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Abstract 

Pests are major constraints to the effective growth and development of every crop through their 

damage, and can be controlled effectively by the use of their natural enemies which is referred to 

as the biological pest control. In this study, the biological control model of cassava pests through 

optimal control theory was presented in order to minimize the population of the pests and 

stabilize the natural enemies population so as not to affect the crop negatively. A mathematical 

model was formulated via the Lotka-Volterra model, and the model was characterized. The 

optimality system was established, the equilibrium point with its uniqueness was established for 

the model. Finally, stability analysis of the model was investigated through optimal control 

approach and numerical data were employed to validate the system. The results obtained showed 

that cassava pests can be effectively controlled biologically. 
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Introduction 

Optimal control is simply defined as the 

best control or the best way to control a 

dynamic system over a period of time to 

minimize a performamce index, (Burghes and 

Graham 1982, Aida-zade and Ragimov 2007, 

Derouich et al. 2014). Any living organism that 

is injurious or causes loss or irritation to other 

organisms (plants or animals) is known as a 

pest. Most farmers employ the use of 

chemicals such as insecticides which have side 

effects on plants, humans and the environment 

at large if not carefully used in controlling 

pests (Anguelov et al. 2017).  

The biological control involves the 

introduction of the natural enemies of pests to 

control or keep the pests population under 

control. In other words, it is the control which 

involves the use of parasitoids, predators and 

pathogens to maintain the population of pests 

at a level lower than it would without natural 

enemies (Andres et al. 1979, Rafikov and 

Balthazar 2005, Rafikov et al. 2008, Michael 

2008, Lucas 2011). According to FAO (2020) 

Cassava (Manihot esculenta Graitz) is the 

fourth most important source of calories in 

Africa and as a result quick measures should be 

taken to control its pests. 

Many researchers have worked on cassava 

modelling and application of optimal control to 

pests population. Moreno-Cadena et al. (2021) 

worked on the modelling of growth and 

development of cassava. Chapwanya and 

Dumont (2021) investigated the interactions 

among crops, vector and virus with cassava 

mosaic virus disease. Alemneh et al. (2021) 

studied the optimal deterministic 

eco-epidemiological model for the dynamics 
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of virus disease. Anguelov et al. (2017) 

determined the genric model to study the 

impact of mating disruption control to reduce 

the population of the pests. Picart et al. (2011) 

worked on optimal control problem of insect 

pest populations. Rafikov and Balthazzar 

(2005) and Rafikov et al. (2008) studied 

optimal control of pests in population 

dynamics by obtaining the pest control strategy 

through natural enemies introduction also 

known as prey-predator relationship between 

the soybean caterpillar (Anticarsia 

gemmatalis) and its predators (Nabis spp, 

Geocoris arachnid, etc.) using the 

Lotka-Volterra model. Zhou (2015) presented 

a predator-prey system with seasonal 

reproduction by proposing various theoretical 

and empirical approaches to develop 

mathematical and statistical tools for studying 

predator- prey interactions. Dabbs (2010) 

considered optimal control in form of 

decreasing the growth rate of the pest 

population using discrete time models. 

Mahapatra and Santra (2016) worked on 

prey-predator model for optimal harvesting 

with functional response, incorporating prey 

refuges. Krishna (2011) studied predator-prey 

dynamics with disease in predator. Aderinto et 

al. (2013) worked on a qualitative study of 

biological pest control system. Herren and 

Neuenschwander (1991) worked on biological 

control of cassava pests. Gutierrez et al. (1988) 

worked on analysis of biological control of 

cassava pests. Lucas (2011) also analyzed 

predator-prey model using system of ordinary 

linear differential equations where he focused 

on the predation relationship between two 

specific species in the central regions of 

Canada, the Canadian Lynx and the Snowshore 

Hare. The Lotka-Volterra model was  

formulated for analyzing the differential 

equations; it was found that the population of 

the two species fluctuates on an average of ten 

year periodic oscillations. 

However, in this paper, concentration is on 

the optimal biological control of two major 

pests of cassava known as the green spider mite 

(Mononychellus tanajoa) and cassava 

mealybug (Phenacoccus manihoti) using their 

predators known as the predatory mites 

botanically called Typhlodromalus aripo and 

Epidinocarsis lopezi, respectively using the 

method of predator-prey model called 

Lotka-Volterra in an attempt to maximize 

cassava outputs by farmers by minimizing the 

population of pests below injury level and 

stabilize the predator within the level 

appropriate to pest control. 

The green spider mite is a 

greenish/yellowish pest which is recognized 

mostly by its inconspicuous body 

segmentation. It originated from the 

neotropical area, but was first discovered in 

Africa in the early 1970s. Over 60 countries 

have records of Mononychellus tanajoa which 

makes it a major and widespread pest of 

cassava and has spread throughout the cassava 

belt of Africa. Cassava mealybug 

(Phenacoccus manihoti) being indigenous to 

South Africa has spread in Africa to practically 

all countries where cassava is grown. This pest 

is recognized by its body segmentation which 

bears very short, lateral and caudal white 

filaments in the forms of swellings that 

produce a toothed appearance to the body 

outline; the eyes are relatively prominent, legs 

also are well developed and of equal size  

(Matile-Ferrero 1977, Gutierrez et al. 1988, 

Mustiya et al. 2014, Moreno-Cadena et al. 

2021). Because of the importance of cassava in 

Africa as a staple food, quick measures should 

be taken to control these pests. Different 

measures of control can be used, but none is as 

promising and effective as the biological 

control. Good cultural practices such as 

intercropping, and manipulation of planting 

time are not sufficient to control green spider 

mites. Chemical control also has its own side 

effects which make it unsuitable, hence the use 

of biological control. 

 

Materials and Methods 

Model descriptions and formulation  

Let the population of the prey species be 

denoted by )(1 tM  and )(2 tM , and the 

population of the predator species be denoted 

by )(1 tT  and )(2 tT . Since the prey 

population grows in the absence of predator, 

we have  

    1
1 = aM

dt

dM
 (1) 
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and 2
2 = bM

dt

dM
 (2) 

for the two species, respectively; where a, and 

b are positive (i.e. 0>a , 0>b ) and 0=1T  

and 0=2T . The predator dies out in the 

absence of the prey, hence  

1
1 = cT

dt

dT


  (3) 

and 

2
2 = dT

dt

dT


  (4) 
 where 0>, dc , 0=, 21 MM .  

 

When the prey and predator interact, their 

encounter is proportional to the product of their 

population and tends to promote the growth of 

the predator and impede the growth of the prey. 

Thus, the predator population increases by 

MT  and the prey population decrease by 

MT  with respect to each of the species. 

 

The model is given as  

1
1 1 1 1 2

2
2 2 2 2 1

1
1 1 1 1 2 2 1

2
2 2 2 2 1 1 2

=

=

=

=

dM
aM M T bM

dt

dM
bM M T aM

dt

dT
cT M T T u a

dt

dT
dT M T T u b

dt





 

 

 

 

   

   

(5) 

0>,,, dcba .  

With the assumptions that the prey has 

unlimited food supply, the predator depends 

completely on its prey as the only source of 

food, and each prey has no other threats except 

for its predator under consideration. The flow 

diagram for the model is presented in Figures 

1-3, and the definitions of the parameters are 

given in Table 1. 

 

 

Figure 1: Flow diagram for the model. 

 

 

Figure 2: Flow diagram for the model. 

 

 

Figure 3: Flow diagram for the model. 
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Table 1 : Definition of parameters of the model 

Parameter  Definitions 

1M   Population of prey species 1 

2M   Population of prey species 2 

1T   Population of predator species 1 

2T   Population of predator species 2 

a   Birth rate of prey species 1 

b   Birth rate of prey species 2 

c   Death rate of predator species 1 

d   Death rate of predator species 2 

1   Death rate per encounter of prey species 1 due to predation 

2   Death rate per encounter of prey species 2 due to predation 

1   Growth rate of predator species 1 

2   Growth rate of predator species 2 

1u   Control for species 1 

2u   Control for species 2 

 

 

Results and Discussion 

Optimality system 

The objective function for the optimal control problem is given by 

Minimize  

2

0

( ) = ,

= 1,2, 0 1

t
f

i i
t

i

J u cM Au dt

i u

  

 

 (6) 

where A is the cost associated with using biological control, u  is the biological control effort, c 

is the appropriate constant associated with the number of preys. We choose u such that 10  u  

for effective introduction of predators at a given rate. The optimal control problem stated as; 

 Minimize  

  101,2==)( 2

0

 iii
f

t

t
uidtAucMuJ  

 subject to the constraints  

21111
1 = bMTMaM

dt

dM
               (7) 

12222
2 = aMTMbM

dt

dM
  

auTTMcT
dt

dT
1221111

1 =    

buTTMdT
dt

dT
2112222

2 =    

with 
0 0(0) = (0) =i iM M T T  for 1,2=i    
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Uniqueness of the equilibrium of the system 

Assumption 1: If if  and ),1,2,=( nigi   are Lipschitz continuous, then   r, s such that 

vusvgugvurvfuf iiiiii  )()(,)()(      (8) 

 for all Rvu ,  and ni ,1,2,=    (Barbu 1994). 

 

Theorem 1 
Given that the assumption (1) is satisfied, then equation (7) has a unique equilibrium point. 

Proof: 

Let T
ii JMQ ),(=1  and T

ii kTQ ),(=2  denote the two equilibrium points of the model 1,2i 

,  

where T
i

T
i

T
i

T
i KKKTTTJJJMMM ),(=,),(=,),(=,),(= 21212121   

Then, 

0=

0=

0=

0=

12222

21111

12222

21111

iiiiiii

iiiiiii

iiiiiii

iiiiiii

JaTJJb

JbTJJa

MaTMMb

MbTMMa

















        (9) 

 and 

0=

0=

0=

0=

2112222

1221111

2112222

1221111

iiiiiiiii

iiiiiiiii

iiiiiiiii

iiiiiiiii

buTTMKd

auKKMKc

buTTMTd

auTTMTc

















         (10) 

 This implies that 

)()(=)(

)()(=)(

11222222

22111111

iiiiiiiiii

iiiiiiiiii

JMaJMJJMb

JMbJMJJMa









   (11) 

 and 

)()(=)(

)()(=)(

111222222

222111111

iiiiiiiiii

iiiiiiiiii

KTKTdKTM

KTKTcKTM









   (12) 

 using (8), (11) becomes 

iiiiiiiiii

iiiiiiiiii

JMarJMTrJMb

JMbrJMTrJMa

1122222122

2221111111









   (13) 

Which implies 

 
),)()((

),()(

11222221

22112111

iiiiiiii

iiiiiiii

JMJMarTrb

JMJMbrTra









       (14) 

 Multiplying both sides by 
1

2111 ))((  iiii brTra   and 
1

2221 ))((  iiii arTrb   to obtain   

TT
iiii JMJM (0,0)),( 2211   
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That is 

iiii JMJM 1111 =0=                               (15) 

 and 

iiii JMJM 2222 =0=     (16) 

  

Also by using (8), (12) becomes 

)()(

)()(

11122212222

22221111111

iiiiiiiiii

iiiiiiiiii

KTsKTdsKTM

KTsKTcsKTM









   (17) 

 We then have 

       
TT

iiiiiiii

TT
iiiiiiii

KTKTsdsM

KTKTscsM

(0,0)),)()((

(0,0)),)()((

112212122

221122111









   (18) 

 Multiplying both sides by 
1

22111 ))((  iiii scsM   and 
1

12122 ))((  iiii sdsM  , 

respectively to obtain  
TT

iiii KTKT (0,0)),( 2211   

which implies that 

iiii KTKT 1111 =0=        (19) 

 and  

     iiii KTKT 2222 =0=         (20) 

 This proves the uniqueness of the equilibrium point of the model.  

 

Stability analysis of the system 

Theorem 2: Given equation (5), the equilibrium point of the system is stable. 

Proof: Considering (7), to obtain the equilibrium point we set the derivatives to zero  

buTTMdT

auTTMcT

aMTMbM

bMTMaM

2112222

1221111

12222

21111

=0

=0

=0

=0

















     (21) 

The  nature of the model near the equilibrium point is determined by linearization of the system. 

The Jacobian matrix J is given as 































22122

21111

2222

1111

0

0

0

0

=

MdT

McT

MTba

MbTa









)T,T,M,J(M 2121    (22) 
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The equilibrium point is given by ),,,( *
2

*
1

*
2

*
1 TTMM  = ),0,(0, 21 buau . 































dbu

cau

buba

baua

122

211

22

11

0

0

00

00

=









         (23) 

The stability of the equilibrium point is established from the roots of the corresponding 

eigenvalue equation, .0=)( IAdet   The following parameter values were used:
 

a = 0.17, b = 0.116,  21 =  = 0.20, c = d = 0.00017, 21 =   = 0.0085. Aderinto et al. (2013)  

101,0 21  uu
 



























0.000170.00850.000590

0.00850.0001700.00072

000.1020.17

000.1160.153

=A            (24) 

 

)( IAdet  0=

0.000170.00850.000590

0.00850.0001700.00072

000.1020.17

000.1160.153

=

















  (25) 

The eigenvalues was computed using Maple 18, the characteristic equation obtained as  

43
0.25466

2
110.00427292762050.0000170172.97117605=  E     (26) 

 and the eigenvalues were obtained as: 

4750.01522438=49987,0.00866999=347,0.27022438=29996,0.00832999=1    

 

Discussion of results 

The results obtained showed that the 

equilibrium point for the parameter values of 

the system can be stable, despite the fact that 

not all the eigenvalues are negative but less 

than 1. In other words, cassava pest population 

can be minimized below damaged level and 

natural enemies population can be steadilised 

within the level appropriate to pest control.  

 

Conclusion 

In this study, a mathematical model of the 

biological control of two major pests of 

cassava was presented. The optimality system 

was established, the system equilibrium was 

found to be unique and stable. Numerical 

values were employed to test for the validity of 

the model, and the results obtained showed 

that cassava pests can be effectively controlled 

biologically without the use of chemicals, and 

the system can be stable. 

 

Conflict of interests: Authors declare no 

conflict of interest regarding this work. 

 

References 

Aderinto YO, Bamigbola OM, Jimoh FM, 

Ganiyu MA and Aliu T 2013 A Qualitative 

study of biological pest control system. 

Asian J. Maths  Stat. 6(1): 43-51. 

Aida-Zade K and Ragimov AB 2007 Solution 

of optimal control problem in class of 

piecewise constant functions. Automat. 

Control Comput. Sci. 41(1): 18-24. 

Alemneh HT, Kassa AS and Godana AA 2021 

An optimal control model with cost 

effectiveness analysis of maize streak virus 

disease in maize plant. Infectious Disease 

Modeling KeAi Advancing Research 

Evolving Science 6: 169-182. 



Tanz. J. Sci. Vol. 47(5) 2021 

1889 

Andres LA, Oatman ER and Simpson RG 

1979 Re-examination of pest control 

practices in biological control and insect 

pest management. University of California, 

Oakland, USA. 

Anguelov R, Dufourd C and Dumont Y 2017 

Mathematical model for pest-insect control 

using mating disruption and trapping. 

Appl. Math. Model. 52: 437-457. 

Barbu V 1994  Mathematical methods in 

optimization of differential systems. 

Kluwer Academic Publishers, 

Netherlands.  

Burghes DN and Graham A 1982 An 

introduction to control theory including 

optimal control. SIAM Rev. 24(1): 87-89. 

Chapwanya M and Dumont Y 2021 

Application of Mathematical 

Epidemiology to Crop Vector-Borne 

Diseases: The Cassava Mosaic Virus 

Disease Case. In Infectious Diseases and 

our Planet (pp. 57-95). Springer, Cham. 

Dabbs K 2010 Optimal control in discrete pest 

control models. Tennessee Research and 

Creative Exchange. University of 

Tennessee, Knoxville.  

Derouich M, Boutayeb A, Boutayeb W and 

Lamlili M 2014 Optimal control approach 

to the dynamics of a population of 

diabetes. Appl. Math. Sci. 8(56): 

2773-2782. 

FAO 2020 Food Agric Organization. United 

Nations. 

http://www.fao.org/faostat/en/#data/FBS.  

Gutierrez AP, Yaninek JS, Wermelinger B, 

Herren HR and Ellis CK 1988 Analysis of 

biological control of cassava pests in 

Africa III. Cassava green mite 

Mononychellus tanajoa. J. Appl. Ecol. 2: 

941-950.  

Herren HR and Neuenschwander P 1991 

Biological control of cassava pests in 

Africa. Ann. Rev. Entomol. 36: 257-283. 

Krishna PD 2011 A Mathematical study of a 

predator-prey dynamics with disease in 

predator. International Scholarly Research 

Network. 191-202. 

Lucas CP 2011 Analyzing predator models 

using systems of ordinary linear 

differential equations. Southern Illinois 

University, Carbondale.  

Mahapatra GS and Santra P 2016  

Prey-predator model for optimal 

harvesting with functional response 

incorporating prey refuge. Int. J. Biomath. 

9(1): 50-62.  

Matile-Ferrero D 1977 A new scale-insect 

injurious to cassava in equitorial africa, 

phenacoccus manihoti. Annal. Soc. 

Entomol. France. 13(1): 145-152.  

Michael MO 2008 Essential biology. 60-65. 

Tonad Publishers Ltd, Ibadan.   

Moreno-Cadena P, Hoogenboom G, Cock JH, 

Ramirez-Villegas J, Pypers P, Kreye C, 

Tariku M, Ezui KS, Lopez-Lavalle LBA 

and Asseng S 2021 Modelling growth, 

development and yield of cassava: a 

review. Field Crops Research. 267: 

108140. 

Mustiya DL, El-Banhawy EM, Kariuki CW 

and Khamala CPM 2014 Typhlodromus 

aripo De Leon (Acari: Phytoseiidae) 

development and reproduction on major 

cassava pests at different temperature 

humidities. An indication enhanced mite 

resilience. Acarologia 54(4): 395-407. 

Picart D, Ainseba B, andMilner F 2011 

Optimal control problem on insect pest 

populations. Applied Mathematics Letters 

24: 1160-1164. 

Rafikov M and Balthazzar JM 2005 Optimal 

pest control problem in population 

dynamics. Comput. Appl. Math. 24: 65-81. 

Rafikov M, Balthazzar JM and Bremen 2008 

Mathematical modelling and control of 

population  systems: applications in 

biological pest control. Appl. Math. 

Comput. 200: 557-573.  

Zhou C 2015 A Predator-prey system with 

seasonal reproduction. Theoretical and 

Statistical Development. Wildlife and 

Fisheries Science. PhD dissertation. 

 

 

 


