 −1.98952 0.24097 

Parameter 𝜉2 𝜉3 𝜗 𝛼𝐴 𝛼𝐷 

Sensitivity index 0.10962 0.03554 −0.24065 0.10962 0.03554 

Parameter 𝛼𝑈 𝜏𝐴 𝜏𝐷 𝜏𝑈 𝛿1 

Sensitivity index 0.61386 −0.10956 −0.02827 −0.45109 −0.00726 

Parameter 𝛿2 𝜔    

Sensitivity index −0.16239 0.3310    

 

 
Figure 2: Sensitivity indices of the effective reproduction number 𝑅𝑉 with respect to each of 

the system parameters related to 𝑅𝑉 for the model system (1). 
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Figure 3: The impact of the disease transmission rate 𝛽 and vaccine efficacy 𝜀 on  𝑅𝑉 . 

 

Results and Discussion 

Numerical simulations using the model 

parameter values in Table 1 are carried out to 

support the theoretical results. In a 

circumstance where parameter values were 

not available in the literature, realistic values 

are assumed for illustration purpose. 

Employing the fourth and fifth order Runge–

Kutta methods which are implemented via the 

ode45 function in MATLAB, the solution 

profiles of the model system (1) are shown in 

Figure 4. 

The following initial conditions are used: 

,000,10)0( S ,10)0(,10)0(  EV

,5)0( A ,5)0( DI

.0)0( and 5)0(  RIU
Figure 4 shows the 

change in the population profiles as time 

increases from 0 to 300 days. During the first 

70 days, the number of susceptible 

individuals decreases rapidly due to 

vaccination at a constant rate of 0.02 and 

through infection due to contact with infected 

individuals. 
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Figure 4: Evolution of population against time.  

 

Thus, with very low new infections, the 

number of exposed, asymptomatic, detected, 

and undetected infected individuals 

subsequently are reduced from the 150
th 

day 

onwards and remain constant. From Figure 5, 

one can observe from the red curve that if 

vaccine and social distancing are not 

implemented, the basic reproduction number 

is greater than unity, which indicates a high 

possibility of COVID-19 to become endemic 

in the population. Social distancing was 

simply modelled by reducing the transmission 

rate, and without vaccination, the 

transmission rate   must be reduced by 

greater than 78% to maintain the basic 

reproduction number less than unity. With the 

implementation of the vaccine at a constant 

rate of 0.002 and 0.005, transmission rate 

must be reduced by 69% and 56%, 

respectively to maintain the effective 

reproduction number less than unity.  

Moreover, with the implementation of the 

vaccine at a constant rate of 0.02, the 

transmission rate must only be reduced by 

11%. This implies that it is not imperative to 

over-implement social distancing allowing 

economic and social activities to function 

more habitually. If the vaccination rate is 0.05 

(with vaccine efficacy 8.0 ), one can 

observe that social distancing may no longer 

be needed since the effective reproduction 

number decreases to less than unity. Thus, 

vaccination as an intervention has an 

excellent potential to allow the government to 

relax the social distancing intervention and to 

eradicate COVID-19 from the population 

(Aldila et al. 2021). Figure 5 depicts the 

effects of vaccine on sensitivity of infection 

rate to the effective reproduction number. 
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(a) 

 
(b) 

Figure 5: (a) Effect of vaccine on sensitivity of infection rate to the reproduction number 𝑅𝑉 

(b) Contour plot of the effective reproduction number 𝑅𝑉 with respect to disease transmission 

rate 𝛽 versus vaccination rate 𝜈. 

 

Impact of detected and undetected on the 

COVID-19 transmission dynamics 

The impacts of detected and undetected 

cases are investigated when vaccination is 

implemented. The impact of detected and 

undetected cases on the effective reproduction 

number  VR  are presented under the range 

[0 –1] of the proportion, ,D  and ,U of the 

exposed individuals who progress to 

infectious detected and infectious undetected 

symptomatic individuals. As shown in Figure 

6, the graphical representation of the 

threshold parameter  VR as a function of 

𝛼𝐷 and ,U  the blue surface indicates the 

threshold 1, VR
 

and the red surface 

indicates the threshold 2. VR
 
The value of 

the basic reproduction number 𝑅0  and 

effective reproduction number 𝑅𝑉 obtained 

using all parameters found in Table 1 are 

𝑅𝑉 = 1.451 and 𝑅0 = 4.338, respectively. 

Moreover, when the proportion of exposed 

individuals who become undetected 

symptomatic is 0 (i. e.  𝛼𝑈 = 0) and the 

proportion of exposed individuals who 

become detected symptomatic is 0.7  

(i. e.  𝛼𝐷 = 0.7), the value of 𝑅𝑉 = 0.629 and 

𝑅0 = 1.881, respectively. In the latter case, 

the transmission of the epidemic could be 

significantly reduced with increased detection 

of COVID-19 cases. Moreover,  VR

decreases when the proportion 𝛼𝐷 of detected 

symptomatic individuals increases. If  VR  

goes below 1, the corona virus will eventually 

die (Melis and Littera 2021, Samui et al. 

2020). However, it is important to note that if 

the proportion  𝛼𝑈 of undetected symptomatic 

individuals increases, the threshold  VR  

increases. Therefore, the proportion  𝛼𝑈 of 

undetected infectious individuals could 

potentially be responsible for the rapid 

increase of the COVID-19 epidemic (Melis 

and Littera 2021), and the transmission of the 

epidemic could be significantly reduced or 

halted with increased detection of COVID-19 

cases. Figure 6 depicts the effective 

reproduction number  VR
 
as a function of 

,D  
and  𝛼𝑈   (the proportion of the exposed 

individuals progressing to detected infectious 

and undetected infectious classes). 

 

 

0.
5

0
.5

0
.5

1

1

1

1.5

1.5

1.
5

1
.5

2

2

2

3

3

3

4

4

5

5

6

6

7

7
8 910

 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1

2

3

4

5

6

7

8

9

10



Rwezaura - Modelling the Impact of Undetected Cases on the Transmission Dynamics of COVID-19 

1808 

 
(a)  

(b) 

Figure 6:  Effects of detected and undetected infectious symptomatic individuals to  .VR  

 

Conclusion 
A compartmental mathematical model to 

describe the disease transmission dynamics of 

COVID-19 was formulated. The model 

incorporates asymptomatic and symptomatic 

detected (identified) and undetected 

(unidentified) cases. The model is 

theoretically and numerically analyzed; its 

effective and basic reproduction numbers are 

derived. The disease-free equilibrium is both 

locally and globally asymptotically stable, 

and the disease could be eradicated when the 

reproduction number is below unity. The 

effectiveness of vaccination in minimizing the 

probability of disease transmission is 

investigated, and results show that 

vaccination has the potential to relax social 

distancing rules, while maintaining the 

effective reproduction number at the 

minimum possible and eradicate COVID-19 

from the population with higher vaccination 

coverage. 

In order to reliably detect the presence of 

undetected infectious individuals, it would be 

necessary to test the entire population and not 

just the symptomatic cases; however, this 

intervention seems not feasible to be 

implemented under constrained health care 

resources. Individuals should therefore be 
encouraged to report symptoms to health 

authorities as soon as they appear.  Moreover, 

if the vaccine efficacy is low and the disease 

reproduction number is high, the disease may 

not be eradicated even if a large proportion of 

the population is vaccinated. That is, 

additional efforts will be needed to reduce 

 VR  below unity even if vaccine coverage is 

high. Consequently, for herd immunity, 

governments should encourage mass 

vaccination while enforcing non-

pharmaceutical interventions such as face 

masks, hand washing and social or physical 

distancing measures.  
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