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Abstract 

Portfolio can be defined as a collection of investments. Portfolio optimization usually is about 

maximizing expected return and/or minimising risk of a portfolio. The mean-variance model 

makes simplifying assumptions to solve portfolio optimization problem. Presence of realistic 

constraints leads to a significant different and complex problem. Also, the optimal solution under 

realistic constraints cannot always be derived from the solution for the frictionless market. The 

heuristic algorithms are alternative approaches to solve the extended problem. In this research, a 

heuristic algorithm is presented and improved for higher efficiency and speed. It is a hill climbing 

algorithm to tackle the extended portfolio optimization problem. The improved algorithm is Hill 

Climbing Simple–with Reducing Thresh-hold Percentage, named HC-S-R. It is applied in standard 

portfolio optimization problem and benchmarked with the quadratic programing method and the 

Threshold Accepting algorithm, a well-known heuristic algorithm for portfolio optimization 

problem. The results are also compared with its original algorithm HC-S. HC-S-R proves to be a 

lot faster than HC-S and TA and more effective and efficient than TA. 

 

Keywords: Portfolio optimization, Hill climbing algorithm, Threshold percentage, Reducing 

sequence, Threshold Acceptance algorithm. 

 

Introduction 

Algorithms for portfolio optimization are 

used to guide an investor’s selection of 

financial assets. The aim is to achieve 

maximum return and minimum risk. The 

pioneering work of Markowitz (1952) 

introduced the mean–variance optimization as a 

model for the problem of asset allocation and 

diversification for maximum return with 

minimum risk. The allocation is made by 

considering the trade-off between risk, 

measured by the variance of the future asset 

returns, and return. To apply the Markowitz 

model, strong assumptions on market situations 

have to be made so as to solve the problem 

using standard methods like quadratic 

programming (Sharpe 2000). Introducing 

constraints of the realistic market like 

minimum and maximum holding sizes, the 

standard methods cannot be used to solve the 

complex problem.  

The complex portfolio optimization 

becomes difficult to solve because the 

objective functions have multiple local optima, 

have discontinuities or not well behaved 

(Dueck and Scheuer 1990, Gilli et al. 2011). 

On the other hand, to shape the model such that 

it can be solved by standard methods leads to 

giving up the relevant aspects of the original 

problem. Heuristics are able to compute 

solutions even to problems that are infeasible 

for standard methods like the extended 

portfolio optimization problem (Dueck and 

Winker 1992, Crama and Schyns 2003, 
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Maringer 2008). They have been shown to be 

capable of handling non-convex optimization 

problems with all kinds of constraints 

(Kirkpatrick et al. 1983, Gilli and Kellezi 2000, 

Gilli and Schumann 2012). Threshold 

Accepting algorithm is the main established 

heuristic algorithm in portfolio optimization 

(Dueck and Scheuer 1990, Winker and 

Maringer 2007, Gilli and Winker 2008, Gilli 

and Schumann 2010). The algorithm proposed 

below is benchmarked with Threshold 

Accepting algorithm under standard portfolio 

optimization problem. The objective of the 

research is to improve a hill climbing algorithm 

to a better efficiency. 

 

Objective function 

In the standard Markowitz model below, 

the goal is to maximize the expected return, R, 

while diminishing incurred risk, , (measured 

as standard deviation/variance) (Markowitz 

(1952)). Given return (Rp) of a portfolio and 

variance (2
p) of portfolio, the equation to 

maximize is  

Max  (.E(Rp)  – (1-).2
p) (1) 

Subject to 

 Expected return: 

        𝐸(𝑅p) = ∑ 𝑤𝑖𝑖 E(𝑅𝑖)  (2) 

 Portfolio return variance: 

          2
p=∑ ∑ 𝑤𝑖𝑤𝑗𝑖𝑗𝑗𝑖 

𝑖𝑗
        (3) 

      
𝑖𝑗

= 1  for i = j 

 Constraints: 

∑ 𝑤𝑖 = 1𝑖   (4) 

0 ≤ 𝑤𝑖 ≤  1  (5) 

where the expected return of each asset 

is 𝐸(𝑅𝑖), each asset variance is 𝑖, and each 

asset weight is 𝑤𝑖 . 

From the Equation (1), the trade-off 

between return (Rp) and risk (p) of portfolio is 

reflected. The efficient line/frontier is then 

identified by solving the above problem for 

different values of (0, 1): If  = 1 the model 

will search for the portfolio with highest 

possible return regardless of the variance. With 

 = 0, the minimum variance portfolio (MVP) 

will be identified. Higher values of   put more 

emphasis on portfolio’s expected return and 

less on its risk (Markowitz (1952). Equations 

(4) and (5) are the constraints on the weights 

that they must not exceed certain bounds. 

The most important constraints are budget 

and return constraints since they characterize 

the main part of the portfolio problem (Di 

Tollo and Roli 2008). The return constraint is 

when the investor requires a certain level of 

profit from his investment with minimum risk. 

The budget constraint is when the investor has 

to invest all the money/capital in the portfolio. 

However, return constraints can only be 

satisfied for a historical portfolio (Markowitz 

1952, Markowitz 1959, Korn 1997, Sharpe 

2000, Prigent 2007). 

 

Materials and Methods 

To design the method HC-S-R, we have to 

understand the design of HC-S which is used 

by HC-S-R. 

 

The Algorithm HC-S 

The hill-climbing algorithm is denoted as 

HC-S. Here HC stands for Hill Climbing, S 

stands for Simple search of neighbourhood, 

according to the neighbourhood functions 

defined below. In each step, it attempts to 

improve the solution by changing the relative 

weight of a single asset. ThP stands for 

Threshold Percentage. It refers to the size of a 

step in the proposed hill climbing method.  

 

Solution representation 

The solution is represented by a vector of 

numbers (yi, …,yn). The element in position i 

represents the relative weight of the capital 

invested in stock i. The vector of numbers 

(yi, …,yn) are normalized to make sure that the 

weights in all the assets add up to 1. The 

percentage/weight to be invested in stock i is 

xi, where:  xi = yi/ ∑ 𝑦𝑖
𝑛
𝑖=1 . One advantage of 

using this representation is that the vector, y, 

may take any number without violation of 

budget constraint that the weights add up to 

100%. 
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Neighbourhood definition for the Hill 

Climbing Algorithm HC-S 

HC-S algorithm is proposed for portfolio 

optimization. The current solution has two 

neighbours or possible candidate solutions. 

Elements of vector y in the range of 0 to 100 

are randomly generated. The number of 

elements of y is equal to the number of 

asset/stocks. The randomly picked position in y 

is denoted as pos. ThP is a small percentage, 

which we refer to as threshold percentage, by 

which elements of y will be varied to get the 

next neighbour. The neighbourhood definition 

is to pick just one position (pos) in the current 

solution, y, at random. After picking the 

random position in the current solution, one 

neighbour is obtained by adding ThP to that 

position and another is obtained by subtracting 

ThP on the same position. This gives two 

neighbours (two possible candidate solutions) 

to be compared with the current solution, at 

random. The first better candidate solution 

(neighbour) to be picked is taken to be the 

current solution out of the possible candidate 

solutions. If no better solution is found, another 

position, pos, in y is picked at random. The 

procedure is repeated for a pre-set number of 

iterations, or until local maximum. Given mean 

returns of all stocks in column vector denoted 

as retasset, given assets’ co-variances/ 

deviations matrix, denoted as dev, and given  

as the level of risk aversion; Figure 1 is the 

pseudo code for the procedure for HC-S 

proposed. 

 

Procedure HC-S (ThP, , retasset, dev) 

Randomly generate initial current solution y 

Begin 

Repeat 

Pick random position, (pos), in current solution y 

yplus = y     

yminus = y     

yplus(pos) =  yplus(pos)*(1 + ThP)  

yminus(pos) = yminus(pos)*(1 - ThP) 

y = move_to_neighbour(y, yplus, yminus, , 

retasset, dev)  

Until stopping criterion 

End 

 

 

 

 

 

% Generate yplus from current solution 

%Generate yminus from current solution 

% Get a neighbour of current solution % 

% Get second neighbour of current 

solution % 

% Pick a better neighbour solution % 

% Stopping criterion; no neighbour is 

better than current solution or pre-set 

maximum number of iterations reached% 

Figure 1: Procedure of HC-S. 

 

Figure 2 is a Pseudo code for a function for searching for better neighbouring solution. It is applied 

by the procedure of HC-S of Figure 1. 
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Function Move_to_neighbour (y, 

yplus, yminus, , retasset, dev) 

 

Begin 

 x𝑖=yi/ ∑ yi
n
i=1  

xplusi = yplusi/ ∑ yplus𝑖
𝑛
𝑖=1   

xminusi = yminusi/ ∑ yminusi
n
i=1   

xvalue = objectvalue (x, , retasset, 

dev,fitvalue)  

xplusvalue = objectvalue (xplus, , 

retasset, dev, fitvalue) 

xminusvalue = objectvalue (xminus, , 

retasset, dev, fitvalue)   

if  xplusvalue>xvalue then y=yplus 

end if 

if xminusvalue>xvalue then y=yminus 

end if 

return y 

End 

 

 

 

 

% Find weights, x, of all the assets n in portfolio% 

% Find weights, xplus, of all assets n % 

% Find weights, xminus, of all assets n% 

% Calculate objective value of portfolio x and 

denote as xvalue. % 

% Calculate objective value of portfolio xplus and 

denote as xplusvalue% 

%Calculate objective value of portfolio xminus and 

denote as xminusvalue. % 

 

% Return yplus if it is better than y. % 

 

% Return yminus if it is better than y. % 

 

Figure 2:  Function to search for better neighbouring solution. 

 

Following, Figure 3 is a Pseudo code for a 

function to calculate the objective value 

(Equation (1)). It is applied by the function for 

searching for better neighbouring solution of 

Figure 2. 

 

 

Function Objectvalue (x, , retasset, dev, 

fitvalue) 

Begin 

retpor t= scalar/dot product(retasset, x) 

  risk = x*dev*x’    

fitvalue = *retport – (1 - )*risk  

return fitvalue 

End 

 

 

 

%Calculate effective expected return of 

portfolio% 

% Calculate effective risk/variance of 

portfolio % 

%Calculate objective/objective value 

according to equation (1) above. % 

 

Figure 3: Function to calculate objective/fitness value. 

 

 

Design of the Hill Climbing Algorithm HC-

S-R 

Neighbourhood definition for the Hill 

Climbing Algorithm HC-S-R 

HC-S-R is like HC-S, except that the ThP is 

reduced over time. In other words, it searches 

the neighbourhood with finer and finer steps.  

Elements of vector y are randomly generated. 

The number of elements of y is equal to 

number of asset/stocks.  The randomly picked 

position in y is denoted as pos. ThP is a small 

percentage, which we refer to as threshold 

percentage, by which elements of y will be 

varied to get the next neighbour. 

Similar to HC-S, the neighbourhood 

definition of HC-S-R is to pick just one 

position (pos) in the current solution, y, at 

random. After picking the random position in 

the current solution, one neighbour is obtained 

by adding ThP to that position and another is 
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obtained by subtracting ThP on the same 

position. This gives two neighbours (two 

possible candidate solutions) to be compared 

with the current solution, at random. The first 

better candidate solution (neighbour) to be 

picked is taken to be the current solution out of 

the possible candidate solutions. If no better 

solution is found, another position, pos, in y is 

picked at random. The procedure is repeated 

for positions picked at random for a pre-set 

number of iterations, or until local maximum.  

In HC-S-R ThP is reduced over time. That 

is after a pre-set number of iterations or on 

reaching local maximum, ThP is repeatedly 

reduced to be half the previous value until it 

reaches the pre-set minimum ThP value, 

denoted as minThP. Given mean returns of all 

stocks in column vector denoted as retasset, 

given assets’ co-variances/deviations matrix, 

denoted as dev, and given  as the level of risk 

aversion; Fig 4 is the pseudo code for the 

procedure for algorithm HC- S-R proposed. 

 

 
Procedure HC-S-R (ThP, minThP, , retasset, 

dev) 
Randomly generate initial current solution y 

 set minThP 

Begin 
Do while ThP>minThP 

Repeat 

Pick random position, pos, in curent solution y 

yplus = y     

yminus = y      

yplus(pos) =  yplus(pos)*(1 + ThP)  

 yminus(pos) = yminus(pos)*(1 - ThP) 

y = move_to_neighbour (y, yplus, yminus, , 

retasset, dev)   

Until stopping criterion 

ThP=ThP/2 

End while 

End 

 

 

 

 

 

 

 

 

%Generate yplus from current solution 

%Generate yminus from current solution 

% Get a neighbour of current solution % 

%Get second neighbour of current 

solution 

% Pick a better neighbour solution % 

 

% Stopping criterion was: no neighbour 

is better than current solution or pre-set 

maximum number of iterations 

reached% 

Figure 4 Procedure of HC-S-R. 

 

The function Move_to_neighbour (y, yplus, 

yminus, , retasset, dev) is the same as that of 

HC-S above. 

The function Objectvalue (x, , retasset, dev) is 

also the same as that of HC-S above. 

 

Results  

Benchmarking HC-S, and HC-S-R using 

Threshold Accepting 

HC-S, and HC-S-R are tested on 100 assets 

portfolio. They are used to solve the Markowitz 

model, Equations (1), (2), and (3) under basic 

constraints (4) and (5). The results are 

compared with Threshold Accepting, which is 

a well-established Hill Climbing algorithm in 

portfolio selection and optimization. HC-S 

denotes Hill Climbing-Simple and HC-S-R: 

denotes HC-S with Reducing ThP. HC-S 

(9e+5) is HC-S with 9e+5 iterations, while 

HC-S-R (0.1, 0.01, 9e+5) is HC-S-R with 

starting ThP = 0.1, half ThP every 9e+5 

iterations, until ThP is below 0.01. The above 

number of iterations was given on every ThP, 

but the program was to stop on reaching a local 

optimum. 

Table 1 shows experimental results on the 

portfolio optimization on 100 stocks from 

DAX stock exchange; taken after 100 runs. The 
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results show the values of objective function, 

number of functional evaluations required to 

reach final objective value, and average time in 

seconds for one run to converge to local 

maximum (final solution). The best final 

objective value is the highest objective function 

value obtained in all the 100 runs. Final 

objective values obtained in each run were 

recorded and so below are the mean, standard 

deviation (STD) and worst of final objective 

values in all the 100 runs. The mean and STD 

of number of functional evaluations to reach 

final objective value, of the 100 runs, are also 

given. 

 

Table 1: Experimental results on portfolio optimization on 100 stocks, after 100 runs 

Algorithm  HC-S-R  

(0.1, 0.01, 9e+5) 
HC-S 

(9e+5) 
TA 

(9e+5) 

Best final objective value  0.000596 0.000596 0.000588 

Final objective value Mean 

STD 

Worst 

0.000594  

7.32e-6 

0.000572 

0.000594 

6.46e-6 

0.000559 

0.000563 

3.46e-5 

7.2563e-5 

No. of functional 

evaluations to final 

objective value 

Mean 

STD 

3.2e+4  

850 

2.7e+5 

6800 

3.0e+5  

1770 

Average time for 1 run (in 

sec.) 

 10.84 39.0 704.7 

STD = Standard deviation. 

 

Discussion 

The best final objective values are higher 

and similar in HC-S-R, and HC-S showing that 

the methods are more robust than Threshold 

Accepting as they better escape local optima. 

The effect of “R” in HC-S-R is seen in speed to 

reach final objective value. This means, 

repeatedly reducing ThP (instead of fixing 

ThP) made the algorithm more efficient. The 

mean of number of functional evaluations for 

HC-S-R is 3.2e4 while that of HC-S is 2.7e5. 

Average time to converge to final objective 

value for HC-S-R was 10.84 seconds while that 

of HC-S was 65 seconds. Of the algorithms, 

HC-S-R required less number of functional 

evaluations to final objective as the mean and 

STD of number of functional evaluations to 

final objective of HC-S-R (3.2e4, 850) was the 

least of all. The time elapsed for HC-S-R to 

finish the 1 run was the smallest, making it the 

fastest of the algorithms. So HC-S-R is more 

efficient than HC-S. 

The mean of final objective value of HC-S-

R (0.000594) is the same as that of HC-S 

(0.000594). This indicates that HC-S-R and 

HC-S are similar in effectiveness to find better 

solutions. 

The results on benchmarking HC-S-R and 

HC-S with TA are summarized in Table 2. 

 

 

Table 2: Summary on benchmarking the algorithms with TA 

Algorithm Effectiveness Efficiency 

TA 

 

Well established algorithm in portfolio 

optimization  

Efficient 

HC-S  More effective in finding better solution 

than TA  

More efficient and quite faster 

time wise than TA  

HC-S-R Similar with HC-S in effectiveness to 

find better solution.  

 

More efficient than HC-S 
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Conclusion 

HC-S-R and HC-S have been described and 

implemented in portfolio optimization 

problem. Results show that the technique of 

reducing ThP made HC-S-R more efficient 

than HC-S. Also the small standard deviations 

observed in final objective values show that 

HC-S, and HC-S-R find solutions more robust 

than Threshold Accepting. Results also 

demonstrate that HC-S-R and HC-S manage to 

find significantly better solutions than 

Threshold Accepting, an established algorithm 

for portfolio optimization. It is therefore 

recommended for techniques to be used to 

increase the efficiency of other algorithms. 

Also the hill climbing algorithms produced can 

be combined with other algorithms like 

evolutionary algorithms, to give hybrid 

algorithms for better performance. 
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