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Abstract 

Indoor Positioning Systems (IPS) plays crucial roles in indoor environment items positioning used 

in self-navigating robots and helping hands. To obtain position information, positioning algorithms 

employing Received Signal Strength Indicator (RSSI) are of great benefits since they reuse the 

existing radio wireless infrastructures for indoor positioning. However, the changes in the indoor 

environment decrease the overall accuracy of the developed indoor positioning algorithms. To 

cope with the challenge of environmental dependency in indoor positioning, a robust algorithm 

using radio signal identification was developed. The algorithm uses circle expansion and reduction 

mechanism to achieve better RSSI-Distance relationship. The distances from RSSI-Distance 

relationship are used in trilateration algorithm for position estimation. Experiments were 

performed to compare position accuracy of the basic RSSI-Based and the proposed algorithm. 

Simulation results showed that proposed algorithm showed less average positioning errors by 

11.2066% and 3.7279% at path loss coefficients of 3.11 and 3.21, respectively compared to the 

existing algorithms. Likewise, the proposed algorithm showed 2.7282% increase in positioning 

error when environment was changed from that of path loss coefficient 3.11 to 3.21. The existing 

basic algorithms show error fluctuation of 10% with the same environment changes.  

 

Keywords: Indoor Positioning System, RFID, RSSI, Trilateration. 

 

Introduction 

There is a long standing interest in 

ubiquitous positioning (the ability to determine 

a position in any environment) in both outdoors 

and indoors environment. Global Positioning 

System (GPS) is widely used in positioning 

and navigation systems due to its accuracy and 

ease of deployment. But the reliability and 

efficiency of GPS is limited to environments 

where line-of-sight signal paths can be 

achieved between transmitting satellite and 

target device (Tamas and Toth 2019). In 

environments where line-of-sight signal path 

cannot be established, GPS is prone to 

erroneous readings leading to inaccurate 

estimations. Hence, accurate positioning in 

such environments demands indoor positioning 

systems capable of combating the multipath 

effects to give accurate estimations (Maheepala 

et al. 2020). The desire has increased in recent 

years due to the introduction of Industry 4.0 

(Carrasco et al. 2018). Industry 4.0 represents 

the phenomenon of Smart Factories which 

include artificial intelligence, robotics, big 

data, machine-to-machine interfaces and the 

Internet of Things (IoT) technologies. These 

technologies have sparked many researchers to 

advance into the development of indoor 

positioning systems to accommodate location 

aware services (Maung and Zaw 2020). These 

systems find applications from asset tracking, 

intelligent traffic control, indoor item 
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positioning robots, self-navigating robots (cars) 

and coffee serving robots. Therefore, indoor 

positioning is fundamental for smart factories, 

smart warehouses and smart buildings. 

However, multipath propagation characteristics 

and interferences in the indoor environment 

cause high variability of Received Signal 

Strength (RSS), resulting in higher positioning 

errors (Maheepala et al. 2020). 

To meet the requirements for inside 

buildings and minimize the positioning errors, 

different radio technologies have been 

proposed by researchers. Infrared 

(Blankenbach et al. 2012), ultrasonic (Yayan et 

al. 2015), Bluetooth (Bekkelien 2012), WiFi 

(Yang and Shao 2015), magnetic field (Kim et 

al. 2017) and Radio Frequency Identification 

(RFID) (Bai et al. 2012,  Zhang et al. 2017) 

have been proposed and developed in order to 

provide positioning and navigation in indoor 

environment. 

Ultrasonic indoor positioning systems offer 

a number of advantages over other systems in 

terms of low system costs, reliability, 

scalability, high energy efficiency, and most 

importantly, zero leakage between rooms. It 

provides fine-grained location with centimeter 

level accuracy. Ultrasonic systems can also 

track multiple mobile nodes at one time, that is, 

high capacity of location system to serve many 

users simultaneously (Yayan et al. 2015). 

However, these systems rely on time of arrival 

(TOA) measurement of the signal, calculated 

using velocity of sound. But unlike radio 

frequency (RF) signals, velocity of sound in air 

does not remain constant and varies largely 

with environmental conditions, especially 

humidity and temperature. High humidity 

causes the signal to fade away quickly and 

travel short distance making the systems highly 

vulnerable to estimation errors (Carotenuto et 

al. 2018). 

Infrared (IR) indoor positioning systems 

require a direct line of sight between sender 

and receiver. The IR based indoor positioning 

systems have weak security and privacy 

protection settings. The IR signals are easily 

distorted with interference from fluorescent 

light and sunlight. Beside this, the IR based 

indoor system has expensive system hardware 

and maintenance costs (Blankenbach et al. 

2012). Li (2014) provided theoretical details 

for 3D indoor positioning using least square 

method for Bluetooth signals. However, the 

results from simulation and hardware 

experiments showed that the average of 

absolute precision of location estimation is at 

meter level (Chai et al. 2016). Authors in Kim 

et al. (2017) proposed an indoor positioning 

system with a particle filter system where the 

weights of particles are updated by multiple 

magnetic sensors and three magnetic field 

maps: a horizontal intensity map, a vertical 

intensity map, and a direction information map. 

The system integrates magnetic field map 

navigation and an encoder system. The results 

showed that the accuracy of the estimated 

position of the proposed system is at meter 

level. In Chao et al. (2016), the authors 

proposed a visual control interface for a mobile 

robot with a single camera to estimate the 3D 

position of a target. They used Wi-Fi to 

transmit the control signal and video from the 

mobile robot. However, the accuracy of the 

proposed 3D estimation method was in order of 

two meters (Dao et al. 2014, Chen et al. 2015).   

Radio frequency identification (RFID) is 

the key technology necessary to realize the 

Internet of Things (IoT) and cyber-physical 

systems (CPS), widely used in health monitors, 

smart homes, smart cities, vehicle location, 

construction, supply chain management and 

object tracking (Deng et al. 2016, Xu et al. 

2017). RFID positioning is based on Received 

Signal Strength Indicator (RSSI). RFID has the 

advantages of low cost, long life, low power 

consumption and easy deployment, which 

attracts many researchers to use it in indoor 

environments. Compared with ultrasonic, Wi-

Fi and Bluetooth, RFID used in indoor 

positioning is more energy efficient (Farahani 

2008, Maung and Zaw 2020). 

Larranaga et al. (2010) proposed a robust, 

flexible and easy to deploy indoor positioning 

algorithm based on RSSI values for positioning 

and calibration phase. To address the 
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challenging nature of the environment, the 

algorithm used matrices calibrations when the 

blind node is located. The environmental 

parameters are updated on every calibration 

phase taking account of the last position 

estimation. The authors managed to obtain an 

average error of 2.34 m, 1.74 m and 4.24 m on 

a big, small and corridor rooms, respectively. 

The total average position error for all of the 

rooms was 2.77 m. Despite the authors’ good 

positioning algorithm, it is clear that the 

method had a tradeoff on position accuracy. 

The authors in Zhang et al. (2012) 

presented a novel RSSI-based adaptive 

algorithm for wireless sensor networks (WSN). 

The algorithm works by separating the whole 

testing group into different pieces and 

assigning characteristic node in every region, 

one of the two models (empirical and 

theoretical models) is chosen after matching 

the error between the actual distance, the RSSI 

and the distance calculated from the two 

models by the characteristic node to minimize 

the positioning error. At any particular 

moment, the algorithm with less position error 

is used to present overall results. Since the 

indoor environments have infinity changes, this 

method will not give accurate results on 

unforeseen environment changes (Hausman 

and Januszkiewicz 2014, Ge et al. 2015, 

Kaluža et al. 2017). 

The author in Xu et al. (2013) presented the 

WSN localization algorithm based RSSI 

differential correlation which positions a 

correction node close to the blind nodes and 

applies the correction factor and difference 

coefficient to correct the distance measurement 

results. The algorithm was implemented in 100 

m by 100 m area and managed to achieve 

absolute error of 1.3 m with respect to chosen 

nine points in the area. The authors achieved 

accurate results on a large area but the overall 

accuracy of the algorithm heavily depends on 

the reading on the correction node. If the 

correction node fails to deliver accurate 

measurements due to change of environments 

on the area close to the correction node, the 

algorithm will accumulate more position errors 

(Huynh et al. 2014, Huang et al. 2015, 

Helander and Humpus 2015). 

The authors in Hussein et al. (2015) 

expressed the effects of physical barrier attack 

(presence of an obstacle to cause environment 

change) on mobile target through a distributed 

sensor network. The barrier confuses the 

localization process and adds localization error. 

The authors proposed an algorithm that uses 

two techniques of multiple frequencies and 

power levels identified with averaging the 

received power levels all over the transmitted 

frequencies in order to mitigate the shadowing 

effects in the wireless channel propagation. 

The author managed to obtain the minimum 

average position error of 3.2 m and 3.4 m for 

path loss coefficient equal to 3 and 4 using 

trilateration algorithm. 

The authors in Liu et al. (2016) proposed 

RFID based indoor positioning algorithm using 

reference tags to estimate the location 

according to the measured RSSI compared with 

the RSSI value recorded in the database. 

However, the multipath effects in the various 

indoor environments significantly affect the 

positioning accuracy and the overall accuracy 

of the algorithm (Li 2014, Leitinger et al. 2014, 

Lee et al. 2016, Kim et al. 2017). The authors 

in Xu et al. (2017) extended the work in Liu et 

al. (2016) and achieved estimation accuracy by 

10%. 

Tamas and Toth (2019) proposed a topology-

based application-specific classification 

evaluation method for symbolic indoor 

positioning. It used gravitational force-based 

approach defined in such a way that the 

classification error be proportional to the sizes 

of the rooms. Due to environment-specific 

limitation of this method, it is challenging to 

generalize for indoor environments which 

constantly change (Lu et al. 2010, Liu et al. 

2014, Liu et al. 2016). Authors in Sangthong et 

al. (2020) presented a new method to evaluate 

the WSN technology for the indoor localization 

using the weight range localizer (WRL) and 

relative span exponential weight range 

localizer (RS-WRL) based on RSSI to estimate 
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the position of target node. However, the 

average position error is 1.9 m. 

Different researchers have proposed different 

solutions to achieve higher position accuracy in 

indoor positioning. However, environment 

dependency is still a challenge. This is because 

the indoor environments have been proved to 

be challenging to model due to the nature and 

activities that define them which are constantly 

changing. The changes in indoor environment 

are inevitable which decreases the overall 

accuracy of the developed indoor positioning 

algorithms. To address the challenge, a robust 

indoor positioning algorithm that is 

environment independent is developed in this 

work. The algorithm uses trilateration 

algorithm with circles expansion and reduction 

method to achieve the best position estimates. 

The contributions include the ability of the 

proposed algorithm to re-iterate to the optimal 

intersection of the reference RFID tags where 

the RSSI is theoretically high, hence counter 

the environmental and multipath degradation to 

signal power. The developed algorithm opens 

up for further cutting-edge applications in 

indoor environment by applying the proposed 

methods to remove environment dependency. 

A comparison of existing RSSI-based indoor 

positioning algorithms is done to obtain the 

estimation of distance error performance 

capabilities. The distance error performance is 

assessed in terms of positioning accuracy in 

meters. These results are obtained using C++ 

simulation platform. 

 

Materials and Methods 

Trilateration algorithm      

Lateration is a positioning algorithm which 

computes coordinate position from the 

distances between the reference positions and 

targeted positions (Pu et al. 2011, Tsang et al. 

2015). Trilateration is a special kind of 

lateration which uses three reference nodes to 

calculate the position on the unknown node. 

Trilateration algorithm uses RSSI 

measurements to estimate the distance between 

the (targeted node) tag and (reference node) 

reader. The distances between reference 

locations and the target location can be 

considered as the radii of many circles with 

centers at every reference location. Hence, the 

target location is the intersection of all the 

sphere surfaces as shown in Figure 1 (Alarifi et 

al. 2016).  

In Figure 1, three reference nodes are 

randomly allocated. A target node is allowed to 

move around the reference nodes. The target 

node (T1) can be positioned using the 

coordinates of the reference nodes (R1, R2, and 

R3) and the distances (d1, d2, d3) between the 

target nodes and the reference node (Xu et al. 

2016).  
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Figure 1: Trilateration estimation (Pu et al. 2011). 

 

A simple solution can be achieved using 

Pythagoras theorem as 
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To use lateration techniques, at least three 

reference nodes are required. The assumption 

in traditional trilateration method is the 

intersection of all three or more circles (Pu et 

al. 2011, Huyn et al. 2014, Xu et al. 2016). The 

constantly changing indoor environment makes 

the edge to edge intersection of all reference 

circles challenging to achieve in practical 

conditions. The dependency of edge to edge 

intersection of all three or more circles 

deteriorates the estimation accuracy of 

trilateration techniques. This work develops the 

algorithm that is independent of the indoor 

environment and the edge to edge intersections 

of the reference nodes. 
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RSSI–Distance relationship 

In this work, the tags arrangement used in 

Javaid et al. (2015) was adopted. The indoor 

measurements area is 6 m x 4 m. Three 

reference tags are chosen from the total 

received number of reference tags in the 

environment as shown in Figure 2. Figure 2 

describes the arrangement of the reference tags 

Anchor Node 1 (Tag 1), Anchor Node 2 (Tag 

2) and Anchor Node 3 (Tag 3) positioned at 

points (1,3), (3,5) and (3,1), respectively, while 

the target Reader (T) can be positioned on 

different points on the 6 x 4 square meter 

indoor environment. The receiving reader 

receives the tag identification number (Tag ID) 

and measures its signal strength (RSSI). The 

reader then arranges RSSI values in descending 

order, starting with the largest RSSI value with 

their respective Tag IDs. The strongest signal 

gives better position estimation. The respective 

distances are calculated and sent to positioning 

algorithm.  

 
Figure 2: RFID Tags and readers arrangement in a 6 m x 4 m room (Javaid et al. 2015). 

 

From the arrangement in Figure 2, the 

position of an arbitrary target tag in the two 

dimensional (𝑥, 𝑦) space, could be summarized 

as shown in Figure 3. The target tag location 

can be estimated using Equation 1 as 
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Figure 3: Summary arrangement of target and reference RFID tags. 

 

Solving for x and y using Equations 5, 6 and 7, 

the values could be estimated as 
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Since the received signal power strength is 

affected by propagation loss and it is sensitive 

to channel interference, attenuation and 

reflection⁠, the reader is prone to erroneous 

readings, because the intersection point is 

affected by the disturbed RSSI values. The 

RSSI values circles will not intersect with a 

single common point (at edges).  Figure 4 

shows two circles A and B are intersecting at a 

point, but circle C is not. Likewise, Figure 5 

shows three circles that do not intersect at a 

single common point. The intersection of all 

the circles at the edges is the ideal condition 

which gives accurate estimate. This work 

estimates the best intersection point between 

the three circles on conditions that the edge to 

edge intersection is not available. This is 

achieved by expanding and reducing 

trilateration circle sizes assuming that the RSSI 

pattern distribution is the same/even on all 

regions. The expansion and reduction are based 

on a common factor. The aim of expanding and 

reducing circle sizes is to get the 

expansion/reduction factor in order to 
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understand the difference/magnitude of circles not intersecting.  

 
Figure 4: Intersection of two circles A and B. 

 

 

Figure 5: No common intersection point of the circles A, B and C 

 

Position algorithm 

The algorithm starts with the distance 

obtained from RSSI-distance relationship 

which is used to check if the three radii 

intersect. To check if the three circles intersect, 

normal circle properties are used as shown in 

Equation 10. If the distance obtained from 

RSSI measurements are d1, d2 and d3 for circle 

A, B and C, respectively, then the geometric 

rules in Figure 6 are used to check if there is 

intersection. If two circles intersect, then the 

distance between their center points, should be 

smaller than the sum of their respective radii. 
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Figure 6: The reduced intersection point of the circles A, B and C. 

 

If there is no intersection at single common 

point, the three radii are increased by factor 

“m”, then the intersection is checked again. 

The process is repeated until the intersection is 

found. After the intersection is found, the radii 

are then reduced by the factor “k” until there is 

no intersection. This process assures that the 

three circles intersect at closest to the edges to 

give proper position estimation. The value “m” 

signifies the required condition for the three 

circles to intersect and is presented as the 

difference between the distances from 

reference tag and the computed distances from 

RSSI as shown in Figure 6. If the circles 

perfectly intersect, the value “m” will be equal 

to zero. To get accurate results under different 

conditions, the value “m” has to be as close to 

zero as possible. The value “m” is always 

positive and is estimated as the minimum value 

between the three equations as shown in 

Equation 11, while the value of “k” is the 

minimum value after circle expansion and 

intersection. 
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11 

Figure 7 shows the developed algorithm which 

guarantees the best position estimation 

regardless of the environmental change.  
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Figure 7: Flowchart of the proposed positioning algorithm. 

 

Environmental modeling 

The theoretical propagation model was 

developed using CASTALIA platform. The 

widely used propagation model for RSSI 

ranging in indoor environments is called log-

normal propagation presented in Zou et al. 

(2013). The model has also been used to model 

wireless environments in Viswanathan (2020). 

The model is represented as 
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where  0dPL  is the path loss value for a 

reference distance 0d ,   is the path loss 

coefficient, and X  denotes a fading effect 

which is a Gaussian random variable with zero 
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mean and variance  , that models the random 

variation of the RSSI value. 0X  for LOS 

transmission. 

The wireless channel was established by 

implementing the average path loss model 

using NED language in CASTALIA 3.0. The 

average path loss model emulates the real 

physical indoor environment with line of sight. 

Radio module was designed by changing the 

radio module parameter files on Castalia 

framework. The module defines the receiver 

sensitivity, modulation scheme, transmitting 

power, power transmission matrices, sleep 

levels. The RFID network was accomplished 

by using NED file. The network consisted of 

three RFID active tags and one RFID reader. 

CASTALIA requires a routing protocol to 

emulate the network. The bypass routing was 

chosen for this case. The routing protocol 

broadcasts the packets to the receiving end 

which were enough to realize our application. 

Upon packet receiving, the reader/receiver 

measures RSSI values from the sender and uses 

the RSSI information to estimate its current 

position. The tags were fixed at coordinates 

(3,5), (1,3) and (3,1). The target tag was 

allowed to be positioned on different positions 

in 6 x 4 square meter area. 

The algorithm was then developed using 

C++ language. The algorithm takes current 

radio/network parameters (RSSI and Tags 

Positions) and uses them in position estimation 

and error calculation. The algorithm was 

implemented to fit the environment with path 

loss coefficient equal to 3.11. The 

environmental changes were then introduced to 

the environment using an initialization file. The 

algorithm that was implemented to fit the 

environment with path loss coefficient equals 

to 3.11 and then tested with path loss 

coefficient equal to 3.11 and 3.21. The results 

were then passed to Microsoft Excel for further 

data analysis. To measure robustness, position 

error, average position error and percentage 

change on average position error in given 

environment were calculated and studied. To 

show robustness, the developed robust 

algorithm has to show smaller average position 

error compared to the basic RSSI algorithm 

with respect to environmental changes. 

 

Results and Discussion 

To evaluate the performance of the 

proposed algorithm, position and average 

position error metrics were used. The position 

and average position error were measured as 
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where, APE is average position error, PE is 

position error, and n is number of position 

estimates. xi and yi are the actual values on the 

ith iteration, x and y are the estimated 

coordinates of the target node. 

 

Figures 8, 9, 10 and 11 summarize the 

results showing the position error and the 

relationship between the algorithm on two 

environments for the developed robust RSSI-

based algorithm for RFID indoor positioning 

systems and basic RSSI-based algorithm for 

indoor positioning systems (Javaid et al. 2015). 

Figure 8 shows position errors of a basic RSSI-

Based algorithm and the proposed robust RSSI-

based algorithm on the respective positions. 

The average position error of 1.1053 m was 

found on proposed algorithm while 1.2448 m 

was found on basic RSSI-based algorithm at 

path loss coefficient (PL) equal to 3.11. Then, 

environmental changes were introduced by 

changing the path loss coefficient to 3.21.  

Figure 9 shows the results obtained after the 

changes were introduced. The developed robust 

RSSI-based algorithm showed average position 

error of 1.1363 m while basic RSSI-based 

algorithm for RFID IPS showed the average 

position error of 1.1803 m. Figures 10 and 11 

show the relationship between position errors 

on given environmental change for basic RSSI 

based algorithm and proposed robust 

algorithm, respectively. The plots show how 

position error of the algorithms changes as the 

environments change. 
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Figure 8: Positioning error at path loss equal to 3.11. 

 

 
Figure 9: Positioning error at path loss equal to 3.21. 
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Figure 10: Position error relationship on basic RSSI-based algorithm in two different 

environments (PL = 3.11 and PL = 3.21. 

 

 

 
Figure 11: Position error relationship on proposed algorithm in two different 

environments. 
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By having less average error, Figure 8 

shows that the robust algorithm is 11.2066% 

more accurate than the basic RSSI-based 

position algorithm under the given specific 

environment. The changes (nature) in the 

indoor environment are inevitable. The changes 

in environment with path loss coefficient of 

3.21 show a position error of 1.1363 m for 

developed algorithm and 1.1803 m for the 

basic algorithm in Figure 9. This shows that the 

developed robust algorithm has 3.7279% less 

position error compared to the basic RSSI-

based algorithm for RFID IPS in position 

estimation on the given environment change. 

Figure 10 shows that position errors of the 

basic algorithm fluctuate as the environment 

changes. However, in Figure 11, the proposed 

algorithm position error remains almost 

constant as the environment changes. A robust 

algorithm has to maintain its error values even 

under unforeseen conditions. This has been 

shown in Figure 11, whereby the average 

increase in error was only 2.7282% as the 

environment changes from path loss of 3.11 to 

3.21.  The average fluctuation in error for basic 

algorithm is 10% as observed in Figure 10. The 

developed robust algorithm uses circles 

expansion and reduction process. The 

developed algorithm estimates the target 

position by estimating the best circle 

intersection point. The proposed algorithm 

performs better compared to the basic 

algorithm by understanding that, there is 

always a chance that the circles will not 

intersect at one common point. 

 

Conclusion 

The need of ubiquitous positioning is fueled 

with current developments on Artificial 

Intelligence and Internet of Things (IoT) 

technologies. RFID technology plays a 

fundamental infrastructure role to fuel these 

developments. As indoor environment proved 

to be tedious to model, various researchers 

have developed algorithms to fit only particular 

sets of environments. Applications like 

restaurant self-serving robots, self-moving 

objects, self-operating drones to tour guiding 

robots need strong algorithms that will make 

them robust to environmental changes. This 

work has introduced a robust RSSI-based 

algorithm for RFID indoor positioning systems. 

The algorithm presents remarkable 

improvements compared to the basic RSSI-

based indoor positioning algorithm. The 

algorithm showed robustness on environmental 

changes by showing only 2.7282% change on 

average positioning error when environmental 

change was introduced. The new algorithm 

adapts to different environments without the 

need of changing values to fit the 

environmental characteristics.  

Testing a robust RSSI algorithm for RFID 

indoor positioning in real environment is part 

of future work. This could be achieved by 

incorporating advanced statistics methods, 

machine learning approach together with 

Internet of Things (IoT) to improve the 

position estimation in the indoor environments. 

In theory, an ideal indoor positioning algorithm 

should decrease position error and increase 

robustness to several environments by making 

sure that the RSSI values chosen are the 

strongest and thus giving the best estimation. 
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