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Abstract 
Distribution networks remain the most maintenance-intensive parts of power systems. The 

implementation of maintenance automation and prediction of equipment fault can enhance system 

reliability while reducing the overall costs. In Tanzania, however, maintenance automation has not 

been deployed in secondary distribution networks (SDNs). Instead, traditional methods are used 

for condition prediction and fault identification of power assets (transformers and power lines). 

These (manual) methods are costly and time-consuming, and may introduce human-related errors. 

Motivated by these challenges, this work introduces maintenance automation into the network 

architecture by implementing effective maintenance and fault identification methods. The 

proposed method adopts machine learning techniques to develop a novel system architecture for 

maintenance automation in the SDN. Experimental results showed that different transformer 

prediction methods, namely support vector machine, kernel support vector machine, and multi-

layer artificial neural network, give performance values of  96.72%, 97.50%, and 97.53%, 

respectively. Furthermore, oil based performance analysis was done to compare the existing 

methods with the proposed method. Simulation results showed that the proposed method can 

accurately identify up to ten transformer abnormalities. These results suggest that the proposed 

system may be integrated into a maintenance scheduling platform to reduce unplanned 

maintenance outages and human maintenance-related errors. 

 

Keywords: Predictive maintenance; fault identification; fault prediction; maintenance automation; 

secondary electrical distribution network. 

 

Introduction 

Secondary  electrical distribution network 

(SDN) is considered as a means for 

transporting electrical energy in power 

networks. SDN is divided into two parts, 

namely primary and secondary distribution 

networks. The factor that distinguishes these 

two networks is the network capacity: 33 

kV/11 kV for the primary distribution network, 

and 400 V/230 V for the secondary distribution 

network. The role of SDN is to supply 

electrical power directly to low voltage users. 

In recent years, Tanzania has been in the 

process of reforming the electric power system. 

This reformation has significant impacts on the 

investment and construction of the power 

distribution networks. Therefore, it seems 

important to focus on the management of the 

operation, maintenance, and fault prediction of 

equipment as an attempt to generate reliable 
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power supply to the end users (Kalinga et al. 

2017).  

Population growth and technological 

advancement have led to the rapid expansion of 

SDN.  The advances in technology have 

transformed a traditional SDN into a smart 

electrical grid, which deploys a two-way 

communication to enhance power reliability, 

safety, and quality of service (Dileep 2020).  

The two-way communication system in the 

smart electrical grid supports several tools, 

including a self-monitoring tool. This 

advantage allows the utility company to apply 

more advanced maintenance strategies to 

ensure reliability of the electric grid while 

minimizing human interventions (Colak et al. 

2016).  

SDN expansion creates higher chances of 

the occurrence of electrical stress faults in the 

network. This challenge may lead to 

unexpected failure of the equipment—a 

consequence that may generate safety issues 

and unnecessary cost to the utility companies 

and consumers. The equipment that shows 

undesirable conditions can be monitored for 

prediction and maintenance scheduling. In 

most SDNs, especially those of Tanzania, 

equipment monitoring and maintenance 

scheduling are performed manually due to lack 

of efficient automation systems that can 

continuously monitor equipment parameters to 

identify failure modes (Mnyanghwalo et al. 

2019). Traditional preventive maintenance, that 

uses manual statistical modeling approaches, is 

still performed frequently by engineers and 

technicians. Consequently, failure mode and 

causes analysis may take a long time, and may 

be susceptible to high probability of human-

related errors. This manual process imposes 

losses to end-users as well as to utilities 

because such errors introduce additional costs 

to the companies (Asadzadeh and Azadeh 

2014). Currently, SDN lacks automation for 

maintenance decision support in remotely 

monitored distribution equipment. Online 

monitoring of transformer through dissolved 

gas analysis has been done at the grid 

substation 60 MVA, 220/33 kV Mwakitebe, 

Mbeya region (TANESCO). Usually, the high 

voltage network is fully automated with 

reliable communication infrastructure and 

remotely controllable devices. Compared with 

high voltage network, the  SDN  is 

experiencing a lot of stress faults that decrease 

the lifespan of transformers (Bhargava et al. 

2020); examples of these stress faults are 

tripping, overcurrent, and earth fault (Figure 1).  

 

Figure 1: Sample stress faults statistics recorded from January–April 2018 at Ilala Substation 

(Source: TANESCO). 
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To maintain the operation status of SDN 

transformers, intelligent maintenance process is 

needed. Figure 2 represents procedures that are 

currently used by maintenance personnel to 

facilitate maintenance process. In the existing 

maintenance process, failure diagnosis and 

maintenance decisions are performed manually 

based on the expert experience or standards. 

Currently, most transformers installed in SDN 

are oil-immersed transformers; maintenance 

personnel compare the gas content in the oil at 

a particular time with the pre-defined value to 

diagnose its status. However, the gas content in 

the oil varies with age and level of oil in the 

transformer. Therefore, relying on the pre-

defined value is not feasible. Given this 

observation, the system architecture for 

maintenance process needs to be reconfigured 

to include some remote sensors, controllers, 

and reliable communication networks to realize 

intelligent maintenance automation in SDN. 

Maintenance strategies can be divided into 

two categories. The first category, which is 

time-based, is called preventive maintenance. 

In this category, maintenance of the equipment 

is performed based on the time interval 

specified regardless of the condition of the 

equipment. This process may introduce 

unnecessary costs to utility companies due to 

the replacement of the equipment prematurely 

(De Faria et al. 2015). 

 

 
 

Figure 2:  Current system architecture for transformer maintenance process in the Tanzania 

electrical secondary distribution network. 

 

The second category, which is condition-

based, is called predictive maintenance. In this 

category, the maintenance schedule is based on 

the condition of the equipment. Usually, a 

condition assessment of the equipment is 

performed before the maintenance work is 

performed (Noman et al. 2019). To achieve 

condition-based predictive maintenance in the 

smart grid, one should continuously monitor, 

analyze, and predict the status and fault of the 

equipment. This process allows timely 

maintenance action to prevent long downtime, 

occurrence of further damage, and unexpected 

failure of the equipment in the power system. 
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Various condition monitoring methods, 

such as oil analysis, thermography, vibration 

analysis, ultrasonic based, and electrical current 

monitoring, are available (Islam et al. 2017). 

Oil analysis through DGA (dissolved gas 

analysis) is widely used in assessing the 

condition of the oil-immersed transformer (Li 

and Li 2017). The typical gases that are 

frequently used to flag the condition of this 

type of transformer include hydrogen (H2), 

carbon monoxide (CO), methane (CH4), 

ethylene (C2H4), water (   ), acetylene 

(C2H2),  and ethane (C2H6) (Bustamante et al. 

2019). Several methods have been proposed for 

fault identification based on gas dissolved in 

oil (Gouda et al. 2018). These methods are 

categorized into six groups: Key gas method 

(KGM), Doernenburg ratio method (DRM), 

Rogers’s ratio method (RRM), IEC ratio 

method (IRM), Duval triangle method (DTM), 

and Duval pentagon method (DPM). Table 1 

summarizes the methodology and limitations of 

each method. 

 

 

Table 1: Methods for oil-immersed transformer failure mode identification 

S/N Category    Methodology Limitations 

1. KGM -Based on gas percentage 

- Simple to use 

- Identifies  up to four types of fault 

- Low accuracy 

- Not reliable tool for fault analysis 

2. DRM - Ratio-based - Uses a few ratio test 

- Correctly identifies up to 3 faults 

3. RRM - Ratio-based -Requires a significant amount of gases 

- Correctly identifies up to 5 faults 

4. IRM - Ratio-based - More range of ratio test 

- Correctly identifies up to 6 fault 

5. DTM - Ratio-based 

-Graphical interpretation 

-Cannot be used to identify the incipient fault 

 

6. DPM - Ratio-based 

-Graphical interpretation 

- Does not specify a normal state                          

 

The methods in Table 1 are simple and easy 

to implement. However, evaluation of the 

condition of equipment at its early stage is still 

challenging. Lack of intelligence in traditional 

methods makes it challenging to predict 

multiple faults that may occur at the same time. 

Various equipment failure prediction 

methods have been developed in the field of 

condition-based predictive maintenance. The 

accuracy of the maintenance automation 

system depends on the chosen models. 

Choosing the accurate model is essential since 

an inaccurate model may lead to the wrong 

decision-making process, hence imposing 

unnecessary costs to the utility company. 

Equipment fault prediction models are divided 

into three categories (Peng et al. 2010). The 

first category includes a physical model, which 

employs a mathematical model to realize a 

functional mapping between equipment failure 

indicators and its condition. The second 

category is called knowledge-based model, 

which transforms the expert knowledge into 

rules to analyze the condition of the equipment. 

The last category, data-driven model, depends 

on the data collected from sensors, and tracks 

the pattern that is further correlated with 

different equipment fault conditions. Due to the 

widespread deployment of low-cost sensors 

and the internet of things, some researchers 

recommend the use of data-driven 

methodology (Baptista et al. 2018).  

The data-driven model can further be 

divided into two categories: statistical and 

artificial intelligence (AI) approaches. The 

former approach, which includes several 

statistical methods (e.g., Markov models), 

gives promising results for short-term 
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prediction, but cannot guarantee the accuracy 

of long-term prediction (Haomin et al. 2014). 

The AI approach attempts to learn the 

equipment degradation patterns from the 

available observations. Recently, several AI 

methods have been used in predictive 

maintenance: artificial neural network (ANN), 

support vector machine (SVM), fuzzy logic, 

expert system, paradigm inference, and grew 

theory. 

The ANN consists of a larger number of 

simple and highly interconnected processing 

units called neurons (Elsheikh et al. 2019). This 

network is capable of using sensory 

information to detect equipment fault and 

classify their functional conditions. The most 

important characteristic of ANN is its high 

speed in modeling processes and systems from 

the actual data. This characteristic makes ANN 

the ideal tool for prediction and modeling of 

different systems with irregular time series data  

(Carvalho et al. 2019). The ANN requires a 

large amount of dataset to train and test the 

system. The Tanzania utility company 

measures the transfomer parameter data once 

or twice a year, making it challenging to collect 

enough historical data for machine learning 

processing. Therefore, the data interpolation 

techniques become important to fully exploit 

the capabilities of ANNs. 

Data interpolation is the process of 

generating new dataset from the known dataset. 

This process is important for the system with a 

limited number of historical data (Liu et al. 

2019).  Artificial intelligence methods for 

prediction require big data for training. 

However, acquiring enough DGA historical 

data may be relatively challenging. As a result, 

researchers have proposed several methods for 

data interpolation: k-Nearest Neighbours; 

Missforest; and multivariant imputation by 

chained equation methods (MICE), which this 

study has adopted (Cihan and Ozger 2019). 

Waljee et al. provided a comprehensive 

comparison of these methods (Waljee et al. 

2013), and showed that the Missforest method 

is the efficient method for data interpolation. 

However, the practical application of 

Missforest for a multivariant dataset is 

challenging. The MICE methods, which are 

incorporated into the R statistical software, are 

powerful for data interpolation in multivariant 

systems. Therefore, using a suitable 

interpolation approach, the (interpolated) DGA 

data may further be processed to predict the 

condition status and fault type of oil-immersed 

transformers. But the traditional method for the 

DGA data processing is not feasible in a smart 

grid network. We need an intelligent machine 

learning processing to reduce human 

interventions in the SDN. 

Significant work has been done by 

researchers to establish machine learning 

methods for transformer fault prediction and 

classification (Ghoneim 2018, Song et al. 2018, 

Zheng et al. 2018, Lin et al. 2018, Liu et al. 

2019, Jiang et al. 2019 , Elânio Bezerra et al. 

2020, Zeng et al. 2020). Most of the proposed 

artificial intelligent methods are based on 

single gas ratio interpretation methods (IEC 

60599 2015). Consequently, a limited number 

of the fault types can be analyzed, hence 

making such methods rather weak in practical 

situations. Considering this limitation, we have 

developed a machine learning method for 

prediction of transformer health and for 

classification of transformer faults using the 

available DGA data. Also, based on the 

challenge driven education approach, expert 

knowledge from the utility company was 

acquired to improve our method. The DGA 

data was used to model the multiple layer 

artificial neural network (MLANN). 

Thereafter, the model was integrated with the 

hybrid fault classification method to maximize 

the number of analyzed faults of the 

transformer. 

 

Materials and Methods 

Case study and analysis 

In the study conducted at the Tanzania 

electricity distribution and transmission 

network, the authors realized that the existing 

architecture  in Figure 2 does not support 

intelligent maintenance automation. Therefore, 

this study proposed a system architecture to 
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address the challenges as shown in Figure 3. 

The existing traditional architecture of 

Tanzania Electricity Supply Company Limited 

(TANESCO) demands manual data collection 

and analysis for transformer fault classification 

and maintenance scheduling. These procedures 

are time-consuming, and may contain some 

human-related errors. The proposed system 

architecture consists of automated sensors that 

can measure the health conditions of the 

transformer and send them to the intelligent 

embedded controller through a wireless 

network. In an intelligent embedded controller, 

the health status of the transformer was 

predicted and the transformer faults were 

determined using machine learning approaches. 

Thereafter, the maintenance was scheduled 

based on the prediction. Guided by the reliable 

communication architecture proposed by 

Chugulu and Simba (2019), the transformer 

processed information was then transferred to 

the control centre for subsequent actions. The 

proposed architecture opens up the possibility 

for the deployment of machine learning 

approaches for maintenance automation in the 

Tanzania electricity network. 

 

 

 

Figure 3: Proposed system architecture for transformer fault prediction in Tanzania secondary 

distribution network. 

 

Sample data collection and preprocessing 

The transformer historical data from 2016 

to 2020 were collected from several power 

transformers in Tanzania as shown in Table 2. 

The power rating ranges from 15 kVA to 30 

kVA. The authors collected 143 sets of time 

series historical data from the utility company. 

The collected data were concentration of 

dissolved gases in the transformer insulation 

oil. The concentration is measured in parts per 

million (ppm) using the weight of moisture 

divided by the weight of oil. The moisture 

content in oil lowers the insulating system 

dielectric strength and allows flashover that can 

damage a transformer. For mineral oil, a 

generally accepted maximum moisture content 

is 35 ppm. To acquire adequate data for 

prediction, the MICE computation methods 

were applied using the R statistical computing 

software version 4.0.5. The outliers were 

removed from the dataset as they could affect 

the normalization process (Pearson 2002). The 

decimal scaling method was used in the data 

normalization process (Patro and Sahu 2015).  
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Table 2: Sample DGA historical data in parts per million 

CO2 H2 CO CH4 C2H6 C2H2 C2H4     

2466 9 200 16 25 0.0 32 3 

2440 5 169 15 18 3.0 25 0 

416 5 12 5 12 2.5 5 0 

2797 5 289 4 25 1.5 6 1 

4897 6 497 12 7 0.0 8 18 

691 5 152 3 9 0.0 3 26 

430 5 23 3 10 0.5 3 23 

8333 9 1269 10 13 0.5 11 22 

3368 7 141 1 44 0.0 11 22 

1541 5 242 13 14 0.0 33 17 

3831 15 604 6 19 3.0 9 37 

1645 5 98 3 32 1.5 37 28 

1280 8 221 2 9 0.5 3 17 

2982 5 180 3 7 0.5 7 20 

6104 8 682 10 15 0.5 1 2 

4251 5 316 3 21 1.5 1 24 

9405 11 819 18 18 0.0 2 22 

4264 17 991 6 13 0.5 4 20 

1157 5 114 6 24 0.0 5 1 

6579 5 885 15 17 1.0 25 1 

7240 7 1013 18 12 0.5 21 15 

1098 5 55 3 11 1.0 5 23 

3264 9 740 76 8 0.0 38 1 

3273 8 786 10 12 0.5 4 16 

2556 5 140 76 417 0.0 38 1 

2495 5 159 95 481 0.0 40 19 

2245 5 162 2 14 0.5 31 18 

4255 9 184 9 41 0.0 4 1 

2884 12 144 7 27 0.0 5 21 

1157 5 114 6 24 0.0 5 1 

5853 14 1034 7 14 0.5 6 22 

1864 5 185 2 21 0.0 33 1 

1832 5 168 2 16 1.0 32 23 

 

Generally, the data collected from the oil-

immersed transformer included H2, CO, CH4, 

C2H6,  C2H2, C2H4, and CO2. Guided by the 

expert knowledge, water (     was found to 

be the dorminant parameter that affects the life 

of the transformer in the SDN, especially 

during the rainy season (Bousdekis et al. 2018). 

Also, an observation was made that the 

transformer material may add water to the oil, 

hence, promoting premature transformer 

cellulose ageing. Noting these observations 

from the expert knowledge, the authors used 

the eight transformer parameters for condition 

status prediction and fault analysis. 

 

Prediction model selection 

Several prediction models have been proposed 

in the literature (Li and Li 2017, Bousdekis et 

al. 2018). To investigate the accuracy of the 

prediction models based on the available 

dataset, the authors tested the SVM, KSVM, 

and MLANN. The implementation steps 

(Figure 4)  include DGA data collection from 

TANESCO, data analysis, and model 
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identification. The transformer fault prediction 

was performed on each model by using the 

same dataset, and the performance was 

evaluated using mean absolute error (MAE), 

mean absolute parcentage error (MAPE), and 

root mean square error (RMSE). In this study, 

the R-studio software was used in  the model 

training and testing processes. 

 

 
 

Figure 4: Steps for selection of prediction 

model. 

 

The accuracy of the models SVM, KSVM, and 

MLANN identified by subtracting MAPE from 

100% were found to be 96.72%, 97.50%, and 

97.53%, respectively. Therefore, MLANN was 

selected for its high accuracy compared with 

the other models.  

 

Transformer condition prediction based on 

MLANN  

One thousand DGA sample data were divided 

into two parts, 800 training samples and 200 

testing samples. The MLANN structure  

consists of the input layer, hidden layer, and 

output layer. In this study, the input layer of 

MLANN contained ten input parameters, four 

hidden  layers, one output layer, and a logistic 

activation function  as shown in Figure 5. The 

output of the model provides information 

regarding the transformer status. The authors 

divided the transformer conditions into four 

types, namely normal, warning, caution, and 

critical. In case of the abnormal condition, 

further analysis was performed to determine 

the fault type based on the characteristics of the 

input parameters.  
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Figure 5: Structure of MLANN state prediction based on DGA data. 

 

Transformer fault analysis based on hybrid 

method 

According to the IEC 60599 standards, 

transformer fault types are classified into six 

groups: Partial discharge, low-energy 

discharge, high-energy discharge, low-

temperature thermal fault, medium-temperature 

thermal fault, and high-temperature thermal 

fault (IEC 60599, 2015). Scholars have 

proposed several oil-immersed transformer 

fault identification methods (Gouda et al. 

2018). Despite the attempts, the proposed 

methods disregard the effect of water content. 

Therefore, in this study, expert knowledge was 

introduced to address the challenge. This 

approach encourages the application of real 

practical analysis of data to formulate testable 

logic for fault identification in oil-immersed 

transformers. Expert knowledge can be 

acquired through challenge-based education 

that the current study has adopted (Kalinga et 

al. 2017).  

In this work, the authors have proposed the 

hybrid method that integrates the IEC 60599 

method, gas ratio method, and expert 

knowledge-based method for the transformer 

fault identification. The input for the fault 

identification is shown in Table 3. 

 

Table 3: Transformer fault   analysis input 

parameters 

Fault identification 

method 

Input parameters 

IEC ratio C2H2/ C2H4, CH4/ H2, 

C2H4/ C2H6  

Gas ratios CO2/ CO, C2H2/ H2 

Expert knowledge CO, CO2,     

 

The process of identifying the generalized 

fault identification methods includes five steps: 

data collection, data processing (analysis of the 

available faults and records), reviewing of the 

existing methods for transformer  faults 

identification, test of each method with 

available DGA data, and analysis of the results 

as shown in Figure 6. 
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Figure 6: Fault identification method selection steps based on DGA. 

 

Results and Discussion 

Fault identification  

The R-studio software was used to simulate 

faults identification of the existing and 

proposed hybrid method. The DGA data from 

TANESCO was used for training and testing 

the performance of the existing and proposed 

hybrid method. Table 4 presents results of ten 

types of faults tested on the existing and 

proposed hybrid method. The results in Table 4 

show that the proposed hybrid method can 

identify ten faults, accounting for 100% of the 
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tested faults. The IEC 60599 standard method 

identifies six faults which is 60% of the tested 

faults. The gas ratio and limit-based methods 

identify only two faults which is 20% of all 

tested faults. Therefore, the proposed method is 

more generalized and can be used in the 

maintenance decision-making process. These 

observations suggest that the proposed system 

may be integrated into a maintenance 

scheduling platform to reduce unplanned 

maintenance outages and human maintenance-

related errors 

Faults identification patterns were also 

simulated for each of the selected methods. The 

intention was to identify the most dominant 

faults in the recorded data from 2016 to 2020. 

Figure 7 shows that IEC 60599 method detects 

T1 and T2 as the most recurring faults in all 

five years. However, the T1 fault decreased 

from 140 times in 2019 to 60 times in 2020. 

Figure 8 shows that Gas Ratio method detects 

CDA as the most recurring fault in all five 

years. However, the CDA fault decreased from 

180 times in 2019 to 80 times in 2020. Figure 9 

shows that Limit Based method detects CIT as 

the most recurring fault in all five years. 

However, the CIT fault decreased from 210 

times in 2019 to 80 times in 2020. Figure 10 

shows that proposed hybrid method detects T1 

as the most recurring faults in all five years. 

However, the T1 fault decreased from 140 

times in 2019 to 50 times in 2020. These 

simulation results suggest that each method can 

identify transformer abnormalities, hence, 

suggesting inaccurate maintenance decision-

making processes.  

 

 
 

Figure 7: Faults identified by IEC 60599 method.  
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Figure 8: Faults identified by Gas Ratio method. 

 

 
 

Figure 9: Faults identified by Limit-Based method. 
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Figure 10: Fault identification based on proposed hybrid method. 

 

 

Table 4: Faults Identification 

No Fault 

type 

Description IEC 

method 

Gas ratio 

method 

Limit-

based 

method 

Proposed 

hybrid 

method 

1 PD Partial discharge √ × × √ 

2 D1 Low energy discharge √ × × √ 

3 D2 High- energy discharge √ × × √ 

4 T1 Thermal fault T >       √ × × √ 

5 T2 Thermal T >       
      

√ × × √ 

6 T3 Thermal fault T >       √ × × √ 

7 CDA Paper deterioration due to 

ageing 

× √ × √ 

8 CDF Cellulose deterioration due 

to other factors (stress 

faults) 

× √ × √ 

9 CIT Contamination in tank × × √ √ 

10 Leaks Water leaks into the oil × × √ √ 

√ – Identified           PD: Partial discharge                                 D2: High-energy discharge 

× – Not-identified    D1: Low-energy discharge                        T1: Low-temperature thermal fault 

                                  T2: Medium-temperature thermal fault   T3: High-temperature thermal fault 

 

Transformer condition prediction based on 

MLANN 

This study proposed a condition and fault 

prediction method by analyzing the main 

failure characteristics parameters of oil-

immersed transformers. Based on the available 

data, three prediction models  SVM,  KSVM 

and MLANN, were tested to determine their 

performance in terms of MAE, MAPE and 

RMSE  as shown in Table 5. Results showed 
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that MLANN had RMSE of 0.00094 compared 

to 0.00101 and 0.00265 of KSVM and SVM, 

respectiviely. This observation suggests that 

MLANN has higher accuracy than KSVM and 

SVM models. Therefore,  in transformer fault 

predictions, the MLANN model could give the 

most accurate results. 

 

Table 5: Performance analysis of prediction 

models based on DGA data 

Model MAE MAPE RMSE 

SVM 0.03270 3.2734 0.00265 

KSVM 0.02493 2.4937 0.00101 

MLANN 0.02493 2.4685 0.00094 

 

Conclusion 

This study focused on the maintenance 

automation in distribution and transmission 

networks in Tanzania power systems, where 

intelligent equipment fault identification has 

not previously been deployed. The authors 

have proposed a system architecture that allows 

maintenance automation in the Tanzania 

secondary distribution networks. Based on the 

DGA data, the current study reveals that 

MLANN is the most suitable model for 

transformer state prediction. Also, using the 

same data, the most popular transformer fault 

identification methods were tested and 

compared. Results suggest that the existing 

methods have a limitation of not being able to 

identify all type of faults. Therefore, the 

authors proposed the MLANN-hybrid method 

for prediction of transformer conditions and 

fault in the secondary distribution networks. 

The proposed method can be used in 

maintenance decision-making as it includes 

most of the identified transformer 

abnormalities based on oil analysis. As a 

possible future research avenue, there seems to 

be a need to design a maintenance scheduling 

method that integrates the transformer state 

prediction and hybrid fault identification 

methods. The maintenance decision based on 

the prediction can significantly reduce the costs 

of unexpected downtimes. 
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