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Abstract
In this research, we proposed the fusing of Elzaki transform and projected differential
transform (PDTM) to obtain an analytical or approximate solution of the Rosenau-Hyman and
Korteweg-de Vries equations which respectively govern pattern formation in liquid drops and
model of waves on shallow water surfaces. The results obtained presented in tables and graphs
showed better efficiency, accuracy, and convergence of the method to handle Rosenau-Hyman

and Korteweg-de Vries equations when compared to other methods in the literature.

Keywords: Rosenau-Hyman Equation;

Korteweg-de Vries equation;

Elzaki Projected

differential transform method; Semi-analytic approach.

Introduction

For a long time, differential equations
have played fundamental roles in all aspects
of applied mathematics, and their relevance
has grown with the introduction of the
computer (Agbomola and Loyinmi 2022,
Akinfe and Loyinmi 2022). Hence, the
examination and analysis of differential
equations cruising in applications resulted in
many complex mathematical difficulties
(Elzaki 2011, Lawal et al. 2017, Loyinmi et
al. 2017a).

Due to the complexity of nature,
practically all processes and phenomena in

science and engineering are intrinsically
nonlinear, and they are represented by
nonlinear partial differential  equations

because there are several conditions and
factors to consider in the system (Loyinmi
and Akinfe 2020a, Akinfe and Loyinmi 2021,
Erinle-lbrahim et al. 2021). For this reason,
nonlinear partial differential equations have
piqued the interest of many mathematicians
and applied scientists (Lawal and Loyinmi
2011a, b, Akinfe and Loyinmi 2020, Lawal

and Loyinmi 2019, Akinfe and Loyinmi
2021). Nonlinear partial differential equations
are frequently used to describe a wide range
of processes and real-world phenomena, such
as genetic configurations, mutation, and
variations in Fisher's equation, magnetic flux,
intensity, and quantum field theory in sine
Gordon equation, shallow water waves and
patterns in  Korteweg-De-Vries (KdV)
equation, advection-diffusion mechanisms
and dynamics in Burgers-equation, Huxley's
and so on (Loyinmi and Lawal 2011,
Loyinmi and Oredein 2011, Lawal et al.
2017, Loyinmi and Akinfe 2020b, Babajide
and Oluwatobi 2021).

Several studies have been carried out on
differential equations (linear and nonlinear)
over the years (Miura et al. 1968, Jang 2010,
Dehghan et al. 2012, Loyinmi et al. 2017b,
Lawal et al. 2018, Lawal et al. 2019a,
Loyinmi and Akinfe 2020, Morenikeji et al.
2021).  However, the need to provide
convenient and consistent methods of the
solution remains constant. Due to the
difficulty in solving the exact solutions of
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nonlinear  differential equations, semi-
analytic solutions and numerical solutions are
provided (Loyinmi et al. 2021, Oluwatobi
and Erinle-lbrahim 2021). It is however,
important to consider the consistency and
accuracy of such methods.

Researchers have combined the Elzaki
transform and the projected differential
transform in solving nonlinear partial
differential equations (Elzaki et al. 2012,
Elzaki and Alamri 2014, Suleman et al.
2017). The Elzaki Projected Differential
Transform Method was first used in 2018 (Lu
et al. 2018, Suleman et al. 2018). Afterward,
the method was used to solve the generalized
Burgers-Fisher's  equation  (Akinfe and
Loyinmi 2021). The method of solution
demonstrates the  EPDTM's  flexible
efficiency when compared to other current
classical approaches to solving the system of
linear and nonlinear fractional differential
equations. However, the hybrid scheme has
not been used to solve other forms of
differential equations. It is in this view that
this study aims to solve the Rosenau—Hyman
equation and the Korteweg—de Vries (KdV)
equation using the proposed Elzaki Projected
Differential Transform Method.

Materials and Methods
Rosenau-Hyman and the Korteweg-de
Vries (KdV) equation
Rosenau-Hyman equation

The Rosenau-Hyman equation was
utilized as a simplified model for the study of
nonlinear dispersion in pattern generation in
liquid droplets, and it has numerous
applications in the modeling of various
engineering and physics issues (Lawal et al.
2019b, Arslan 2020, Erinle-lbrahim et al.
2020, Kumbinarasaiah and Adel 2021).

The Rosenau-Hyman equation or K(n,n)

equation is a  KdV-like equation
having compaction solutions.

This nonlinear partial differential equation is
of the form

U, + a(u“)x + (u")xXx =0 1

The equation is named after Phillip
Rosenau and James M. Hyman, who used it
in their 1993 study of compactions.
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Korteweg—de Vries (KdV) equation

The Korteweg—de Vries (KdV) equation
is a nonlinear, dispersive partial differential
equation for a function of two real variables,
space x and time t:
O1p+0%p—6¢0,$ =0
with 0« and &; denoting partial derivatives
with respect to x and t.
The constant 6 in front of the last term is
conventional but of no great significance:
multiplying t, x, and ¢ by constants can be

used to make the coefficients of any of the
three terms equal to any given non-zero
constants (Miura et al. 1968).

Elzaki projected differential equation
method
Considering a  general  non-linear

homogenous partial differential equation with
the initial condition:

Ru(x,t)+ Mu(x,t)+ Nu(x,t) =0 2
Subject to the initial condition
u(x.0)=g(x) 3)

Where: R is a linear differential operator of
order one, M is a linear differential operator
of less order than R, N is the general
nonlinear differential operator, and 0 is the
source term (Lu et al. 2018, Suleman et al.
2018).

Taking the Elzaki Transform on both sides of
the equation, to get:

E[Ru(x,t)]+ E[Mu(x,t)]+ E[Nu(x,t)] =0 (4)

Using the differentiation property of Elzaki
Transform and the above initial conditions,
we have

BT 0) |+ EMul, )+ Nu(x, 1]
| E ) | et -0 o
Efu(x,t)]=v?g(x) - vE[Mu(x,t)+ Nu(x,t)] (6)

Applying the inverse Elzaki transform on
both sides of equation (6), we get:
()

u(x,t)= g(x) - E™{vE[Mu(x,t)+ Nu(x,t)]}
Where g (X) is the first of the series and the
prescribed initial condition
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0

Zu(x,k+1):—E‘1{vE[Mu(x,t)+ Nu(x,t)[} (®)
k=0
Now, we apply the projected differential transform method.

u(x,k+1)=-EHvE [Ak +By ]} Where A, and B are the projected differential transform of
Mu(x,t)and Nu(x,t)respectively.

Atk=0,1,2,3,...,n, ...

u(x1)=-EHE[A +B, ]},  u(x2)=-EMNE[A +B,]}, u(x3)=-EE[A, +B,]....,
u(x,n+1)=-E{E[A, +B,]

Then, the general approximate solution of the EPDTM is given by

u(x,t) =u(x,0) +u(x,1) +u(x,2) +u(x,3) +... 9

and

u(x,t) = Zu(x,k) (10)
k=0

Applications

Case 1: Consider the Rosenau-HymanK (2, 2) equation

U +uZ+ui, =0 (11)

Subject to

u(x,0) = x (12)

By taking the Elzaki transform of the equation

Eu, ]+ Eluf+quXJ:O (13)

[T(lj/’v) —vu(x,O)} EluZ + ufxx]: 0

T(u,v)—vzu(x,0)+vEluf +quXJ= 0

T(u,v) =v2u(x,0)—vE[ux2 +ux2XX] (14)
By applying the inverse Elzaki transform, we get

u(x,t) = u(x,0) — E’l[vE(ux2 + ufxx)] (15)
u(x,t):x—E’l[vE(uX2+ufxx)] (16)
Zu(x,k+l):—E‘1[vE(uf +ufxx)] (17)
k=0

Now, by applying the projected differential transform method, we get

u(x,k +1) = —E*[VE(A, + B, )] Fork=0123...... (18)

K K
Where A, = {Zu(x, nu(x,k — n)} and B, = {Zu(x, nu(x,k — n)} are the projected
n=0 n=0

X XXX
. . 2 2 .

differential transform of U, and U,,, , respectively.

Atk =0,

u(x1) = —E*E(A, +By)] (19)
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A, = [u(x,0ux,0)], =[()x)], = [XZJX =2x;

By = [U(x.0U(x,0) | = (0], = [¥? oo =0

u(x1) =—EHVE(@2x)] = —E‘llv-v2 -(2x)J = —E‘llv3 ~(2x)J =—(2x)t

u(x,1) = —2xt (20)
Atk=1, U(x,2) = —E‘l[\/E(Al +B )]

A =[u(x.0)u(xD) +u(xDu(x,0)], = [(x)(-2xt) + (-2xt)(x)], = |- 2x%t - 2x2t |, = |- 4xt], =-8xt

B, = [U(xQu(xD) + (DU, = [00(2x1)+ (2X) (), = -2t —2x21 ] = ] =0

u(x,2) = -EVE(-8xt)] = -E 2 v3 - (-8x)] = —E ¢ (-8x)] = {(—8x) tz—z'}

u(x,2) = 4xt? (21)

Atk =2, U(x,3) = —E’l[vE(A2 + Bz)]

Ay = [U(x0)u(x,2) + u(xDu(xD) + u(x,2u(x 0], = [()@xt?) + (-2xt) (-2xt) + (Ax2) ()} =
laxet? + ax? 1 ax2t?), = haxet?], = 2axt? '
B, = [u(x.0)u(x,2) +u(xDu(xd) + u(x,2u(x,0) | = |(x)(@4xt2) + (~2xt)(~2x1) + (4xt?)(x) |
= [4x2t2 +4x°%t? +4x2t2]xxX = [12x2t2]xXX =0

u(x3) = —E E@axt?)] = £ v 2 (240)] = —E 15 48] :{4&«%}

u(x,3) = -8xt> (22)

Atk =3, u(x,4) = —E VE(A; +Bj)]

A = [u(x,0)u(x,3) + u(xDu(x,2) + u(x,2)u(x.1) +u(x,3u(x,0)], =

[(x)(—8xt3) +(=2xt) (4xt?) + (4xt?) (=2xt) + (—8xt3)(x)]x = [—8x2t3 —8x%t3 —8x%t? —8x2t3]X :
= [- 32x2t3]x = —64xt>

B; = [u(x,O)u(x,S) +u(x,Du(x,2) +u(x,2u(x,1) + u(x,3)u(x,0)]XXX

= [(x)(—8xt3) +(—2xt)(4xt?) + (4xt?)(-2xt) + (—8xt3)(x)]xxx = [— 8x°t3 —8x?t® —8x’t® —8x2t3]xxx
= [—32x2t3]XXX =0

u(x.4) = —Efl[vE(—64Xt3)] —_g1 [V .31y5 .(_64)()] _ _E—l[VG .3!~—64X]= _I:— 64x.3!.%:|

u(x,4) =16xt* (23)
We obtain the respective solutions of the equation as:

U(x,0) = X ; u(x.L) = —2xt :u(x,2) = 4xt2; u(x,3) = -8xt>: u(x,4) = 16xt*

Then, the solution to the K (n, n) equation according to EPDTM is given as:

u(x,) = u(x.k) (24)

k=0
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u(x,t) =u(x,0) +u(x,)) +u(x,2) + u(x,3) +.........
u(x,t) = X —2xt + 4xt? —8xt> +16xt*.........
u(x,t) = x(1—2t + 4t> —8t> +16t*.......) (25)

Using a Mathematical computational package, the above multivariate series solution converges
to the closed form which is a replica of the exact solution

u(x,t) = ﬁ (26)
Case 2: Consider the modified Korteweg-de-Vries equation

U, —6uu, +U,, =0 @7)
Subject to

u(x,0) =6x (28)
By taking the Elzaki transform of the equation

E[u, ]- E[6uu, —u,,, ]=0 (29)
Tuv)

—vu(x,0) — E(6uu, — U, ) =T(u,v) —v2u(x,0) —VE(6uu, —U,,, ) =0

T (u,v) = Vvu(x,0) + VE (6uu, — U, ) (30)

By applying the inverse Elzaki transform of the equation
u(x,t) = u(x,0)+ E[VE (Buu, U, )]

u(x,t) = 6x+EVE(6uu, — U,y )] (31)
Where

ZU(X, k+1) = E[VE(6uu, —u,y,)] (32)
k=0

Now by applying the Projected differential transform method, where

u(x,k+1) = E[VE(6A —B,)] For k=0,1,2,3,.... (33)

k
Where A, =ZU(X,H)U(X,|< —n), and By =U(X,K),is the projected differential transform of
n=0

uuy and U,y

Atk =0,

u(x1) = EYVE(6A, - By)] (34)
Ay = u(x,0)u(x,0), = (6x)(6X), = (6x)(6) =67X; By =U(X,0) 0 = (6X)yc =0

u(x1) = E"VE(6-62x—0)| = EE(E*0)| = E)P(6%X)]

u(x,1) =6 xt (35)
Atk=1,
u(x,2) = E"[VE(6A - B))] (36)

A =u(x,0)u(x1), +u(x)u(x,0), = (6x)(6%xt), + (6> xt)(6x), = (6x)(6%t) + (6> xt)(6) = 2-6 xt ;
Bl = U(Xal)xxx = (63Xt)xxx =0
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u(x2) = EXE®-2-64xt-0)| = EEQ-6%xt)|= E‘l[v4(2-65x)]=t2—2|-2-65x

u(x,2) = 6°xt2 (37)
Atk=2,
u(x,3) = E[VE(6A, - B,)] (38)

A, = u(x,0)u(x,2), +u(xu(x1), +u(x,2u(x,0), = (6x)(6°xt?), + (6>xt)(6>xt), + (6°xt?)(6X), .
= (6x)(6%2) + (63xt) (6t) + (6°xt?)(6) = 3- 6° xt2 '
BZ = U(X-Z)xxx = (65Xt2)xxx =0

u(x3) = EVE®-3-6°xt? ~0)|= E2ER-67xt%)|= E*arve -3.67x] :;—3'-2!~3-67x

u(x,3) =6"xt* (39)
Atk =3,
u(x,4) = E"YVE (6A; - By)] (40)

Ay = u(x,0)u(x,3), +u(xHu(x,2), +u(x,2)u(x.1), +u(x,3)u(x,0), = (6x)(6" xt®),
+ (63 xt)(6° xt?), + (6 xt?) (6% xt), + (67 xt®)(6x), = (6x)(6"t%) + (63xt)(6°t%) + (6° xt?)(6%t) +
(6" xt®)(6) = 4-68xt3

B3 - U(X 3)xxx (67Xt3)xxx =0
(x4 [VE 6-4-65xt> - ] [vE(4 6" xt? ] [3lv 4. ﬁgx]

(41)
=—-3!-4'69x =6"xt*
4!
Then, the solution of the Korteweg-de Vries equation according to EPDTM is given as:
u(x,t) = Zu(x, k) =6x+6xt +6°xt? +6' xt® +6xt*......
k=0
u(x,t) =6x(1+ 6%t +6%t% +6°t3 + 6%t*......) (42)

Using a Mathematical computational package, the above multivariate series solution converges
to the closed form which is a replica of the exact solution

6X

u(x,t) =

D= (43)
Case 3: Consider the Modified Korteweg-de Vries equation
Uy —6uu, —U,, =0 (44)
With the initial condition
u(x,0) = (1-x) (45)
By taking the Elzaki transform of the equation
E[Ut]—GE[UUX]— E[uxxx]: 0 (46)

T T
{ Ch) —vu(x, O)} 6E[uu, |- E[uxxx]:{ C) —vu(x,0) } E[6uuy + Uy, ]=0

v %

T (u,v) —v2u(x,0)—VE[6uu, + U, ]=0 (47)

By applying the inverse Elzaki transform, we get
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u(x,t) —u(x,0) — E[VE[6uu, + U, ]]=0
u(x,t) = u(x,0) + E *[VE[6uu, + Uy ]| = @—x)+E*[VE[6uu, + Uy ]|

u(xt) = u(xk) (48)
k=0

Now, by applying the projected differential transform method

s u(x,k+1) = E[VE[BA, +B,]] (49)

k
Where A =ZU(X, nmu(x,k —n), and By =u(x,Kk),, is the projected differential transform
n

of the nonlinear part of the equation UU, and U,,, , respectively.

Atk =0,

u(x,) = E*[VE[6A, + By ]| (50)
Ay =u(x,0)u(x,0), =(@-X)A-X), =1-x)(-1)=x-1; By =(1-X),x =0

u(x) = EYvE[6(x-1)]] = E‘1[v3[6(x—1)]J

u(x,1) = -6(1—x)t (51)
Atk=1,
u(x2) = E[VE[6A, +B,]] (52)

A =u(x,0)u(x.1), +u(xDu(x,0), = 1-x)[-6(1-x)t], +[-6(@1-x)t]1-x),
= (1—X)(6t) + [ 61— x)t](~1) = 6t — 6xt + 6t — 6xt = 2-6(1— X)t ’
B, = _[6(1_ X)t]xxx =0

u(x2) = E2Ef-62a-xt] = el 62a- )] = 2~62(1—x)%

u(x,2) = 62(1— x)t? (53)
Atk =2,
u(x3) = E'|vE[6A, + B, ]| (54)

Ay =U(X0)U(x,2), + U(xDU(xD), +U(x,2)u(x0), = A-x)[62@-x)t2 |, + [ )t[6a-x)t], + |62 )2 f1-x),
= (- X)(-62t2) + [B(1— X)t)-6t) + [B2(1— 0)t2|~1) = ~67t2 + 62xt? ~ 622 + 62xt? — 6217 + 67xt? = ~3.62(1— X)t2
| B, =[62a—x)t? |, =0

u(x3) = E*pe[-3-62@-xt2] =efnvs|-3-620-x)] = -36%@- x)%

u(x,3) =-6>(1-x)t* (55)
Atk =3,
u(x,4) = E™[VE[6A; + B, ] (56)

Ay =u(x,0)u(x,3), +u(x,)u(x,2), +u(x,2u(x.1), +u(x,3u(x,0), = 1 x)lf 61— x)t3L +[-601- x)t]le(lf x)tzJx

o2 a-xt2]-6-nt], + [ 62— 0t fa-x), = @- 0 E)- 60 x)t-6%t%) + 2@ 0 f-st) + [ -0t -
=6°t° - 6°xt® + 6%t - 65xt® + 6°1° - 6°xt® + 65t° - 6°xt® = 4. 63 (1 x)t°

By =|-6°a— )3, =0
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u(x,4) = E‘l[vE[4-64(1—x)t3]]
u(x4) = Evela-6°@-x)]

t4
u(x4) = 4!-64(1—x)z

u(x,4) =641 - x)t*

(57)

Then, the solution to the Korteweg-de Vries equation according to EPDTM is given as:

u(x,t) = iu(x, k) =u(x,0)+u(xl)+u(x,2)+u(x,3)+...

k=0

u(x,t) = (1-x)-6(1—-x)t +62(1—x)t2 —631—x)t> +6* 1—x)t*...

u(xt) = (- x)b— 6t +(6t)* —(6t)° + (6t)4...]

(58)

Using a Mathematical computational package, the above multivariate series solution converges
to the closed form which is a replica of the exact solution

1-x
oD =1

Results and Discussion
Results

In this section, we checked for the
efficacy, convergence, and authenticity of the
proposed Elzaki Projected differential
transform method (EPDTM) in providing an
approximate and reliable solution to the
Rosenau-Hyman, Korteweg-de-Vries, and
Korteweg-de-Vries-Burgers  equations by

(59)

comparing results with the exact solution.
The exact results are easily obtained by the
Taylor’s series.

Case 1: The Rosenau Hyman [K (n, n)]

equation
To validate the efficacy of the method, we
have presented

Table 1 which compares the exact results and
our proposed EPDTM results.

Table 1: Exact and asymptomatic results of the Rosenau Hymans K (2, 2) equation. With
parameter x = 0.1, 0.2, 0.3, and 0.5, for each value of t = 0.01, 0.02, 0.03, 0.04 and 0.05

0.001 0.009980039920  0.009980039920 0
0.002 0.009960159363  0.009960159363 0
0.003 0.009940357853  0.009940357853 0
x=0.01 0.004 0.009920634921  0.009920634921 0
0.005 0.009900990099  0.009900990100 0.00000000001
0.001 0.01996007984 0.01996007984 0
0.002 0.01992031873 0.01992031873 0
0.003 0.01988071571 0.01988071571 0
x=0.02 0.004 0.01984126984 0.01984126984 0
0.005 0.01980198020 0.01980198020 0
0.001 0.02994011976 0.02994011976 0
0.002 0.02988047809 0.02988047809 0
x=0.03 0.003 0.02982107356 0.02982107356 0
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0.004 0.02976190476 0.02976190476 0
0.005 0.02970297030 0.02970297030 0
0.001 0.03992015968 0.03992015968 0
0.002 0.03984063745 0.03984063745 0
0.003 0.03976143141 0.03976143141 0
x = 0.04 0.004 0.03968253968 0.03968253968 0
0.005 0.03960396040 0.03960396040 0
0.001 0.04990019960 0.04990019960 0
0.002 0.04980079681 0.04980079682 0.0000000001
% = 0.05 0.003 0.04970178926 0.04970178926 0
0.004 0.04960317460 0.04960317460 0
0.005 0.04950495050 0.04950495050 0

Case 2: The Korteweg-De-Vries equation
To validate the efficacy of the method, we have presented Table 2 which compares the
exact results and our proposed EPDTM results.

Table 2: Exact and asymptomatic results of the modified Korteweg de Vries equation. With
parameter x = 0.01, 0.02, 0.03, 0.04 and 0.05, for each value of t = 0.001, 0.002, 0.003, 0.004
and 0.005

0.001 0.06224066388  0.06224066390 0.0000000001
0.002 0.06465517242  0.06465517241 0.0000000001
x=0.01 0.003 0.06726457398  0.06726457397 0.0000000001
0.004 0.07009345794  0.07009345768 0.0000000026
0.005 0.07317073170  0.07317072909 0.0000000261
0.001 0.1867219917 0.1867219917 0
0.002 0.1939655173 0.1939655172 0.0000000001
x=0.03 0.003 0.2017937220 0.2017937219 0.0000000001
0.004 0.2102803738 0.2102803730 0.0000000008
0.005 0.2195121951 0.2195121873 0.0000000078
0.001 0.2489626556 0.2489626555 0.0000000001
0.002 0.2586206897 0.2586206896 0.0000000001
x=0.04 0.003 0.2690582960 0.2690582958 0.0000000002
0.004 0.2803738318 0.2803738308 0.0000000010
0.005 0.2926829268 0.2926829163 0.0000000005
0.001 0.3112033195 0.3112033195 0
0.002 0.3232758620 0.3232758621 0.0000000001
x=0.05 0.003 0.3363228700 0.3363228700 0
0.004 0.3504672897 0.3504672884 0.0000000013
0.005 0.3658536486 0.3658536455 0.0000000031

Case 3: Modified Korteweg de Vries equation

To validate the efficacy of the method, we have presented Table 3 which compares the

exact results and our proposed EPDTM results.
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Table 3: Exact and asymptomatic results of the modified Korteweg de Vries equation. With
arameter x = 0.1, 0.2, 0.3, and 0.5, for each value of t = 0.01, 0.02, 0.03, 0.04 and 0.05

0.001  0.9840954274 0.9840954274 0
0.002  0.9782608696 0.9782608698 0.0000000002
x=0.01 0.003  0.9724950884 0.9724950903 0.0000000019
0.004  0.9667968750 0.9667968827 0.0000000077
0.005 0.9611650485 0.9611650719 0.0000000234
0.001  0.9741550696 0.9741550696 0
x =0.02 0.002  0.9683794466 0.9683794468 0.0000000002
0.003  0.9626719057 0.9626719075 0.0000000018
0.004  0.9570312500 0.9570312576 0.0000000076
0.005 0.9514563107 0.9514563338 0.0000000231
0.001 0.9642147117 0.9642147117 0
0.002  0.9584980237 0.9584980239 0.0000000002
x=0.03 0.003  0.9528487230 0.9528487230 0.0000000018
0.004  0.9472656250 0.9472656326 0.0000000076
0.005 0.9417475728 0.9417475957 0.0000000229
0.001  0.9542743539 0.9542743539 0
0.002  0.9486166008 0.9486166010 0.0000000002
x=0.04 0.003  0.9430255403 0.9430255421 0.0000000018
0.004  0.9375000000 0.9375000075 0.0000000075
0.005  0.9320388350 0.9320388576 0.0000000226
0.001  0.9443339960 0.9443339960 0
0.002  0.9387351779 0.9387351781 0.0000000002
x = 0.05 0.003  0.9332023576 0.9332023594 0.0000000018
0.004  0.9277343750 0.9277343824 0.0000000074
0.005  0.9223300971 0.9223301195 0.0000000224

Solution and convergence plots of the

Exact and EPDTM solutions

The solution plots for the cases 1-3 are
presented in Figures 1-6. Also, convergence
analysis plots are showed in Figures 7-9.

Figure 1: Solution plot of the exact solution
of the Rosenau Hyman [K (n, n)] equation

(Case 1).
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Figure 4: Solution plot of the EPDTM
solution of the Korteweg-De-Vries equation
Figure 2: Solution plot of the EPDTM  (Case 2).

solution of the Rosenau Hyman [K (n, n)]
equation (Case 1).

. . Figure 5: Solution plot of the exact solution
Figure 3: Solution plot of the exact solution  of the Modified Korteweg-De-Vries equation
of the Korteweg-De-Vries equation (Case 2). (Case 3).

Figure 6: Solution plot of the EPDTM
solution of the Modified Korteweg-De-Vries
equation (Case 3).
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Figure 8: Convergent plot of the EPDTM solution (Case 2) at t = 0.001.
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Exact |

Figure 9: Convergent plot of the EPDTM solution (Case 3) at t = 0.001.

Discussion of Results

In the research work, an efficient hybrid
method has been utilized which involves the
coupling of the Elzaki transform and
Projected differential transform method in
finding the approximate solution to the
Rosenau Hyman [ K (n, n) ] equation and
Korteweg-de-Vries equation (KdV). Elzaki
Projected differential transform method has
been implemented excellently on the K (n, n)
and KdV equations; thereby obtaining a
solution that is highly convergent and
accurate. With the merging of techniques, the
Elzaki transform takes care of the linear
terms in the linear terms in equations and an
asymptotic technique Projected differential
transform method to treat the nonlinear terms
in the equation makes the convergence of the
results obtained faster and highly accurate
(see Tables 1-3). Also, Figure 1,Figure
2,Figure 3,Figure 4,Figure 5, and Figure 6
show the solution plots for the three cases at t
= 0.001. The comparisons consist of the exact
results extracted from prominent literature
that have implanted the normal analytical
means and Elzaki Projected differential
transform (EPDTM) results. Figure 7, Figure
8 and Figure 9 show the convergence plot for
the EPDTM. The results validated the
efficacy and reliability of the EPDTM by
showing high levels of convergence results.
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Conclusion

The results obtained using the Elzaki
Projected differential method showed that the
method is valid, reliable, and highly efficient
in solving non-linear partial differential.
When we compared the results to the exact
solution via tables and graphs, the
convergence and stability of the method were
ascertained. As a result of the fast
convergence and efficiency of the Elzaki
Projected differential method (EPDTM), we
hereby recommend this method (EPDTM) in
obtaining an approximate solution which
exact solution can also be determined from
the multivariate series.
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