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Abstract 

Short-term energy load forecasting is a crucial task in the power smart grid, which enables the 

power utilities to understand the future energy demands and plans to attain the demand and 

supply equilibrium, thereby optimizing power deployment and reducing power losses. Several 

techniques have been implemented to enhance energy load forecasting. However, the nonlinear 

nature of the data collected in the smart grid makes it difficult to attain 100% energy load 

forecasting accuracy. For instance, the Deep Feedforward Neural Networks model based on 

Input Attention Mechanism and Hidden Connection Mechanism has a mean absolute 

percentage error of 3.17%; model based on Sequence to Sequence Recurrent Neural Network 

with Attention had a mean absolute percentage error of 2.7%. The model based on Deep 

Recurrent Neural Networks with Levenberg–Marquardt backpropagation algorithm had a mean 

absolute percentage error of 0.58; and Deep Feedforward Neural Network with sample weights 

model had 3.22 % as root mean squared error. To improve energy load forecasting accuracy, 

this work proposed a model based on Deep Recurrent Neural Networks and sample filtering, 

which provides an exhaustive elucidation for modelling a sophisticated stochastic relationship 

between the input and output features. Deep Recurrent Neural Networks have proven to be 

good at modelling the nonlinearities in data of different fields and are mostly used in energy 

load forecasting to reduce forecasting error and a high degree of overfitting. Sample filtering is 

achieved through the use of K-Means clustering which determines the number of clusters to be 

used in the model. Findings from the study showed that by employing Deep Recurrent Neural 

Networks and sample filtering, the short-term energy load forecasting accuracy is improved in 

reference to mean absolute percentage error and root mean squared error of 0.31% and 1.014, 

respectively. As a result of the reduction in error, the energy demand and supply chain 

equilibrium are enhanced, thereby optimizing power deployment and reducing power losses. 

 

Keywords: Machine learning, Neural networks, Sample filtering, Smart grid, Short-term 

energy forecasting. 

 

Introduction 

The availability of data and growing 

technology have aided in transforming the 

traditional electrical grid into a smart grid. 

The smart grid is composed of several 

elements, i.e., smart meters, measurement 

units, and sensors. These elements produce 

an enormous amount of data at a high 

velocity to support the smart grid. A power 

smart grid is an electrical grid that 

incorporates a diversity of operations, energy 

measures, and energy resources (Figure 1). It 

comprises energy generation, transmission 

and distribution, and consumption phases.  
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Figure 1: Energy smart grid overview (Mujeeb et al. 2018). 

 

Smart grid (SG) enhances the productivity 

and dependability of energy production, 

distribution, and utilisation (Mujeeb et al. 

2018). The power smart grid instigates a 

central role in the state-of-the-art energy 

infrastructure. The smart meters measure 

electricity utilisation at every minor interval 

and impart energy suppliers, ensuring the 

generation of an enormous quantity of data. 

Attributable to the hereness of these data, 

many innovative schemes are enforced, 

which include real-time pricing. 

By utilising data analytics tools, hidden 

patterns in the generated data can be 

revealed, which show the correlations 

between different features (Mujeeb et al. 

2018). Data analytics tools leverage neural 

network algorithms to extract prized 

information from the data (Marinakis 2020). 

The unveiled information can be used in the 

management of the generation and 

consumption of energy through Load 

Forecasting (LF). LF is a technique to predict 

future energy requirements to attain demand 

and supply equilibrium (Wei et al. 2019, 

Syed et al. 2020). LF plays a pivotal part in 

energy management as it facilitates 

generation, distribution, and energy 

consumption (Zhang et al. 2018). Both 

meteorological data and day type play an 

essential role in LF as they determine energy 

consumption (Cai et al. 2020). For instance, a 

day type can be used to determine the 

consumption of energy based on non-working 

and working days (Cai et al. 2020). LF is an 

integral decision-supporting tool that 

underpins proficient energy management in 

the smart grid (Syed et al. 2020). Accurate 

LF ensures the poise between generation and 

demand, refraining from the waste of 

resources and remodelling the stability of 

power systems.  

Power utility companies need accurate 

and reliable power LF to support the stability 

and safety of the power supply. The least 

progression in the accuracy of LF for the 

energy realm expedites big gleanings with 

considerable environmental and economic 

gains. Accurate LF is therefore required to 

enable the utilities to understand the future 

energy arduous and plan their infrastructures 

to meet the demands (Syed et al. 2020). 

However, the electricity load is nonlinear 

with a high level of volatility which makes it 

difficult to attain 100% energy load 

forecasting accuracy. Since the nonlinearity 

makes the power supply infrastructures to be 

very sensitive to severe weather-induced load 

variations. Nevertheless, the erratic nature of 

energy consumption give-rise-to compelling 

skepticism and decoherence to the power 

smart grid (Mohammad and Kim 2020). This 

may bring about an extensive strain on the 

power smart grid and has huge impacts on 

energy generation and distribution. Thus, 

accurate LF becomes a critical component of 
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smart grid for effective management and 

operations of power supply infrastructures in 

the microgrid. 

 

Related work 

According to Narayan and Hipel (2017) 

and Groß et al. (2021), entrenched on the 

time scale and their purposes, LF models are 

indexed into three clusters: 

(i) Short-term load forecast (STLF): Span 

of STLF ranges from some minutes to a 

week. STLF targets economic alacrity 

and excellent generation engagement, 

guaranteeing security assessment and 

real-time control. 

(ii) Medium-term load forecast (MTLF): 

Span of MTLF is from a week to a year. 

MTLF targets maintenance 

arrangements, designation of load 

dispatch, and price resolution to attain 

demand and supply equilibrium. 

(iii) Long-term load forecast (LTLF): Span 

of LTLF varies from a year and beyond. 

LTLF targets outlining system 

augmentation, which embraces 

electricity generation, transmission, and 

distribution.  

This work focuses on the STLF 

approaches as they are extremely important 

for the real-time affairs of power systems to 

avert the far-reaching consequences of power 

fizzles. STLF is imperative for the productive 

handling of power systems and acts as the 

foundation for formulating start-ups and 

shutdown schedules, which present a crucial 

part of the power system's automatic control 

(Zhang et al. 2020). The prediction process of 

STLF approaches are influenced by various 

factors including; (i) Time is a critical factor 

for STLF which includes time of day, the day 

of the week, holidays, and weekends, 

(ii)Weather factors, i.e., temperature, 

humidity, precipitation, etc., (iii) Size of the 

house, and (iv) Global factors such as 

diseases, etc. (Behnam et al. 2021).   

Besides, most of the existing LF 

techniques focused on time series and 

weather factors which are not limited to time 

series (Papadopoulos and Karakatsanis 2015), 

regression methods, and neural networks 

(Pramono et al. 2019), expert systems (Qiu et 

al. 2017), and support vector machines (Raza 

and Khosravi 2015).  Hui et al. (2017) 

proposed a deep neural network model which 

confined several hidden layers that extracted 

deep characteristics of data. In this model, a 

genetic algorithm was utilized in optimizing 

the weights and thresholds on the Deep 

Neural Networks (DNN). However, the 

learning algorithm of such a model is very 

slow and computationally expensive 

especially with nonlinear data and large 

datasets. The training rate could be 

accelerated through the use of advanced 

learning algorithms such as Deep Recurrent 

Neural Network (DRNN) which could 

eventually reduce the computational cost 

(Zhang et al. 2019).  

Zhang et al. (2020) proposed a Recurrent 

Neural Network (RNN)-based LF model to 

improve accuracy. The model employed the 

Input Attention Mechanism (IAM) and 

Hidden Connection Mechanism (HCM) with 

287.51 as Root Mean Squared Error (RMSE) 

Megawatt, 3.17 Mean Absolute Percentage 

Error (MAPE) (%), and 23.18 as convergent 

time(s). HCM improved converging speed 

through the use of residual connections which 

further helped to improve the model’s 

efficiency. However, the performance of the 

model was low since training samples were 

not selected based on the similarity with the 

forecast day, sample filtering could have 

further improved the training results.   

Xu et al. (2020) proposed a STLF model 

established on an ensemble residual network 

with MAPE (%) [2.705, 4.116, 5.599, 6.774] 

with prediction length (time steps) of N = 

[12, 48, 120, 288], respectively. The 

proposed model was built on a two-stage 

network structure. The first network stage 

was made up of entirely connected layers of 

which its exploratory results were fed to the 

second stage. In the second stage, a modified 

residual network did the final predictions. In 

this model, learning rate decay was utilized to 

enhance the accuracy of the proposed model. 

However, the model did not perform well in a 

longer input sequence since only electricity 

load and temperature were considered as 

input features of the model. More factors 
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should be considered to improve the accuracy 

of the model.  

Even though various ML models have 

been introduced for STLF in recent years, no 

model has attained 100% prediction 

accuracy; thus, the LF models still need to be 

improved. Moreover, this work proposes a 

STLF model with sample filtering to improve 

load forecasting accuracy through the use of 

advanced learning algorithms mainly Deep 

Recurrent Neural Network (DRNN) and 

sample filtering. The DRNN has a better 

learning rate especially in handling nonlinear 

data due its capacity in estimating 

anonymous dynamics of nonlinear systems 

compared to traditional DNN (Han et al. 

2015). Sample filtering enhances training 

ability by removing the power load stochastic 

noise in power load data and eventually 

ensuring samples having a significant degree 

of affinity to the prediction day feature are 

used in training (Huang et al. 2017). 

 

 

 

Materials and Methods 

Experimentation 

The research adopts an experimental 

design. The core focus of the experimentation 

was to obtain the MAPE of the proposed 

model, referred to as Model 1, and compare it 

with the other models in the study, which are: 

the Deep Feedforward Neural Network 

(DFNN) model based on the Input Attention 

Mechanism (IAM) and Hidden Connection 

Mechanism (HCM), referred to as Model 2; 

model based on Sequence to Sequence 

Recurrent Neural Network (S2S RNN) with 

Attention referred to as Model 3; DFNN with 

sample weights model referred to as Model 4 

and DRNN with Levenberg–Marquardt (LM) 

backpropagation algorithm designated as 

Model 5. The study's first phase involved 

acquiring and pre-processing raw data 

(Figure 2). It further involved the 

identification of features to be used in the 

model. The second phase was aimed at 

designing and implementing the proposed 

model. Lastly, the proposed model was 

evaluated through MAPE and RMSE. 

 

 

Figure 2: Research design. 
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Data acquisition and pre-processing 

The work utilised the London smart meter 

dataset, as it is readily available for research 

objectives on Kaggle.com. It is a restructured 

edition of the London Energy dataset, which 

accommodates 5,567 London households’ 

samples of the energy consumption readings 

that participated in the UK Power Networks 

led Low Carbon London project between 

November 2011 and February 2014. 

Considering that the smart meters were 

progressively rolled out in this project, the 

number of households whereupon the data 

were recorded differed for different days. To 

avert erroneous analysis, this work has 

considered the average day-level energy 

usage per household to standardise data. 

Also, considering the weather data as an 

integral factor for energy consumption, the 

daily weather data was acquired from the 

DarkSky API. UK holiday dataset was also 

utilised, considering the relevance of holiday 

features in energy consumption. Exploratory 

Data Analysis (EDA) and feature engineering 

were performed on weather data to identify 

the relevant features for developing the STLF 

model based on DRNN and sample filtering. 

During the pre-processing stage, data 

cleaning, followed by imputation techniques 

to curate the dataset and fill in missing 

values. Standardization was applied to the 

datasets to deal with numerical dissimilarities 

for feature variables such as wind speed, 

temperature, and load. Standardisation was 

achieved by transforming the feature values 

to have zero mean and unit-variance through 

equation (1). 

𝑥˜ =
𝑥−𝜇

𝜎
   (1) 

 

Where: x denotes the authentic feature vector, 

µ represents the mean of the respective 

feature vector, σ is the standard deviation for 

the feature vector, and 𝑥˜ denotes the 

normalised feature vector. As the training and 

forecast day samples are standardized, 

denormalization was performed after 

consumption data output through the 

denormalisation equation shown in equation 

(2).  

𝑥 = 𝑥∗𝜎 + 𝜇 . (2) 

 

Model fitting  

The 70:30 training/test split ratio was 

used. The mode fitting of the DRNN 

involved repeatedly adjusting the weights and 

biases to minimise the value of the loss 

function (Figure 3). The number of input 

variables determines the number of units in 

the input layer of the model whose output 

regulates the number of output layer units. 

The learning algorithm is pivotal in 

establishing the weight values to yield the 

most favourable prediction results. Each unit 

in the network is defined by its weight, bias, 

and activation function, which performs the 

nonlinear transformations. Once the hidden 

layers complete the processing, the final 

output is sent to the output layer. In a neural 

network, a technique known as 

backpropagation is utilised to reduce the loss 

function value. This is achieved by updating 

the weights and biases of the units based on 

the prediction error. Once the training process 

is complete, the best-fit weight and biases are 

utilised in the predictions.  
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Figure 3: Deep recurrent neural network.  

 

Model optimisation  

As pointed out, the neural network was 

trained by iteratively adjusting the weights 

and biases to reduce the loss function through 

the learning algorithm. The loss function 

adopted in this work is the mean squared 

error presented in equation (3). Furthermore, 

techniques such as early stopping and 

dropout were implemented to reduce the 

overfitting of the model, thereby increasing 

its efficiency.          

𝐿0 =
1

2𝑚
∑  𝑚 ∥ �̂� − 𝑦 ∥2 (3) 

Where: m denotes the number of samples, ŷ 

represents the DRNN output value, and y 

denotes the actual sample load. A 

regularisation strategy is introduced to avert 

the DRNN overfitting, and the loss function 

L is then transformed, as shown in equation 

(4).       

 

𝐿 =
1

2𝑚
∑  𝑚 (∥ �̂� − 𝑦 ∥2+ 𝜆 ∥ 𝑤 ∥2)  (4) 

Where: λ denotes the regularisation 

coefficient, and w represents the weight 

coefficient. 

The training process utilised the learning 

rate decay and the Root Mean Square 

Propagation (RMSProp). The learning rate 

decay technique prevented the algorithm 

from oscillating back and forth, thereby 

reducing the learning rate. The RMSProp 

enabled the adaptive updating of the 

parameters by keeping the moving average of 

the square gradient constant. An activation 

function of the neural network serves as a 

decisive guideline to transfer weighted inputs 

to engender the network outputs. The 

stochastic activation function enables neural 

networks to implement sophisticated 

computations. Rectified Linear Activation 

Function (ReLU) shown in equation (5) is the 

extensively utilised activation function in 

DNN, which was used in this work. ReLU is 

a linear function that returns a value of zero if 
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the input is negative and returns the input 

value for each positive input. In doing so, the 

vanishing gradient problem is averted. 

f(x) = max(0, x) (5)  

Where: x denotes the neuron input. 

 

Model evaluation 

This study utilised experiments for an 

empirical evaluation of the performance of 

the proposed model. The core focus of the 

experimentation was to obtain the MAPE 

metric and RMSE of the proposed model, 

referred to as Model 1, and compare it with 

the four other models in the study, which are: 

the Deep Feedforward Neural Network 

(DFNN) model based on the Input Attention 

Mechanism (IAM) and Hidden Connection 

Mechanism (HCM), referred to as Model 2; 

model based on Sequence to Sequence 

Recurrent Neural Network (S2S RNN) with 

Attention referred to as Model 3; DFNN with 

sample weights model referred to as Model 4 

and DRNN with Levenberg–Marquardt (LM) 

backpropagation algorithm designated as 

Model 5. MAPE is the average of the 

absolute percentage errors of forecasts.   

The contrast between the true and 

forecasted values is regarded as a forecasting 

error. RMSE presents the error in terms of 

percentages enabling a more straightforward 

interpretation. The complication of positive 

and negative error cancellation is eliminated 

as only absolute percentage errors are 

considered. Notably, forecasting accuracy 

increases with the reduction in MAPE values. 

MAPE of the proposed model was evaluated 

against Model 2, Model 3, and Model 5. 

RMSE is the square root of Mean Square 

Error and was employed in evaluating the 

recommended model to Model 4. 

 

Results and Discussion 

Selected features for the proposed short 

term load forecasting model 

Features were selected based on their 

impacts in the consumption of electric power. 

Table 1 shows the correlations between 

weather variables and energy consumption. 

Pressure and moon phase have minimal 

correlations with energy consumption, hence 

removed from the final weather dataset. 

Weather factors such as temperature, 

humidity, pressure, and wind speed are 

typically among the most significant features 

in setting the STLF. A summer heatwave will 

spur consumers to run their air conditioners 

more and drive up the power demands. 

Similarly, a period of extreme cold in the 

winter will prompt consumers’ heating 

equipment to run more frequently. This 

includes equipment such as electric heat 

pumps and blowers that circulate warm air 

throughout homes and businesses. Moderate 

weather in the spring and fall, on the other 

hand, tends to minimize the uses of such 

equipment and reduces the power demands. 

Considering the effects of non-working-

day or working-day on energy consumption, 

the holiday indicator was also added to the 

final dataset. On weekdays, electricity 

consumption is high while on Saturday and 

Sunday electricity consumption is low, and 

similarly on other social holidays. Based on 

these observations, the “Holiday Indicator” 

was added to draw this effect. Since the 

accuracy of the model is correlated to the 

affinity between the training samples and the 

prediction day (Cai et al. 2020), a new feature 

called energy cluster was also created from 

the average energy consumption. The new 

feature was used in the filtering of the sample 

data based on their similarity by creating 

clusters using K-Means clustering. Finally, 

Table 2 summarises the selected features for 

the proposed model; meteorological data 

which included the maximum temperature of 

the day, average wind speed of the day, the 

average pressure of the day, average humidity 

of the day, dew point, cloud cover, weather 

cluster, holiday indicator, energy cluster and 

average load of the preceding day. These 

features have significant influence on short-

term loads which were taken as input features 

that trained the proposed model to predict the 

average load value of the day.  
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Table 1: Weather data 

 

 
Avg energy Max temp Dew point Cloud cover 

Wind 

speed 
Pressure Visibility Humidity Uv index 

Moon 

phase 

Avg energy 1.000000 -0.535188 -0.464499 0.153440 0.105354 -0.064016 -0.150911 0.253010 -0.467917 0.012307 

Max temp -0.535188 1.000000 0.863306 -0.346295 -0.138677 0.098138 0.269981 -0.406919 0.690925 -0.010147 

Dew point -0.464499 0.863306 1.000000 -0.032393 -0.076935 -0.049710 0.048479 0.058871 0.478066 -0.017442 

Cloud cover 0.153440 -0.346295 -0.032393 1.000000 0.177538 -0.093291 -0.329287 0.489087 -0.260507 -0.061224 

Wind speed 0.105354 -0.138677 -0.076935 0.177538 1.000000 -0.308825 0.286008 -0.035645 -0.127803 0.005563 

Pressure -0.064016 0.098138 -0.049710 -0.093291 -0.308825 1.000000 -0.006675 -0.260783 0.067579 0.009226 

Visibility -0.150911 0.269981 0.048479 -0.329287 0.286008 -0.006675 1.000000 -0.585029 0.256727 0.070642 

Humidity 0.253010 -0.406919 0.058871 0.489087 -0.035645 -0.260783 -0.585029 1.000000 -0.540002 -0.009321 

Uv index -0.467917 0.690925 0.478066 -0.260507 -0.127803 0.067579 0.256727 -0.540002 1.000000 -0.009252 

Moon phase 0.012307 -0.010147 -0.017442 -0.061224 0.005563 0.009226 0.070642 -0.009321 -0.009252 1.000000 

 

Table 2:  Summary of selected features of proposed model 

Input features 1. Maximum temperature of the day 

2. Average wind speed of the day 

3. Average pressure of the day 

4. Average humidity of the day 

5. Dew point 

6. Cloud cover 

7. Weather cluster 

8. Holiday indicator 

9. Energy cluster 

10. Average load value of the preceding day 

Output feature 1. Average Load value of the day 
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Performance of the proposed short term 

load forecasting model 

  The performance of the proposed model 

was further compared with four other models 

as shown in Table 3, the proposed model 

(Model 1) had a MAPE (%) of 0.31 and 

RMSE of 1.014. Whereas the DFNN model 

based on Input Attention Mechanism (IAM) 

and Hidden Connection Mechanism (HCM), 

Model 2 has a MAPE (%) of 3.17; model 

based on Sequence-to-Sequence Recurrent 

Neural Network (S2S RNN) with Attention, 

Model 3 had a MAPE (%) of 2.7 and DFNN 

with sample weights model, Model 4, had 

3.22 as RMSE. Model 5, based on DRNN 

with Levenberg–Marquardt (LM) 

backpropagation algorithm, had a MAPE of 

0.58. The proposed model has significantly 

outperformed other models with better 

MAPE and RMSE values due to the filtering 

technique employed and better learning rate 

of a deep recurrent neural network as 

presented in Table 3. The accuracy of the 

STLF model is improved and eventually 

promotes the energy demand and supply 

equilibrium. With better prediction accuracy, 

the power utilities can make improved load 

forecasting predictions thereby minimizing 

the error between the actual supply and 

forecasted supply.  

 

Table 3: Evaluation results 

 Model 1 Model 2 Model 3 Model 4 Model 5 

MAPE 0.0031 0.0317 0.027 - 0.058 

MAPE (%) 0.31 3.17 2.7 - - 

RMSE 1.014 - - 3.22 - 

 

Conclusion 

The study clearly improved the accuracy 

of the proposed short-term energy load 

forecasting model by incorporating Deep 

Recurrent Neural Networks (DRNN) and 

sample filtering which provided an 

exhaustive elucidation for modelling a 

sophisticated stochastic relationship between 

the input and output features. Samples were 

filtered and clustered  into several groups 

according to their degree of similarity and 

then the model was trained based on those 

samples and evaluated against other models 

understudy, namely the Deep Feedforward 

Neural Network (DFNN) model based on the 

Input Attention Mechanism (IAM) and 

Hidden Connection Mechanism (HCM); 

model based on Sequence-to-Sequence 

Recurrent Neural Network (S2S RNN) with 

Attention; model based on DFNN with 

sample weights and a model based on DRNN 

with Levenberg-Marquardt (LM) 

backpropagation algorithm. The proposed 

model has significantly outperformed other 

models with mean absolute percentage error 

and root mean squared error of 0.31% and 

1.014, respectively. With such reduction in 

error, the energy demand and supply chain 

equilibrium are enhanced, thereby optimizing 

power deployment and reducing power 

losses. The proposed model could enhance 

the efficient energy management which leads 

to big savings with great economic and 

environmental benefits. 
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