
 

Tanzania Journal of Science 49(1): 26-40, 2023 

ISSN 0856-1761, e-ISSN 2507-7961 

© College of Natural and Applied Sciences, University of Dar es Salaam, 2023 

 

26 

           http://tjs.udsm.ac.tz/index.php/tjs                 www.ajol.info/index.php/tjs/ 

 

Semi-Analytic Approach to Solving Rosenau-Hyman and Korteweg-De 

Vries Equations Using Integral Transform 
 

Adedapo Chis Loyinmi* and Kabir Oluwatobi Idowu 

Department of Mathematics, Tai Solarin University of Education, Ogun State, Nigeria 

*Corresponding author, Email: loyinmiac@tasued.edu.ng ORCID: 0000-0002-6171-4256 

Co-author’s email:  tobiey987@gmail.com  ORCID: 0000-0003-1345-4995 

Received 18 Jul 2022, Revised 8 Feb 2023, Accepted 14 Feb 2023 Published Mar 2023 

DOI: https://dx.doi.org/10.4314/tjs.v49i1.3 
 

Abstract 

In this research, we proposed the fusing of Elzaki transform and projected differential 

transform (PDTM) to obtain an analytical or approximate solution of the Rosenau-Hyman and 

Korteweg-de Vries equations which respectively govern pattern formation in liquid drops and 

model of waves on shallow water surfaces. The results obtained presented in tables and graphs 

showed better efficiency, accuracy, and convergence of the method to handle Rosenau-Hyman 

and Korteweg-de Vries equations when compared to other methods in the literature.  

 

Keywords: Rosenau-Hyman Equation; Korteweg-de Vries equation; Elzaki Projected 
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Introduction 

For a long time, differential equations 

have played fundamental roles in all aspects 

of applied mathematics, and their relevance 

has grown with the introduction of the 

computer (Agbomola and Loyinmi 2022, 

Akinfe and Loyinmi 2022). Hence, the 

examination and analysis of differential 

equations cruising in applications resulted in 

many complex mathematical difficulties 

(Elzaki 2011, Lawal et al. 2017, Loyinmi et 

al. 2017a).  

Due to the complexity of nature, 

practically all processes and phenomena in 

science and engineering are intrinsically 

nonlinear, and they are represented by 

nonlinear partial differential equations 

because there are several conditions and 

factors to consider in the system (Loyinmi 

and Akinfe 2020a, Akinfe and Loyinmi 2021, 

Erinle-Ibrahim et al. 2021). For this reason, 

nonlinear partial differential equations have 

piqued the interest of many mathematicians 

and applied scientists (Lawal and Loyinmi 

2011a, b, Akinfe and Loyinmi 2020, Lawal 

and Loyinmi 2019, Akinfe and Loyinmi 

2021). Nonlinear partial differential equations 

are frequently used to describe a wide range 

of processes and real-world phenomena, such 

as genetic configurations, mutation, and 

variations in Fisher's equation, magnetic flux, 

intensity, and quantum field theory in sine 

Gordon equation, shallow water waves and 

patterns in Korteweg-De-Vries (KdV) 

equation, advection-diffusion mechanisms 

and dynamics in Burgers-equation, Huxley's 

and so on (Loyinmi and Lawal 2011, 

Loyinmi and Oredein 2011, Lawal et al. 

2017, Loyinmi and Akinfe 2020b, Babajide 

and Oluwatobi 2021). 

Several studies have been carried out on 

differential equations (linear and nonlinear) 

over the years (Miura et al. 1968, Jang 2010, 

Dehghan et al. 2012, Loyinmi et al. 2017b, 

Lawal et al. 2018, Lawal et al. 2019a, 

Loyinmi and Akinfe 2020, Morenikeji et al. 

2021).  However, the need to provide 

convenient and consistent methods of the 

solution remains constant. Due to the 

difficulty in solving the exact solutions of 
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nonlinear differential equations, semi-

analytic solutions and numerical solutions are 

provided (Loyinmi et al. 2021, Oluwatobi 

and Erinle-Ibrahim 2021). It is however, 

important to consider the consistency and 

accuracy of such methods.  

Researchers have combined the Elzaki 

transform and the projected differential 

transform in solving nonlinear partial 

differential equations (Elzaki et al. 2012, 

Elzaki and Alamri 2014, Suleman et al. 

2017). The Elzaki Projected Differential 

Transform Method was first used in 2018 (Lu 

et al. 2018, Suleman et al. 2018). Afterward, 

the method was used to solve the generalized 

Burgers-Fisher's equation (Akinfe and 

Loyinmi 2021). The method of solution 

demonstrates the EPDTM's flexible 

efficiency when compared to other current 

classical approaches to solving the system of 

linear and nonlinear fractional differential 

equations. However, the hybrid scheme has 

not been used to solve other forms of 

differential equations. It is in this view that 

this study aims to solve the Rosenau–Hyman 

equation and the Korteweg–de Vries (KdV) 

equation using the proposed Elzaki Projected 

Differential Transform Method.  

 

Materials and Methods 

Rosenau–Hyman and the Korteweg–de 

Vries (KdV) equation 

Rosenau–Hyman equation 

The Rosenau-Hyman equation was 

utilized as a simplified model for the study of 

nonlinear dispersion in pattern generation in 

liquid droplets, and it has numerous 

applications in the modeling of various 

engineering and physics issues (Lawal et al. 

2019b, Arslan 2020, Erinle-Ibrahim et al. 

2020, Kumbinarasaiah and Adel 2021). 

The Rosenau–Hyman equation or ( )nnK ,  

equation is a KdV-like equation 

having compaction solutions.  

This nonlinear partial differential equation is 

of the form 

( ) ( ) 0=++ xxx
n

x
n

t uuau
 

(1) 

The equation is named after Phillip 

Rosenau and James M. Hyman, who used it 

in their 1993 study of compactions.  

 

Korteweg–de Vries (KdV) equation 

The Korteweg–de Vries (KdV) equation 

is a nonlinear, dispersive partial differential 

equation for a function   of two real variables, 

space x and time t:  

063 =−+  xxt  

with ∂x and ∂t denoting partial derivatives 

with respect to x and t. 

The constant 6 in front of the last term is 

conventional but of no great significance: 

multiplying t, x, and   by constants can be 

used to make the coefficients of any of the 

three terms equal to any given non-zero 

constants (Miura et al. 1968). 

 

Elzaki projected differential equation 

method 

Considering a general non-linear 

homogenous partial differential equation with 

the initial condition: 
0),(),(),( =++ txNutxMutxRu

 
(2) 

Subject to the initial condition  

( ) ( )xgxu =0,
 

(3) 

Where: R is a linear differential operator of 

order one, M is a linear differential operator 

of less order than R , N  is the general 

nonlinear differential operator, and 0 is the 

source term (Lu et al. 2018, Suleman et al. 

2018). 

Taking the Elzaki Transform on both sides of 

the equation, to get: 

( )  ( )  ( )  0,,, =++ txNuEtxMuEtxRuE

 

(4) 

Using the differentiation property of Elzaki 

Transform and the above initial conditions, 

we have 
( ) 

( ) ( ) ( )  0,,0,
,

=++







− txNutxMuExvu

v

txuE

 

 

(5) 

( )  ( ) ( ) txNutxMuvExgvtxuE ,,)(, 2 +−=

 

(6) 

Applying the inverse Elzaki transform on 

both sides of equation (6), we get: 

( ) ( ) ( )  txNutxMuvEExgtxu ,,)(, 1 +−= −

 
(7) 

Where )(xg  is the first of the series and the 

prescribed initial condition 
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( ) ( ) ( )  


=

− +−=+

0

1 ,,1,

k

txNutxMuvEEkxu

 

 

(8) 

Now, we apply the projected differential transform method. 

( )   kk BAvEEkxu +−=+ −11, Where kA and kB are the projected differential transform of 

( )txMu , and ( )txNu , respectively. 

At k = 0, 1, 2, 3, …, n, … 

( )   00
11, BAvEExu +−= −

, ( )   11
12, BAvEExu +−= −

, ( )   22
13, BAvEExu +−= −

,…,

( )   nn BAvEEnxu +−=+ −11,  

Then, the general approximate solution of the EPDTM is given by 
 

...)3,()2,()1,()0,(),( ++++= xuxuxuxutxu  (9) 

and

 




=

=

0

),(),(

k

kxutxu

 

 

(10) 

 

 

Applications 

Case 1: Consider the Rosenau-HymanK (2, 2) equation  

022 =++ xxxxt uuu
 

(11) 

Subject to 
 

xxu =)0,(
 

(12) 

By taking the Elzaki transform of the equation 

    022 =++ xxxxt uuEuE
 

(13) 

  0)0,(
),( 22 =++








− xxxx uuExvu

v

vuT

 

 

  0)0,(),( 222 =++− xxxx uuvExuvvuT     

 222 )0,(),( xxxx uuvExuvvuT +−=  (14) 

By applying the inverse Elzaki transform, we get 

 )()0,(),( 221

xxxx uuvEExutxu +−= −

 
(15) 

 )(),( 221

xxxx uuvEExtxu +−= −  (16) 

 )()1,( 221

0

xxxx

k

uuvEEkxu +−=+ −


=


 

 

(17) 

Now, by applying the projected differential transform method, we get 

 )()1,( 1

kk BAvEEkxu +−=+ −  For ,.....3,2,1,0=k  (18) 

Where

x

k

n

k nkxunxuA













−= 

=0

),(),( and 

xxx

k

n

k nkxunxuB













−= 

=0

),(),(  are the projected 

differential transform of 
2

xu and 
2

xxxu , respectively. 

At k = 0,  

 )()1,( 00
1 BAvEExu +−= −

 
(19) 
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      xxxxxuxuA xxxo 2))(()0,()0,( 2 ==== ; 

      0))(()0,()0,( 2 ==== xxxxxxxxxo xxxxuxuB  

      txxvExvvExvEExu )2()2()2()2()1,( 31211 −=−=−=−= −−−

 

xtxu 2)1,( −=  (20) 

At k = 1,  )()2,( 11
1 BAvEExu +−= −

 

        xttxtxtxxxtxtxxuxuxuxuA xxxx 8422))(2()2)(()0,()1,()1,()0,( 222
1 −=−=−−=−+−=+=

; 

        0422))(2()2)(()0,()1,()1,()0,( 222
1 =−=−−=−+−=+= xxxxxxxxxxxx txtxtxxxtxtxxuxuxuxuB

     











−−=−−=−−=−−= −−−

!2
)8()8()8()8()2,(

2
41311 t

xxvExvvExtvEExu  

24)2,( xtxu =  (21) 

At k = 2,  )()3,( 22
1 BAvEExu +−= −

 

   
    222222222

22
2

2412444

))(4()2)(2()4)(()0,()2,()1,()1,()2,()0,(

xttxtxtxtx

xxtxtxtxtxxuxuxuxuxuxuA

xx

xx

==++

=+−−+=++=
; 

   
    012444

))(4()2)(2()4)(()0,()2,()1,()1,()2,()0,(

22222222

22
2

==++=

+−−+=++=

xxxxxx

xxxxxx

txtxtxtx

xxtxtxtxtxxuxuxuxuxuxuB
 

     











−=−=−=−= −−−

!3
4848)24(!2)24()3,(

3
514121 t

xxvExvvExtvEExu

 

38)3,( xtxu −=  (22) 

At k = 3,  )()4,( 33
1 BAvEExu +−= −

 

 

   
  332

323232323223

3

6432

8888))(8()2)(4()4)(2()8)((

)0,()3,()1,()2,()2,()1,()3,()0,(

xttx

txtxtxtxxxtxtxtxtxtxtx

xuxuxuxuxuxuxuxuA

x

xx

x

−=−=

−−−−=−+−+−+−

=+++=

; 

 

   
  032

8888))(8()2)(4()4)(2()8)((

)0,()3,()1,()2,()2,()1,()3,()0,(

32

323232323223

3

=−=

−−−−=−+−+−+−=

+++=

xxx

xxxxxx

xxx

tx

txtxtxtxxxtxtxtxtxtxtx

xuxuxuxuxuxuxuxuB

 

     











−−=−−=−−=−−= −−−

!4
!36464!3)64(!3)64()4,(

4
615131 t

xxvExvvExtvEExu

 
416)4,( xtxu =  (23) 

We obtain the respective solutions of the equation as: 

xxu =)0,( ; xtxu 2)1,( −= ;
24)2,( xtxu = ;

38)3,( xtxu −= ;
416)4,( xtxu =  

Then, the solution to the K (n, n) equation according to EPDTM is given as:  




=

=

0

),(),(

k

kxutxu  
 

(24) 
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.........16842),(

.........)3,()2,()1,()0,(),(

432 xtxtxtxtxtxu

xuxuxuxutxu

+−+−=

++++=

 

.......)168421(),( 432 ttttxtxu +−+−=  (25) 

Using a Mathematical computational package, the above multivariate series solution converges 

to the closed form which is a replica of the exact solution 

t

x
txu

21
),(

+
=

 

 

(26) 

Case 2: Consider the modified Korteweg-de-Vries equation 

06 =+− xxxxt uuuu
 

(27) 

Subject to 
 
xxu 6)0,( =

 
(28) 

By taking the Elzaki transform of the equation 

    06 =−− xxxxt uuuEuE
 

(29) 

0)6()0,(),()6()0,(
),( 2 =−−−=−−− xxxxxxxx uuuvExuvvuTuuuExvu

v

vuT
 

)6()0,(),( 2
xxxx uuuvExuvvuT −+=  (30) 

 

By applying the inverse Elzaki transform of the equation 

 )6()0,(),( 1
xxxx uuuvEExutxu −+= −

 
 

 )6(6),( 1
xxxx uuuvEExtxu −+= −

 (31) 

Where

 
 



=

− −=+

0

1 )6()1,(

k

xxxx uuuvEEkxu  

 

(32) 

Now by applying the Projected differential transform method, where 

 )6()1,( 1
kk BAvEEkxu −=+ −

 For ,....3,2,1,0=k
 

(33) 

Where 
=

−=

k

n

xk nkxunxuA

0

),(),( and xxxk kxuB ),(= is the projected differential transform of 

xuu and xxxu  

At k = 0, 
 

 )6()1,( 00
1 BAvEExu −= −

 
(34) 

xxxxxuxuA xx
2

0 6)6)(6()6)(6()0,()0,( ==== ; 0)6()0,(0 === xxxxxx xxuB  

     )6()6()066()1,( 3313121 xvExvEExvEExu −−− ==−=

 

xtxu 36)1,( =  (35) 

At k = 1, 
 

 )6()2,( 11
1 BAvEExu −= −

 
(36) 

xtxttxxxtxtxxuxuxuxuA xxxx
43333

1 62)6)(6()6)(6()6)(6()6)(6()0,()1,()1,()0,( =+=+=+= ; 

0)6()1,( 3
1 === xxxxxx xtxuB  
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      x
t

xvExtvEExtvEExu 5
2

5415141 62
!2

)62()62()0626()2,( ===−= −−−

 

256)2,( xtxu =  (37) 

At k = 2, 
 

 )6()3,( 22
1 BAvEExu −= −

 
(38) 

26253325

253325
2

63)6)(6()6)(6()6)(6(

)6)(6()6)(6()6)(6()0,()2,()1,()1,()2,()0,(

xtxttxttx

xxtxtxtxtxxuxuxuxuxuxuA xxxxxx

=++=

++=++=
; 

0)6()2,( 25
2 === xxxxxx xtxuB  

      x
t

xvExtvEExtvEExu 7
3

751271261 63!2
!3

63!2)63()0636()3,( ===−= −−−  

376)3,( xtxu =  (39) 

At k = 3, 
 

 )6()4,( 33
1 BAvEExu −= −

 
(40) 

3837

3252533737325253

37
3

64)6)(6(

)6)(6()6)(6()6)(6()6)(6()6)(6()6)(6(

)6)(6()0,()3,()1,()2,()2,()1,()3,()0,(

xtxt

txttxttxxxtxtxtxtxt

xtxxuxuxuxuxuxuxuxuA

xxx

xxxxx

=

+++=+++

=+++=

 

0)6()3,( 37
3 === xxxxxx xtxuB  

     
499

4

961391381

664!3
!4

64!3)64()0646()4,(

xtx
t

xvExtvEExtvEExu

==

==−= −−−

 

                                                                                                                                 

(41) 

Then, the solution of the Korteweg-de Vries equation according to EPDTM is given as: 

......66666),(),( 4937253

0

xtxtxtxtxkxutxu

k

++++==


=

 ......)66661(6),( 4836242 ttttxtxu ++++=  (42) 

Using a Mathematical computational package, the above multivariate series solution converges 

to the closed form which is a replica of the exact solution 

t

x
txu

361

6
),(

−
=

 

 

(43) 

Case 3: Consider the Modified Korteweg-de Vries equation 

06 =−− xxxxt uuuu
 

(44) 

With the initial condition 
 

)1()0,( xxu −=
 

(45) 

By taking the Elzaki transform of the equation 

      06 =−− xxxxt uEuuEuE
 

(46) 

      06)0,(
),(

6)0,(
),(

=+−







−=−−








− xxxxxxxx uuuExvu

v

vuT
uEuuExvu

v

vuT
 

  06)0,(),( 2 =+−− xxxx uuuvExuvvuT  (47) 

By applying the inverse Elzaki transform, we get 
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  

     xxxxxxxx

xxxx

uuuvEExuuuvEExutxu

uuuvEExutxu

++−=++=

=+−−

−−

−

6)1(6)0,(),(

06)0,(),(

11

1

 




=

=

0

),(),(

k

kxutxu

 

 

(48) 

Now, by applying the projected differential transform method 

  kk BAvEEkxu +=+ − 6)1,( 1

 
(49) 

Where  −=

k

n

xk nkxunxuA ),(),( and xxxk kxuB ),(=  is the projected differential transform 

of the nonlinear part of the equation xuu and xxxu , respectively. 

At k = 0,
 

  00
1 6)1,( BAvEExu += −

 
(50) 

1)1)(1()1)(1()0,()0,(0 −=−−=−−== xxxxxuxuA xx ; 0)1(0 =−= xxxxB  

     )1(6)1(6)1,( 311 −=−= −− xvExvEExu

 
txxu )1(6)1,( −−=  (51) 

 

At k = 1,
 

  11
1 6)2,( BAvEExu += −

 
(52) 

   
  txxttxtttxtx

xtxtxxxuxuxuxuA xxxx

)1(626666)1()1(6)6)(1(

)1()1(6)1(6)1()0,()1,()1,()0,(1

−=−+−=−−−+−=

−−−+−−−=+=
; 

  0)1(61 =−−= xxxtxB  

     
!2

)1(62)1(62)1(62)2,(
2

224121 t
xxvEtxvEExu −=−=−= −−

 

22 )1(6)2,( txxu −=  (53) 

At k = 2,
 

  22
1 6)3,( BAvEExu += −

 
(54) 

      
    222222222222222222

2222
2

)1(63666666)1()1(6)6()1(6)6)(1(

)1()1(6)1(6)1(6)1(6)1()0,()2,()1,()1,()2,()0,(

txxttxttxtttxttxtx

xtxtxtxtxxxuxuxuxuxuxuA xxxxxx

−−=+−+−+−=−−+−−+−−=

−−+−−+−−=++=

;   0)1(6 22
2 =−= xxxtxB  

     
!3

)1(6!3)1(63!2)1(63)3,(
3

3351231 t
xxvEtxvEExu −−=−−=−−= −−

 

33 )1(6)3,( txxu −−=  (55) 

At k = 3,
 

  33
1 6)4,( BAvEExu += −

 
(56) 

    
          

333333333333333333

332222333322

2233
3

)1(6466666666

)1()1(6)6()1(6)6()1(6)6)(1()1()1(6)1(6)1(6

)1(6)1(6)1(6)1()0,()3,()1,()2,()2,()1,()3,()0,(

txxttxttxttxtt

txttxttxtxxtxtxtx

txtxtxxxuxuxuxuxuxuxuxuA

xx

xxxxxx

−=−+−+−+−=
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)1(6!4)4,(
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4
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t
xxu

xvExu

txvEExu

−=

−=

−=

−

−

 44 )1(6)4,( txxu −=  (57) 

Then, the solution to the Korteweg-de Vries equation according to EPDTM is given as:  

...)1(6)1(6)1(6)1(6)1(),(

...)3,()2,()1,()0,(),(),(

443322

0

txtxtxtxxtxu

xuxuxuxukxutxu

k

−+−−−+−−−=

++++==


=

 
( ) ( ) ( ) ...66661)1(),(

432
ttttxtxu +−+−−=  (58) 

Using a Mathematical computational package, the above multivariate series solution converges 

to the closed form which is a replica of the exact solution 

t

x
txu

61

1
),(

+

−
=

 

(59) 

 

Results and Discussion 

Results 

In this section, we checked for the 

efficacy, convergence, and authenticity of the 

proposed Elzaki Projected differential 

transform method (EPDTM) in providing an 

approximate and reliable solution to the 

Rosenau-Hyman, Korteweg-de-Vries, and 

Korteweg-de-Vries-Burgers equations by 

comparing results with the exact solution. 

The exact results are easily obtained by the 

Taylor’s series. 

 

Case 1: The Rosenau Hyman [K (n, n)] 

equation 

To validate the efficacy of the method, we 

have presented 

 Table 1 which compares the exact results and 

our proposed EPDTM results.  

 

Table 1: Exact and asymptomatic results of the Rosenau Hymans K (2, 2) equation. With 

parameter x = 0.1, 0.2, 0.3, and 0.5, for each value of t = 0.01, 0.02, 0.03, 0.04 and 0.05 

 

Case 1 t Exact EPDTM Error = |Exact – EPDTM 

 

 

x = 0.01 

0.001 

0.002 

0.003 

0.004 

0.005 

0.009980039920 

0.009960159363 

0.009940357853 

0.009920634921 

0.009900990099 

0.009980039920 

0.009960159363 

0.009940357853 

0.009920634921 

0.009900990100 

0 

0 

0 

0 

0.00000000001 

 

 

 

x = 0.02 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.01996007984 

0.01992031873 

0.01988071571 

0.01984126984 

0.01980198020 

 

0.01996007984 

0.01992031873 

0.01988071571 

0.01984126984 

0.01980198020 

 

0 

0 

0 

0 

0 

 

 

 

x = 0.03 

 

0.001 

0.002 

0.003 

 

0.02994011976 

0.02988047809 

0.02982107356 

 

0.02994011976 

0.02988047809 

0.02982107356 

 

0 

0 

0 
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Case 1 t Exact EPDTM Error = |Exact – EPDTM 

0.004 

0.005 

0.02976190476 

0.02970297030 

0.02976190476 

0.02970297030 

0 

0 

 

 

 

x = 0.04 

0.001 

0.002 

0.003 

0.004 

0.005 

0.03992015968 

0.03984063745 

0.03976143141 

0.03968253968 

0.03960396040 

0.03992015968 

0.03984063745 

0.03976143141 

0.03968253968 

0.03960396040 

0 

0 

0 

0 

0 

 

 

x = 0.05 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.04990019960 

0.04980079681 

0.04970178926 

0.04960317460 

0.04950495050 

 

0.04990019960 

0.04980079682 

0.04970178926 

0.04960317460 

0.04950495050 

 

0 

0.0000000001 

0 

0 

0 

 

Case 2: The Korteweg-De-Vries equation 

To validate the efficacy of the method, we have presented Table 2 which compares the 

exact results and our proposed EPDTM results.  

 

Table 2: Exact and asymptomatic results of the modified Korteweg de Vries equation. With 

parameter x = 0.01, 0.02, 0.03, 0.04 and 0.05, for each value of t = 0.001, 0.002, 0.003, 0.004 

and 0.005 

Case 2 t Exact solution EPDTM solution Error = | Exact – EPDTM| 

 

 

x = 0.01 

0.001 

0.002 

0.003 

0.004 

0.005 

0.06224066388 

0.06465517242 

0.06726457398 

0.07009345794 

0.07317073170 

0.06224066390 

0.06465517241 

0.06726457397 

0.07009345768 

0.07317072909 

0.0000000001 

0.0000000001 

0.0000000001 

0.0000000026 

0.0000000261 

 

 

 

x = 0.03 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.1867219917 

0.1939655173 

0.2017937220 

0.2102803738 

0.2195121951 

 

0.1867219917 

0.1939655172 

0.2017937219 

0.2102803730 

0.2195121873 

 

0 

0.0000000001 

0.0000000001 

0.0000000008 

0.0000000078 

 

 

 

x = 0.04 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.2489626556 

0.2586206897 

0.2690582960 

0.2803738318 

0.2926829268 

 

0.2489626555 

0.2586206896 

0.2690582958 

0.2803738308 

0.2926829163 

 

0.0000000001 

0.0000000001 

0.0000000002 

0.0000000010 

0.0000000005 

 

 

 

x = 0.05 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.3112033195 

0.3232758620 

0.3363228700 

0.3504672897 

0.3658536486 

 

0.3112033195 

0.3232758621 

0.3363228700 

0.3504672884 

0.3658536455 

 

0 

0.0000000001 

0 

0.0000000013 

0.0000000031 

 

Case 3: Modified Korteweg de Vries equation 

To validate the efficacy of the method, we have presented Table 3 which compares the 

exact results and our proposed EPDTM results. 
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Table 3: Exact and asymptomatic results of the modified Korteweg de Vries equation. With 

parameter x = 0.1, 0.2, 0.3, and 0.5, for each value of t = 0.01, 0.02, 0.03, 0.04 and 0.05 

Case 3 t Exact solution EPDTM solution Error = |Exact – EPDTM| 

 

 

x = 0.01 

0.001 

0.002 

0.003 

0.004 

0.005 

0.9840954274 

0.9782608696 

0.9724950884 

0.9667968750 

0.9611650485 

0.9840954274 

0.9782608698 

0.9724950903 

0.9667968827 

0.9611650719 

0 

0.0000000002 

0.0000000019 

0.0000000077 

0.0000000234 

 

 

x = 0.02 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.9741550696 

0.9683794466 

0.9626719057 

0.9570312500 

0.9514563107 

 

0.9741550696 

0.9683794468 

0.9626719075 

0.9570312576 

0.9514563338 

 

0 

0.0000000002 

0.0000000018 

0.0000000076 

0.0000000231 

 

 

 

x = 0.03 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.9642147117 

0.9584980237 

0.9528487230 

0.9472656250 

0.9417475728 

 

0.9642147117 

0.9584980239 

0.9528487230 

0.9472656326 

0.9417475957 

 

0 

0.0000000002 

0.0000000018 

0.0000000076 

0.0000000229 

 

 

 

x = 0.04 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.9542743539 

0.9486166008 

0.9430255403 

0.9375000000 

0.9320388350 

 

0.9542743539 

0.9486166010 

0.9430255421 

0.9375000075 

0.9320388576 

 

0 

0.0000000002 

0.0000000018 

0.0000000075 

0.0000000226 

 

 

 

x = 0.05 

 

0.001 

0.002 

0.003 

0.004 

0.005 

 

0.9443339960 

0.9387351779 

0.9332023576 

0.9277343750 

0.9223300971 

 

0.9443339960 

0.9387351781 

0.9332023594 

0.9277343824 

0.9223301195 

 

0 

0.0000000002 

0.0000000018 

0.0000000074 

0.0000000224 

 

Solution and convergence plots of the 

Exact and EPDTM solutions 

The solution plots for the cases 1–3 are 

presented in Figures 1–6. Also, convergence 

analysis plots are showed in Figures 7–9. 

 
Figure 1: Solution plot of the exact solution 

of the Rosenau Hyman [K (n, n)] equation 

(Case 1). 
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Figure 2: Solution plot of the EPDTM 

solution of the Rosenau Hyman [K (n, n)] 

equation (Case 1). 

 
Figure 3: Solution plot of the exact solution 

of the Korteweg-De-Vries equation (Case 2). 

 

 

 

 
Figure 4: Solution plot of the EPDTM 

solution of the Korteweg-De-Vries equation 

(Case 2). 

 
Figure 5: Solution plot of the exact solution 

of the Modified Korteweg-De-Vries equation 

(Case 3). 

 
Figure 6: Solution plot of the EPDTM 

solution of the Modified Korteweg-De-Vries 

equation (Case 3). 
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Figure 7: Convergent plot of the EPDTM solution (Case 1) at t = 0.001. 

 
Figure 8: Convergent plot of the EPDTM solution (Case 2) at t = 0.001. 
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Figure 9: Convergent plot of the EPDTM solution (Case 3) at t = 0.001. 

 

Discussion of Results 

 In the research work, an efficient hybrid 

method has been utilized which involves the 

coupling of the Elzaki transform and 

Projected differential transform method in 

finding the approximate solution to the 

Rosenau Hyman [ K (n, n) ] equation and 

Korteweg-de-Vries equation (KdV). Elzaki 

Projected differential transform method has 

been implemented excellently on the K (n, n) 

and KdV equations; thereby obtaining a 

solution that is highly convergent and 

accurate. With the merging of techniques, the 

Elzaki transform takes care of the linear 

terms in the linear terms in equations and an 

asymptotic technique Projected differential 

transform method to treat the nonlinear terms 

in the equation makes the convergence of the 

results obtained faster and highly accurate 

(see Tables 1–3). Also, Figure 1,Figure 

2,Figure 3,Figure 4,Figure 5, and Figure 6 

show the solution plots for the three cases at t 

= 0.001. The comparisons consist of the exact 

results extracted from prominent literature 

that have implanted the normal analytical 

means and Elzaki Projected differential 

transform (EPDTM) results. Figure 7, Figure 

8 and Figure 9 show the convergence plot for 

the EPDTM. The results validated the 

efficacy and reliability of the EPDTM by 

showing high levels of convergence results. 

 

Conclusion 

 The results obtained using the Elzaki 

Projected differential method showed that the 

method is valid, reliable, and highly efficient 

in solving non-linear partial differential. 

When we compared the results to the exact 

solution via tables and graphs, the 

convergence and stability of the method were 

ascertained. As a result of the fast 

convergence and efficiency of the Elzaki 

Projected differential method (EPDTM), we 

hereby recommend this method (EPDTM) in 

obtaining an approximate solution which 

exact solution can also be determined from 

the multivariate series. 
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