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Abstract 

The fast generation of images in Electrical Capacitance Tomography (ECT) systems is a 

desirable feature for many industrial applications. Non-iterative reconstruction algorithms 

which qualify for this requirement generate poor-quality images. The Linear Back Projection 

(LBP) is the fastest non-iterative reconstruction algorithm. The challenge is to find a technique 

to improve the quality of images from LBP at a low computational cost. Image enhancement 

techniques have been investigated for improving the quality of images reconstructed from the 

LBP algorithm. Simulated and measured static and dynamic flow data were used in the 

evaluation. The performance results were benchmarked with results from the Projected Land 

Weber (PLW) one of the accurate iterative reconstruction algorithms. The Gompertz 

enhancement algorithm was found to have 3.5 times more computation cost than the LBP 

reconstruction algorithm and the accuracy of the iterative PLW reconstruction algorithm. This 

is noteworthy since the algorithm does achieve a good balance between accuracy and speed. 

The fact that the accuracy gained satisfies the reservoir management standards in the 

multiphase hydrocarbon production sector is significant in this regard. 

 

Keywords: Electrical Capacitance tomography, Multiphase flow imaging, Maximum 

entropy thresholding, Gompertz distribution, Image enhancement. 

 

Introduction 

An ECT system is one of the image-

generating systems developed for industrial 

process control and monitoring (Beck et al. 

1997, Hampel et al. 2022). The images show 

the permittivity distribution of materials 

inside a vessel reconstructed from 

capacitance measurement (Warsito et al. 

2007). Electrical Capacitance Tomography 

(ECT) systems have been widely used in 

industrial processes such as fluidized beds 

(Wang and Yang 2021), particulate processes 

(Wang et al. 2014), and trickle beds (Wang et 

al. 2011). 

The quality of the images and the speed of 

image generation, limit the integration of 

ECT systems into online monitoring and 

control of industrial processes. The function 

relating permittivity distribution and 

measured capacitances is a non-linear 

problem and cannot be expressed analytically 

because the problem is ill-posed and ill-

conditioned (Zhang et al. 2018). The 

development of appropriate reconstruction 

algorithms for ECT systems has been 

thoroughly studied, with particular emphasis 

placed on the algorithms' accuracy, 

complexity, speed, usability (application), 

and robustness (Cui et al. 2016, Zheng and 

Peng 2020, Deabes and Bouazza 2021).  

Linear model-based (Yang et al. 1999, 

Guo et al. 2020) and nonlinear model-based 

(Deabes and Amin 2020, Zheng and Peng 

2020, Zhang and Zhang 2021) algorithms are 
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the two main categories of reconstruction 

algorithm advancements. Superior images are 

produced using nonlinear model-based 

reconstruction techniques, albeit at a speed 

cost (Zhang and Dai 2021). Both iterative and 

non-iterative reconstruction techniques are 

used in linear model-based reconstruction 

techniques. The reconstructed images 

produced by non-iterative approaches like 

LBP (Huang et al. 1992) are of poor quality 

but are generated fast. Image quality is 

improved by iterative reconstruction methods 

such as Projected Land Weber (PLW) (Zhang 

and Zhang 2021), but speed is sacrificed. For 

industrial applications to integrate ECT 

systems into real-time and online monitoring 

and control, reconstruction methods must be 

accurate and speedy. Only non-iterative 

linear model-based reconstruction algorithms 

can satisfy the speed requirements. Increasing 

image quality at the lowest possible 

computational cost is the challenge of non-

iterative reconstruction approaches. 

In image processing and image 

enhancement methods are widely used to 

enhance image quality (Qi et al. 2022). Image 

enhancement algorithms alter images to 

enhance their readability or informational 

value to viewers, or to serve as better input 

for other automated image processing 

methods. Enhancing LBP reconstructed 

image quality has been the subject of 

extensive investigations (Zheng and Peng 

2020). The applications of transform domain 

enhancement methods resulted in the Filtered 

LBP (FBP) algorithm, which is commonly 

used in linear imaging systems (Pan et al. 

2009, Pelt and Batenburg 2014). The filtering 

was possible through analytical 

reconstruction analysis which is not 

applicable to nonlinear ECT systems (Zeng 

2001). An attempt was made to apply the 

FBP to ECT systems but with more distorted 

images, relatively (Wahab et al. 2017). 

Spatial domain enhancement methods have 

been investigated in ECT systems. Filtering 

based on image statistical features (Xie et al. 

1992), thresholding based on image entropy 

(Mwambela et al. 1997), thresholding based 

on image statistical parameters (Xie et al. 

2004), edge detection (Pusppanathan et al. 

2014), data fitting (Nombo et al. 2014), data 

decomposition (Sun et al. 2015), and deep 

learning artificial intelligence (Zheng and 

Peng 2020) have been reported in the 

literature. The data fitting algorithm based on 

the Gompertz function has shown promising 

performance using simulated data (Nombo et 

al. 2015). Validation of the observed 

performance using online static and dynamic 

data became important. 

This article provides an enlarged 

assessment of the efficacy of the 

enhancement algorithm for the two-

component multiphase flow of oil and gas 

used in the hydrocarbon production sector. 

The study has employed more data, including 

single-frame simulated data, single-frame 

simulated data covering the whole component 

fraction range, and multi-frame measured 

data including both static and dynamic flows. 

In addition to accuracy, other performance 

metrics have been included, such as 

computational costs, usability, and robustness 

of the algorithms. In order to reduce the 

computation costs, the performance impact of 

Gompertz optimization parameters has been 

examined. Benchmarking of the obtained 

results was done by comparing them with 

those from an accurate iterative 

reconstruction algorithm–the Projected Land 

Weber (PLW) algorithm, and multiphase 

metering requirements in the hydrocarbon 

production sector. 

The Gompertz enhancement technique 

has significantly improved the overall 

performance of the LBP algorithm in 

providing quality images. The quality of the 

images in terms of accuracy is comparable to 

the iterative reconstruction algorithm, under 

tested conditions. The algorithm's 

computational cost is 3.5 times higher than 

those of the plain LBP. This is noteworthy 

since the PLW is 2160 times higher than 

plain LBP to get the same accuracy. In terms 

of speed and necessary accuracy, the 

algorithm does a decent job of balancing 

both. The obtained results are consistent for 

both simulated and measured data over the 

full component fraction range, hence robust. 

The robustness of the algorithm is important 

to achieve consistency and reliability in data 
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analysis and interpretation. The overall 

usability of the algorithm meets the 

requirements of reservoir management in the 

hydrocarbon industry.  

 

Materials and Methods 

Reconstruction algorithms 

The problem of nonlinear reconstruction 

in ECT systems has been extensively 

discussed by some authors (Yang and Peng 

2003, Yang and Peng 2013, Ye et al. 2015, 

Cui et al. 2016). Therefore, a brief 

presentation is provided. In the ECT system, 

the electric field distribution equation inside 

the circular pipe is given by 

𝛻. [𝜀(𝑥, 𝑦)𝛻𝜑(𝑥, 𝑦)] = 0 where 𝜑(𝑥, 𝑦) 

indicates the electric potential at (𝑥, 𝑦), and 

𝜀(𝑥, 𝑦) signifies the relative permittivity. The 

forward problem in ECT can be given by 

𝐶 = 𝑆𝐺 + 𝑒, where 𝑆, is the sensitivity 

distribution matrix formed by all the 

sensitivity maps corresponding to the 

different electrode pairs in the sensor, 𝐶 is the 

normalized capacitances vector, 𝐺 the 

permittivity distribution vector representing 

grey level values in the reconstructed image, 

and 𝑒 is the measurement noise, and error 

vector. The inverse problem can be given by 

𝐺 = 𝑆−1𝐶. In general, 𝑆−1 does not exist 

therefore other methods for the solution must 

be used (Yang and Peng 2003). 

 

Linear Back Projection (LBP) 

Consider 𝑆 to be a linear mapping from 𝐺 

to 𝐶, then 𝑆𝑇 can be considered to be related 

to mapping from 𝐶 to the 𝐺 giving an 

approximation solution given by Eqn. (1) 

(Xie et al. 1992). 

 𝐺 = 𝑆𝑇𝐺  (1) 

Projected Land Weber (PLW) 

Find 𝑆−1 by iteration method based on 

steepest gradient descent method and the 

algorithm is expressed in Eqn. (2), where β is 

a relaxation parameter such that 0.1 < β ≤ 2 

for faster convergence (Yang et al. 1999). 

 

 𝐺𝑘+1 = 𝑃[𝐺𝑘 − 𝛽𝑆𝑇(𝑆𝐺𝑘 − 𝐶)] (2) 

 𝑃 = 0 if 𝐺𝑘 < 0; 𝑃 = 𝐺𝑘  if 
0 ≤ 𝐺𝑘 ≤ 1; 𝑃 = 1 if 𝐺𝑘 > 1 

 

 

Image enhancement algorithms 

The following enhancement techniques 

have been applied to reconstructed images. 

 

Xie image enhancement 

The Xie enhancement algorithm is given by 

Eqn. (3), where 𝛾 =
1

𝑀
∑ 𝐶𝑚

𝑀
𝑚=1  is the 

average value of the normalized capacitance 

and 𝛼 =
1

𝑁
∑ 𝐺𝑛

𝑁
𝑛=1  is the average value of the 

reconstructed permittivity (Xie et al. 1992). 

 𝑔 = 0, 𝑖𝑓 𝐺𝑘 < (1 − 𝛾)𝛼 ; 
𝑔 = 𝐺𝑘, 𝑖𝑓  (1 − 𝛾)𝛼 ≤ 𝐺𝑘 <
1; 𝑔 = 1, 𝑓𝐺𝑘 ≥ 1  

 (3) 

 

Gompertz image enhancement 

In image processing, the Gompertz 

function can be defined by Eqn. (4), such that 

𝜃1, 𝜃2 > 0, where 𝜃1 and 𝜃2 are parameters 

to be estimated, 𝑔 is the new enhanced image 

and 𝐺𝑘 is the reconstructed image (Nombo et 

al. 2014).  

𝑔(𝐺𝑘: 𝜃1, 𝜃2) = 𝑒−𝜃1𝑒−𝜃2𝐺𝑘
 (4) 

 

Thresholding image enhancement 

Let 𝑛 be the total number of grey levels, 

𝑔 number of grey levels such that 𝑔 =
 0 …  𝑛, 𝑝(𝑔) the probability function of the 

tomogram, 𝑃(𝑔) = ∑ 𝑝(𝑖)
𝑔
𝑖=0  is the 

cumulative probability of the tomogram. 

Using entropic thresholding technique (Kapur 

et al. 1985), the entropy of a tomogram is 

defined as 𝐻(𝑔) = − ∑
𝑝(𝑔)

𝑃(𝑔)

𝑛
𝑔=0 𝑙𝑜𝑔

𝑝(𝑔)

𝑃(𝑔)
. 

There must exist thresholding grey level 𝑠 

which separate the multiphase flow into oil 

and gas such that 𝐻(𝑔) is a sum of 𝐻𝑂𝑖𝑙(𝑠) 

and 𝐻𝐺𝑎𝑠(𝑠) where, 

 
𝐻𝑂(𝑠) = − ∑

𝑝(𝑔)

𝑃(𝑔)

𝑠

𝑔=0

𝑙𝑜𝑔
𝑝(𝑔)

𝑃(𝑔)
 (5) 

 𝐻𝐺(𝑠)

= − ∑
𝑝(𝑔)

1 − 𝑃(𝑔)

𝑛

𝑔=𝑠+1

𝑙𝑜𝑔
𝑝(𝑔)

1 − 𝑃(𝑔)
 

(6) 

 𝑠 = arg 𝑚𝑎𝑥[𝐻𝑂(𝑠) + 𝐻𝐺(𝑠)] (7) 

 

Simulated and measured capacitance data 

was used in the analysis. An 8-electrode ECT 

sensor simulator was used to generate 

capacitance data for various two-component 
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flows of oil and gas patterns and regimes 

given reference patterns (Isaksen and 

Nordtvedt 1993). Measured capacitance data 

also referred to as online capacitance data 

was obtained from an ECT system. Measured 

static capacitances were obtained from 

phantoms (Figure 1) that were created based 

on reference patterns in the simulator. 

Measured dynamic capacitances were 

obtained from a multiphase oil and gas test 

rig (Mwambela and Johansen 2001, 

Mwambela 2009). In this rig the ECT sensor 

is placed at a vertical position, hence only 

concentric annular flows are generated. An 

ECT system used was developed at the 

University of Bergen (Hjertaker 1998). The 

implemented capacitance transducer is the 

Ratio Arm Bridge operating at 100 kHz 

excitation frequency, and capable of 

generating 100 images per second. The 

parallel capacitance normalization technique 

has been used for both simulated and 

measured capacitances (Baidillah and Takei 

2017).  

 

 
Figure 1: Samples of phantoms made of Perspex material used for measured static 

capacitances for gas-oil flows. (a) full cross-section, (b) small void fraction 

annular flow, (c) large void fraction annular flow, and (d) half-full void fraction 

stratified flow. 

 

To evaluate enhancement techniques, 

different enhancement algorithms have been 

implemented based on two reconstruction 

algorithms, LBP and PLW. Tables 1 and 2 

show different enhancement algorithms based 

on the LBP reconstruction algorithm. Similar 

enhancement algorithms based on the PWL 

reconstruction algorithm can be created by 

substituting PWL for LBP in Tables 1 and 2. 

 

 

Table 1: LBP reconstruction algorithms implementing Simple truncation (S), Xie (X) and 

Gompertz (G) data enhancement techniques followed by the Quantization process (Q) 

Algorithms Description 

LBP_SQ LBP algorithm with simple truncation enhancement  

LBP_XQ LBP algorithm with Xie enhancement  

LBP_GQ LBP algorithm with Gompertz enhancement  

 

Table 2: LBP reconstruction algorithms implementing Simple truncation (S), Xie (X), and 

Gompertz (G) data enhancement techniques followed by the Thresholding process (T) 

Algorithms Description 

LBP_ST Thresholded LBP algorithm with Simple enhancement 

LBP_XT Thresholded LBP algorithm with Xie enhancement 

LBP_GT Thresholded LBP algorithm with Gompertz enhancement 

 

The quality of the images enhanced by 

Gompertz algorithm is influenced by the 

values of optimization parameters  𝜃1 and  𝜃2. 

To evaluate the influence of Gompertz 

optimizing parameters, the Gompertz 

enhancement algorithm has been 

implemented in two forms: supervised and 

unsupervised. In the supervised 
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implementation, reference data is used to 

exhaustively obtain the best values of 

parameters 𝜃1 and 𝜃2. In the unsupervised 

implementation, optimal parameters are fixed 

and used in the measurement of dynamic 

capacitances or any situation without 

reference data (Table 3). 

 

Table 3: LBP reconstruction algorithms implementing the Supervise Gompertz (GS) and the 

Unsupervised Gompertz (GU) parameters estimation techniques  

Algorithms Description 

LBP_GS LBP algorithm with supervised Gompertz enhancement 

LBP_GU LBP algorithm with unsupervised Gompertz enhancement 

 

Data analysis was based on the 

algorithms’ performance under different set 

conditions. Concentric multiple annular 

flows, bubble, stratified and annular single 

frame flows, and annular simulations of all 

possible component volume fractions.  

Performance metrics included accuracy, 

speed, usability, and robustness of the 

enhancement algorithms. In this work, 

accuracy is the closeness of the measured 

value to a reference value. Spatial similarity 

distribution error (DE) and gas fraction 

volumetric estimates gas fraction error (GFE) 

were used to evaluate accuracy. Spatial 

similarity analysis compares the enhanced 

data pixel-by-pixel with the reference set 

Eqn. (8) where 𝑁 is the total number of pixels 

in an image, 𝐺𝑖
𝑅𝑒𝑓

 the 𝑖𝑡ℎ reference grey level 

value, and 𝐺𝑖
𝑅𝑒𝑐 the 𝑖𝑡ℎ reconstructed grey 

level value. 

 

 
𝐷𝐸 =

1

𝑁
∑ ‖𝐺𝑖

𝑅𝑒𝑓
− 𝐺𝑖

𝑅𝑒𝑐‖
𝑁

𝑖=1
 (8) 

The gas volume fraction error (GFE) Eqn. 

(9) quantifies the absolute difference between 

the measured gas volume fraction (𝛼𝑀) and 

the reference gas volume fraction (𝛼𝑅), 

where 𝛼 =
1

𝐴𝑝𝑖𝑝𝑒
∑ 𝐴𝑖𝐺𝑖

𝑁
𝑖=1 , 𝑁 is the total 

number of pixel elements, 𝐴𝑖 is the area of 

pixel element 𝑖, 𝐴𝑝𝑖𝑝𝑒 is the total area inside 

the pipe, 𝐺𝑖 is the grey level value for pixel 𝑖. 
 𝐺𝐹𝐸 = ‖𝛼𝑅 − 𝛼𝑀‖ (9) 

 

The speed, the time it takes to process a 

single frame data set, is used to access the 

computation cost of the algorithms. Since the 

LBP is the fastest algorithm, the speed of the 

enhancement algorithm is evaluated relative 

to the LBP speed.  

Usability in this context is the degree to 

which an algorithm can be used in multiphase 

flow measurement. The gas fraction 

volumetric estimation accuracy performance 

was benchmarked with metering 

requirements in the multiphase flow 

measurement in the hydrocarbon production 

industry (Table 4) (Thorn et al. 1997). 

Robustness in this context is the ability of 

the algorithm to consistently perform under 

different set conditions. The superiority of an 

enhancement algorithm over others should be 

consistent under set conditions.  

 

Table 4: Typical multiphase meter accuracy requirements in oil production over the full 

component fraction scale 

Oil industry application Desired volumetric accuracy 

Reservoir management ~  10% for all flow phases 

Fiscal-Custody transfer  2-5% for all flow phases 

Fiscal-Taxation/royalty   0.25% for oil 

 2% for water 

 1% for gas 
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Results  

The qualitative visual inspection accuracy 

evaluation results (Figure 2) show that the 

LBP-based Gompertz enhancement algorithm 

improves the quality of the reconstructed 

images better than the counterpart algorithms. 

The blurring effect seen in the quantized 

stages is eliminated by the thresholding 

enhancement algorithm. However, the 

effectiveness of enhancement algorithms 

depends on the quality of the reconstruction 

algorithm. The results also highlight the 

inherent LBP reconstruction algorithm's 

inability to resolve tiny features like bubble 

flows (Figure 2, rows 3 & 4). Visual 

inspection evaluation has the advantage of 

revealing the nature of distortions introduced 

in the enhancement process, which are 

undetectable by quantitative evaluation. 

 

SN Reference 

Image 

Quantized  Thresholding  

LBP_SQ LBP_XQ LBP_GQ LBP_ST LBP_XT LBP_GT 

1 

       
2 

       
3 

   
 

   

4 

       
5 

 
 

     

Figure 2: Qualitative visual inspection accuracy performance of enhancement algorithms for 

simulated sample data of annular, bubble, and stratified gas-oil flows. 

 

To quantify the observed qualitative 

visual inspection performance, quantitative 

performance evaluation results are presented 

(Table 5). Only a quantitative spatial 

similarity accuracy performance metric (DE) 

is used for brevity reasons. On average, the 

results confirm that the Gompertz 

enhancement algorithm is superior to its 

counterparts. 

 

Table 5: Quantitative spatial similarity accuracy DE performance of enhancement algorithms 

for simulated samples of annular, bubble, and stratified gas-oil flows 

Reference 

Image SN 

Quantized  Thresholding 

LBP_SQ LBP_XQ LBP_GQ LBP_ST LBP_XT LBP_GT 

1 0.1573 0.3823 0.0891 0.0889 0.3644 0.0889 

2 0.2153 0.2276 0.0679 0.0567 0.1733 0.0678 

3 0.2522 0.3079 0.0868 0.0700 0.2578 0.0867 

4 0.2917 0.3820 0.1335 0.0489 0.3511 0.1333 

5 0.1722 0.1611 0.0101 0.0511 0.1211 0.0100 

Average 0.2178 0.2922 0.0775 0.0631 0.2536 0.0773 
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Quantitative performance evaluation was 

extended to simulated data over the full 

component fraction range (Figure 3). Overall 

the Gompertz enhancement algorithm is more 

effective at enhancing the quality of the 

reconstructed images than its counterparts 

over the full component fraction range. Note 

the enhancement algorithms failures in the 

extreme ends of the full component fraction 

range. Large GFE in the lower extreme end 

reflects the LBP reconstruction algorithm 

limitation in resolving small features, 

particularly at the centre. The results 

highlight the centre tendency also referred to 

as the bottom of the valley behaviour for 

entropic thresholding enhancement algorithm 

(LBP_ST), where equal components 

distribution is favoured over the skewed 

distributions. 

 

 
Figure 3: Quantitative gas component fraction volumetric estimation accuracy GFE 

performance of enhancement algorithms for simulated samples of concentric annular 

flow data, over full gas volume fraction range. 

 

Similar evaluation was done based on 

measured static data. The static data contain 

ECT system noises in contrast to simulated 

data and has multiple frames of a static flow 

pattern. Qualitative visual inspection 

performance (Figure 4) show the Gompertz 

enhancement algorithm outperforms its 

counterparts. On average quantitative 

evaluation based on DE (Table 6) validates 

the observed qualitative performance of the 

enhancement algorithm. 

 

SN Reference 

Image 

Quantized  Thresholding 

LBP_SQ LBP_XQ LBP_GQ LBP_SQ LBP_XQ LBP_GQ 

1 

       

2 

       

3 

       

Figure 4: Qualitative visual inspection accuracy performance of enhancement algorithms for 

measured static (phantom) samples of annular and stratified gas-oil flows.  
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Table 6: Quantitative spatial similarity accuracy DE performance of the enhancement 

algorithms for sample static measured phantom data for annular and stratified gas-oil flows 

Reference 

Image SN 

Quantized  Thresholding 

LBP_SQ LBP_XQ LBP_GQ LBP_ST LBP_XT LBP_GT 

1 0.2263 0.2263 0.0026 0.0956 0.0956 0.0378 

2 0.1724 0.1656 0.0353 0.1889 0.1067 0.0667 

3 0.1686 0.1680 0.0214 0.0778 0.0878 0.0344 

Average 0.1891 0.1866 0.0198 0.1208 0.0967 0.0463 

 

Optimal Gompertz parameters were 

obtained by varying 𝜃1 from 100 to 300 at 

constant 𝜃2, and by varying 𝜃2 at constant 𝜃1. 

In the first case, overall quality increases due 

to the larger values of 𝜃1 (Figure 4). In the 

latter case, overall quality increases due to 

the smaller values of 𝜃2 (Figure 5).  

 

 
Figure 4: Comparisons of Gompertz unsupervised enhancement algorithms accuracy 

performance with fixed 𝜃2 = 14 and varying 𝜃1 (100, 200 and 300) over the full 

component fraction range of simulated concentric annular flows.  

 
Figure 5: Comparisons of Gompertz unsupervised enhancement algorithms accuracy 

performance with fixed 𝜃1 = 300 and varying 𝜃2 over the full component fraction 

range of simulated concentric annular flows.  

 

Fixed 𝜃1 and 𝜃2 values were utilised to 

evaluate the enhancement algorithm for 

measured dynamic capacitance data. Results 

show that on average Gompertz enhancement 

algorithm outperforms its counterparts 

(Figure 6). However, the GFE values are 

large relative to simulated data. The 

measured dynamic data contains both ECT 

system and test facility noises. Generating a 

constant flow pattern from the test rig was 

not practical; hence other undesirable non-

concentric annular flow patterns were also 

present during data acquisition. 
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Figure 6: Quantitative gas component volumetric estimation accuracy (GFE) performance of 

enhancement algorithms for thresholded measured dynamic concentric annular 

flows data over the full component fraction range. 

 

Figure 7 displays the usability evaluation 

findings of the Gompertz enhancement 

algorithm in relation to multiphase flows 

used in the hydrocarbon production industry. 

The algorithm's gas component volumetric 

estimate accuracy (GFE) performance 

satisfies the taxation condition, which is the 

strictest of the three requirements (Table 4). 

However, the algorithm satisfies the custody 

transfer condition when considering spatial 

similarity accuracy (DE) performance. The 

two performance metrics are different in that 

GFE is unconcerned with spatial 

dissimilarity, whereas DE finds it 

unacceptable. 

 
Figure 7: Quantitative accuracy performance using DE and GFE metrics of enhancement 

algorithms for simulated concentric annular flows over the full component fraction 

range.  

 

The computational cost evaluation of the 

enhancement algorithms is shown in Table 7. 

Static optimal Gompertz parameters have 

been used. The relative speed of the 

Gompertz enhancement algorithm is 3.5 

times that of the fastest LBP reconstruction, 

which is reasonable at the accuracy of 

iterative reconstruction algorithms such as 

PLW. This is significant as the fine balance 

between speed and accuracy is established. 

 

Table 7: Comparisons of the speed of enhancement algorithms per single frame 

Algorithm Time(s) Relative time 

LBP_SQ 0.0020 0.00 

LBP_XQ 0.0039 0.95 

LBP_GQ 0.0090 3.50 

PLW_SQ 4.3225 2160 
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PWL-based enhancement algorithms are 

used to benchmark the performance of LBP-

based enhancement algorithms. Figure 8 

displays the findings of the visual inspection 

examination. There is a relatively less 

blurring effect in PLW-generated images. 

However, the PLW-based enhancement 

algorithms introduce artefacts in images. 

Artefacts are undesirable pixel elements 

introduced in areas of the images where they 

were originally not present. This problem 

remains the same for all recommended 

convergence factors (Li and Yang 2008). The 

findings also demonstrate the strength of 

iterative algorithms in resolving small 

features relative to non-iterative algorithms 

(Figure 8, row 2).  
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Figure 8: Qualitative visual inspection accuracy performance comparing the performance of 

the LBP-based and PLW-based enhancement algorithms using simulated sample 

data of annular, bubble, and stratified gas-oil flows.  

 

Figure 9 shows benchmarking results of 

simulated data over the full component 

fraction range using both DE and GFE 

accuracy performance metrics with standard 

requirements in multiphase flow in the 

hydrocarbon industry. The LBP-based 

Gompertz enhancement algorithm is better 

than the PLW-based counterpart. Both 

enhancement algorithms meet the taxation 

condition over the full component fraction 

range using the GFE performance metric. 

However, they differ when using the DE 

performance metric.  
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Figure 9: Quantitative comparisons between LBP-based and PLW-based enhancement 

algorithms using averages of spatial similarity (DE) and gas component volumetric 

estimation (GFE) accuracy performances for simulated concentric annular flows 

over the full component fraction range.  

 

The benchmarking analysis was extended 

to measured dynamic capacitance data 

(Figure 10). The LBP-based Gompertz 

enhancement algorithm is still better than its 

counterparts. However, none of the two 

algorithms meet the requirements in 

multiphase flows used in the hydrocarbon 

production industry.  

 
Figure 10: Quantitative comparisons between LBP-based and PLW-based enhancement 

algorithms using gas component volumetric estimation (GFE) accuracy 

performance for measured dynamic concentric annular flows over the full 

component fraction range.  

 

Discussion 

This study's major goal was to assess how 

well the LBP-based enhancement algorithms 

performed in two-component multiphase 

flow applications for gas and oil. Improving 

the image quality at a reasonable computation 

cost was a desirable aspect of the assessment. 

Different data sets simulated and measured 

static and dynamic data were used in the 

assessment. Annular, stratified, and bubble 

flow regimes over the full component 

fraction range have been used. The evaluation 
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criteria have been accuracy, speed, usability, 

and robustness. The outcomes have been 

benchmarked with the known accurate but 

computationally intensive iterative PLW-

based enhancement algorithm. 

Outcomes from the qualitative visual 

inspection method (Figures 2, 4, and 8), 

revealed the nature of distortions introduced 

in the enhancement process. The blurring of 

sharp transitions and artefacts are some of the 

distortions observed (Figure 8). The success 

of enhancement algorithms depends on the 

reconstruction algorithm used, in this case, 

LBP or PLW. The LBP-based enhancement 

algorithms are poor in resolving small 

features relative to the PLW-based 

enhancement algorithm (Figure 2 rows 3). 

However, both have failed to resolve the 

smallest features (Figure 2 rows 4). It was 

unexpected that the PLW-based enhancement 

algorithms would introduce artefacts in the 

images, which would become more obvious 

when the images were thresholded. 

The quantitative accuracy performance 

metrics DE and GFE have been employed. 

The DE metric has a drawback in that it can 

only be applied to measured static or 

simulated data, as it needs reference data to 

function (Figure 4 and Tables 5 and 6). The 

fact that DE by design recognises spatial 

dissimilarity while GFE does not means the 

artefacts created by PLW-based algorithms 

will be recognised by DE but not by GFE. 

DE values will therefore always be greater 

than GFE values (Figures 7 and 9). The GFE 

metric has been deployed in assessing the full 

component fraction range for simulated and 

measured dynamic data (Figures 3 and 6, 

respectively) and benchmarking LBP-based 

over PLW-based enhance algorithms (Figure 

10).  It is a noteworthy accomplishment that 

the LBP-based Gompertz enhancement 

algorithm outperforms its competitors in 

terms of overall accuracy because the results 

are on par with those of PLW iterative 

reconstruction techniques. Note that in this 

work the LBP-based Gompertz was more 

accurate than PLW-based Gompertz 

enhancement algorithms. 

Despite its shortcomings, the LBP 

reconstruction algorithm is still used by 

researchers in part because of its speed. This 

is currently the most efficient reconstruction 

algorithm that is suitable for industrial 

applications. Its lack of accuracy is its 

fundamental issue; hence one of the research 

concerns has been how to make it more 

accurate. Researchers have placed a high 

priority on developing an algorithm that 

balances speed and accuracy well. Significant 

in this regard is the obtained speed of the 

Gompertz enhancement method, which is 3.5 

times the speed of LBP (Table 7) at the 

accuracy of the iterative reconstruction 

algorithm.  

The LBP-based Gompertz enhancement 

algorithm satisfies the taxation conditions 

when GFE is used and the custody transfer 

conditions when DE is employed, according 

to a usability test utilising simulated data over 

complete component fraction data (Figures 7 

and 9). The performance essentially satisfies 

the custody transfer criteria. However, on 

using online dynamic data the performance 

closely meets the reservoir management 

conditions (Figure 10) as previously 

explained. This is an area that needs further 

investigation. 

The analysis of the enhancement 

algorithms in this study has been done using 

a variety of test settings. In every situation, 

the Gompertz improvement algorithm has 

consistently outperformed its competitors. In 

this aspect, the algorithm is regarded as being 

robust or resilient. 

 

Conclusion 

In this article, an LBP-based enhancement 

algorithm for image quality improvement 

from ECT systems applicable to two-

component multi-phases has been presented. 

The algorithm has accuracy close to those 

obtained from iterative reconstruction such as 

PLW and at 3.5 times the speed of the LBP 

algorithm. This performance strikes a good 

balance between the required accuracy and 

speed of reconstruction for multiphase flows 

in the oil and gas industry. The preliminary 

observed performance suggests that the 

measurement system not only to be useful for 

reservoir management but also for custody 

transfer applications in the hydrocarbons 
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productions industry. More investigations are 

recommended to assess the dynamic online 

data taking advantages of advances in ECT 

system technologies. 
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