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Abstract

This paper is intended to deal with the geometry of locally
analytic loops. In it we will show which loops generate
symmetric spaces, the connection between the constructions
of Sabinin and Loos, and examples of symmetric loops. The
main results of this article were published in 1972 (Karanda
1972).

Introduction

For a long time, the role of quasigroups and loops in differential
geometry was ambiguous. They were only applied in theories of projective
planes and of nets. Recently (Loos 1969) it was shown that a symmetric
space is a manifold Q with a differential mapping :—

H:Qx Q*>Q, u(x,y) = x.y = S, and properties :

1) x. (y.z) = (xy).(x.2)

2) x. (xy) =y

3) xx=x

4) every point x has an neighbourhood Ux : X.y = y implies that
Y = xforallyin Ux.

This construction is reversible. S, is Cartan’s symmetry about point
x and by the property 2), the property 1) becomes

SSX,V = SxSny (1)

but Loos never used the term “quasigroup” and paid less attention to the
algebraic meaning of his binary operation. His construction is not suitable
for an arbitrary homogeneous space.

Furthermore, itswas shown that a left hamogeneous space can be
considered as a left loop and a left loop as a left homogeneous space
(Sabinin 1972).

Symmetric Loops
Let Q(o0) be a locally analytic loop (Mal’cev 1955) with mappings

S:x + x—'and R :x -+ xox, where x—! is the right inverse of x, x € Q and
the operation (o) is introduced locally.

——— . _ -
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We define ny = Xxoy

Definition

A locally analytic loop Q (o) is called a symmetric loop if, for all
X, ¥ e Q, the following conditions are fulfilled :

a) S(xoy) = SxoSy, that Is, S is an automorphism.

b) 8% = id, that is,’S is an involutive.

¢ S&(x,y) = 2(x,y) S, thatis, S commutes with
-1
= L L L i
L(x,y) (xoy) “x ywhlch belongs to
a&E (Q), the associator of Q.
-1

S = = = i
d) xo(Sxoy) y or Lx Lx-l LSx,that is, the loop

Q (o) has the left inverse property.

e) xo(xoy) = (xox)oy or L2 =12 = L that is, the loop Q (o)
X X Rx’

is left alternative.
f) The mapping R is locally a bijection.

Theorem 1
1. If Q (o) is a symmetric loop, then LQ)'M2 (Q) is a symmetric

space, where LQ = | Lx} is a group generated by
all L, xeQ. *ey

2. If G/H is a symmetric space, then there exists a symmetric loop
such thatg/p =~ LQ/aéf Q)

This theorem is proved as soon as we show the connection between
the symmetric loop and the Loos quasigroup.

Remark

We define Sxy = LxSLx—'y, then by the properties of the symmetric

loo

x.y | Sy = RSy or 5= g @

-1 =
and X0y = R R or LX = SR" IXS

! @)
If y =e, then xe = Sxe = RxoSe = Rx = xox and if X = e, then

ey = Sey = Sy =y -1
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Theorem 2

The symmetric loop Q(o) with an isotope x.y = RxoSy is the Loos
quasigroup Q(.).

Proof

The properties 2) and 3) are fulfilled : xx = § x = RxoSx =
(x0x) 0Sx = xo0 (x0Sx) = x0e = X, X
_ » -1 -1 2 -1
X.(x.y) = SxSxy = LxSLx LxSLx y = LxS Lx y =y
We have to show that the quasigroup Q(.) connected with the
symmetric loop Q(o) with the help of the isotope (2') is left distributi}re.

-] -1 . = 8L
Let S(Rx) = u, and as R is locally a bijection and Rx e Q(o) then
I"R (uoy) = I"u LRyLu . 3)
By the property ¢) of the symmetric loop, we have
-1 -1
S = . =
k (xoy) LxLyS k (xoy) LxLy’ o= 3 R (xoy) LxLRny

This equation coincides with (3).

It remains to show that locally x.y = y implies that y = x. In fact,
from x.y = RxoSy, we have RxoSy = y or (xox) oSy =y, xo0 (xo0Sy) = y,
xoSy = x—loy and x0Sy = S(xoSy). But it is easy to show that in a
%lmmetric loop Sx = x only when x = e, Therefore xoSy = e and Sy = x—!

atisy = x,

Theorem 3

The symmetric loop Q (o) is a special left Bol loop.

Proof
Using (3) we have
R (xoy) oz = x0 (Ryo (x0z) ) (4)
If z= e, then
R(xoy) = xo(Ryox) (5)

Therefore by (5), (4) is rewritten as
(xo (Ryox) ) oz = xo (Ryo (xo0z) ).

Denoting Ry = u, we have the identity of a left Bol loop
(x0 (uox))oz = xo(uo (xo0z)) (6)
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It remains to show that Q(o) is special, that is for all a,b,x,y €Q
e(x,y) (aob) = L(xy) ao 2(x,y) b. By the isotope (2°) we have
1

4 4 =L = S - - - -
(x,y) L (xoy)LxLy R IS{R lx.Sy]SSR le SR lyS
But Sx and Se = S are automorphisms, and S commutes with 2(x,y).
Therefore

2(x,y)(aob) = &(x,y) (R-]a.Sb) = ﬁ{x,y)R-la.Si(x,y)b-
Let us show that

REGK,IRTT = 2(x,y),
that is

RE(x,y)R—lz E R(S(xoy)o(xo(yoR-]z})).
By (5) we have

Rﬁ(xoy)R_lz = S(xoy)o{R(xo(yoR-lz))OS(xoy)}=

= S(xoy)of [xo((yo(zoy))ox] oS(xoy)}.
By (6) we have

R!?,(x,y)R']z = S(xoy)o {xo(yoz)}
Thus R2(x,y) = x,y)R and Q(o) is a special Bol loop.

Theorem 4

The Loos quasigroup Q(.) with isotope xoy = R—!x.Sy is the symmetric
loop with a unit element e.

Proof

First we have to show that mapping R:x - x.e is invertible. The
operation (o) has been introduced locaflg and hence the invertibility of R is
connected with the possibility of solving the equation Sy e = a about x, for
all a. Locally points e, a € Q can be joined by a segment Y of a geodisic of
a symmetric space uniquely (we have to confine ourselves within the
normal neighbourhood of point e). Then a point p, which is the middle of
the arc is the solution. That is p.e = a, according to the properties of
Cartan’s symmetry.

 Let p’ and p” be two different solutions. p’.e= p”.e= a. Let us join
point e with p’ and p”, with the help of two different geodesics y' andy"
respectively and then produce them up to point a. According to Cartan’s
symmetry, e,p’, Sp,e = a lie on one geodesic y'and e,p”, S ,e =a lie on

the other geodesic Y'" . And Y'$ Y"as p'$p”. This can not be because

in the (normal) neighbourhood of point e, points e and a can be joined

I'Hr a unique geodesic. Therefore S,e = a has a unique solution for all a
0

cally) and the mapping R—1:Q+Q" exists.
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From the invertibility of R and S, it is obvious that Q(o) is a quasi-
group. We notice that Re = e and R—le = e. By the isotope (2’) and the
property 2) we have :
eoy = e.(Sy) = e.(ey) = y and yoe = R-'y.Se = R-lye=R(R-ly) = y.

Therefore e is simultaneously a left and right unit in Q(o).
Furthermore,
yoSy = R—lyy = R-lyR(R-'y) =R-'y.(R-'y.e) = e.

That is Sy = y—!. We notice that Syoy = SyoS(Sy) = e and-ly = Sy = y-!
for yeQ(o).

Let us show that S is an automorphism in Q (o) :
SxogSy = R-ISx.y, S(xoy) = S(R-'x.Sy) = e.(R—'x.Sy) = (e.R—'x). (e.Sy)
= SR-x.y.
But R—!S = SR—! or RS = SR. Therefore S(xo0y) = SxoSy and S is an
involutive automorphism in Q (o).

From
x—lo(xoy) = R—Ix—'.(x"'0Sy) =R-Ix-L.(R~'x~ly) =y,
we see that the loop Q(0) has the left inverse property.

Let us show that xox = Rx :
X0x = R—!x.Sx = R—!x.(ex) = (R—'x.e) . (R-'x.x) = X.(x08x) = x.e = Rx.

This implies that (x0x)oy = Rxoy = x.Sy. But xo(xoy) = R—Ix.§ (xoy) =
R-'x.(e.(xo0y)) = (R='x.e).(R—'x.(x0y)) = X[R~'x.(R-'x.Sy)] = X.Sy.

Therefore (xox)oy = xo(xoy) and the loop Q(o) is left alternative.

It remains to show that Se(xy) = E(XI,f)lSLfOIr all g(x,y)e( as 2 (Q).
= ;1 = T L '
In fact Se(x,y) = SL (xoy)x y (xoy) x Ty
The equation Si(x,y) = L(x,y) S is equivalent to the equation

~1 "=} "
- L =L.L, L
"oy bx Ly Yo txly T Lpexoy) T Ly Ry “x

which concides with (3). If we denote Sxydéfx.y then equation (3) can be

obtained from the property 1) of the Loos quasigroup. This completes the
proof.

Theorem 1 now follows because the connection between the symmetric
loop and the Loos quasigroup has been established.

Theorem 5

Let Q(0) be a symmetric loop. Then Q(o) is a symmetric space with
a group of motions LQ generated by {Lx:ny= xoy’x,ng} and with
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a stationary group as 2 (Q) generated by {2(xy) = L_(lx oy) LxLy,x,ch}.

The Cartan’s symmetry about point e will be Sg = S.
Proof

It is easy to see that the group of motions of a symmetric space has a
generating set{ ste}' . From the properties of the symmetric loep,

xeQ
we have SX s LRxS’ Lx =SR—l .S. And therefore the group generated
by the operators st coincides with the group generated by the
operators L

It was shown that 'l"sLQ means that T=Lq£(x,y),qﬁ'Q.leaA£ Q)

(Sabinin 1971). This reference concerns the local analog of Sabinin’s
results. Therefore Te = e implies that Lq xy)e=e= Lq e=e and

gqoe = e implies that q = e, Lq = idq, T=g(xy)¢€ asE(Q): Thus asL(Q)

is the stationary group of e in the symmetric space Q(o) and
LqﬁxsitQ(o)) is a symmetric space. According to Loos’ results, the

symmetry about the point e is S, = S. This completes the proof.
3. Symmetric Spaces of Rank 1 (Compact Type)

Let us construct models of the symmetric loops which determine
symmetric spaces of rank 1:SO(n + 1)/S0(n),SU(n + 1)/S(Un)xU(1)),
Sp(n+1)/Sp(n)xSp(1),F,/SO(9). First we will use known models of
symmetric spaces of rank 1 (for instance a sphere) and construct their
respective Loos quasigroups and with the help of our results we will
construct models of the symmetric loops.

(a) The Symmetric loop of the Space SO(n+1)/SO(n)

This symmetric space, the real elliptic space, is a sphere in an
euclidean space E 41 . But it was shown, that a sphere with the property

Yy = ?-_EXL?T" -y )

is a symmetric space (Loos 1969).

Let a unit e Q(.). If y = e, then
2(e,x)x

= = = = - = (8)
Sxe x.e = Rx = x.X X.X e Y1
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From here we have
Ry - ox - uly, + e) 9

U can be found by inserting (9) in to (8) and then normalizing (9). That is,
Z(e,yl + e)(yl + e)

rpte y +e)
and from linear independence of yl and e, we have :

..e:y]

2y v e) = (v te, y +e (10
which is fulfilled because (e,e) = (y] s yl) on a sphere.
Normalizing (9) we have
2
WYy * B ¥yorE) ® [ w,)
and by (10) we have

SR,
u = t Z(e! yl+e7

Basing our arguments on continuity we choose u > 0, and therefore

R™ly ) I (ry + )
. 2[(e, € + (e, v,]] |

Ifx = e, then
_ _ - 2(y,e)e _
Rt ® mrelpw glee” A (12)

By (2’), (11) and (12), we have

2(Sy,R” %)

R xR 1)

~1

xoy = R-Ix.Sy = R "™ x - Sy

After some calculations we have

X0y = Lz(y’e) (e,x) - (y,e)(e,e) - ()’.XJ(e,q)] -

(e,e)[(e,e) + (e,x)]

(ysx) + (y,e)
i l:fez.e) : (Z.%_‘Ie i
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This formula can be simplified if for our sphere (e,e) = 1.
= |2y,e)(e,x) + (y,e) - (y,x) | y,x) + (y,e)
e [ I CFS B A S B O A

(b) The Symmetric loop of the space SU(n + 1)/S(U (n)xU(1))

For this symmetric space, the complex hermitian elliptic space, we
can use the model of a sphere in the unitary space. But the group of
motions of this sphere is wider than necessary. Therefore in order to come
to the correct model, we have to regard the equivalence classes and not
the points of our sphere, as points of our model, (points x and y are

equivalent, xvy, if y = (,UJJ; where x = ox —vector, O-center of a sphere).

The set of these classes forms SU(n + 1)/S(U(n)xU(1)). If we denote the
points of our model by X,Y,E, then (7) can be rewritten as

20 ,X) X-Y
SXY - (X,X) (13)
This formula correctly defines S)—( if XeX, and if SYY =Y
then X = Y, (this is Cartan’s symmetry on SU(n + 1)/S(U(x)xU(1)))

Let xeX, yeY.(13) will be rewritten as :

* X7 - 209 g
{x, %]
where (x,y)—hermitian scalar product. Ify = ¢ then
I T i = _
X.e = ‘._('e_,‘x} X -e =Rx = By (14)
(x,x)
where |B| = 1. And from this we have R-I_V = u(By + e)

Using the same method as in (a), we have

1
B = —(E.:'...)i)_.... and 1 s[ ()’s)’) ]-2- ell\t'

[ (e,y) | 2[Te,y) 8* + (e,e)]
Replacing X, §, € by X,Y,E respectively we have these formulae on our

model.
S; = 2 (%og) ® - ?

IfX=¢ then g_ J
e

"

1

<
n
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Using our method, we have
{2] (E,X) | +(E,E)}(Y,E) (E,X) - |(E,X)|C(E,E)(Y,X0
(E,E) [(E,X)[{]|(E,x)] + (E,B)}

XoY

(Y,X) (X,E) + [(E,X)]|(Y,E)

5 E+ Y
(E,X) © + |(E,X)|(E,E)

(c) The Symmetric loop of the space Sp(n + 1)/Sp(n)xSp(1)

We can realize this symmetric space, the quaternion hermitian elliptic

space, on the unit sphere of the space K™*! which has (X,7) = ngl ¥ iy*i
1=]

as scalar product (where K is the quaternion algebra). As in (b) the group
of motions on the sphere, Sp(n) x Sp(1), is wider then necessary. There-
fore we use the same method as in (b) and regard the equivalence classes
as the points of our model. The set of these classes forms
Sp(n + 1) /Sp(n) x Sp(1).

After analogous calculations to those in (a) and (b) we have :
1

- - —_ =
q = {E,Z? , i _--_(y,y) o Zq
| (&,9) | 2[[Eemn] + (&,9]
where q — quaternion factor and|q|= 1. On our model, we have

XOY{{ZI(E,X)! + (LE)I(Y,E) (E,X) - [(E,X) | (E,B) (Y,X) :lx
(B,E) | (E,X) [{|(E,x)|+ (B,E)}

(Y,X) (X,E) + |(E,X)]|(Y,E) S—
[E,x)]% + |E,0](E,E)

(d) The symmetric loop of the space F,/S0(9)
Let us construct this space, the octave plane in the model of

Freudenthal (Freudenthal 1951), M+ 4. The points x,y,e, of (7) are replaced
by matrices %,§,€ respectively :

e o
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i 2 a~ A R o

sny = X o oy
X ~
o, ¥y)

It is easy to show, that S; is a Cartan’s symmetry.

Using the same method as in (a) we have :

1
A 5 2
L= " U’Y) and
2 (e,7) + (&,€)
5 o 2(7,8) (6,%) + (7.8)(6,8) - (v.e)(es®) | ;

e,0) [(6,8) + (1]
[G,;) Gl

(e,x) + (&,8)

4. The Geodesic Loops of the Symmetric space

The Geodesic loops of the symmetric space of an affine connection
were first constructed by Sabinin.

Let An be a smooth local space of an affine connection (we confine

ourselves within a normal neighbourhood of the point e). The geodesicy(t)
with a parameter t, joins the point e with the puint y uniquely (in”
a normal neighbourhood) and y (0) =e,y(1) = y. With this, the choice of

canonical parameter t is fixed, and ¥(0) = Tis the tangent vector to Y(t)

at the point e. The victor n is obtained by a parallel translation of T to
the point x along the geodesic arc a(t) which joins the point e with the
point x. Moreover, Yy (t) is the geodesic with the canonical parameter t and

.Yl (0) =x,1}l (0) ;ﬁ'?yl(l) = z_ Thus the geodesic Yl{t) with the

parameter t has been determined uniquely. Therefore, we have o x A + A
(locally) or a binary operation z = Xoy. n n n

From the property of continuity, wc have xoy -+ X when y = ¢ and xoe

f . ; :

agf x. Therefore we have a smooth binary operation. It is easy to see that
by z and x,y can be restored, that is, there exists a left division x/z = y.
Besides this e is a two-sided unit, eoy = yoe = y. Thus A (o) is a loop.



52 H. Karanda — The Geometry of Symmetric Loops
Theorem 6

The geodesic loop of a symmetric space is a symmetric loop,

Proof

Let d(p,e) = d(p,x) be a distance. According to invariance of parallel
translation by the action of symmetry, we have SpY('t] = ¥ (t)- This

is a well known fact from the fheory of E. Cartan. Therefore in our case

pr(-fj = n (whereS"is the transformation induced by Sponthetangent

space gX . T > ’I‘X}or g *

z = -n. The geodesic Yi(-t) which
)

hastangentvector -1 is unique. Butyl(t)r sp[-t)and y(-t) = Sey(t).

< = = ieS S y= {
Therefore SD ey(t) Yl(t) and spsey(l) 71(1) ie. P oy = X0y
We know that Spse = Lx,where Lx is left translation of the symmetric

space (ny = x*y). Therefore ny = Xoy = x*y and the symmetric loop

coincides with the geodesic loop.

The author wishes to thank Professor L. V. Sabinin of Friendship University, Moscow,
under whose guidance this article was written.
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