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Abstract 

Accurate estimation of kinetic parameters is challenging due to the dynamics and mathematical 

nature of the chemical systems. This paper presents simple, yet efficient closed-form solutions 

for the enzymatic conversion of the substrate to the product in real-time derived using the 

Lambert W function. The real values of the Lambert W function were calculated from the 

Lambert package as implemented in MATLAB. The expressions exhibit remarkable robustness 

in estimating the parameters for randomized data at 1% to 4% variation in noise levels. 

Furthermore, unlike the initial rates method, the expressions estimate chemical kinetic 

parameters utilizing a full range of experimental data, thus minimizing the risk of missing 

information that would be detected at an extended time-span. Thus, the implementation of 

closed-form solutions presented in this paper for the estimation of kinetic parameters 

eliminates common pitfalls imposed by the initial rates and double reciprocal methods.  
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Introduction 

The Michaelis-Menten kinetics has been 

the foundation on which most quantitative 

analyses involving enzymatic reactions are 

built today (Liu et al. 2022, Blomhøj and 

Niss 2021, Abedanzadeh et al. 2022, Cho and 

Lim 2018). Michaelis-Menten kinetics has 

been a tool for the description of biochemical 

reactions, such as those found in drug 

metabolism (Rubin and Tozer 1986, Kim and 

Tyson 2020, Seibert and Tracy 2021); non-

linear pharmacokinetics (Emanuelsson et al. 

1987, Ludden 1991, Singh et al. 2021, 

Wilson and Gerber 2021), alcoholic 

fermentation (Gee and Ramirez 1988, Gee 

and Ramirez 1994), protein binding (Kim and 

Tyson 2020) and cell density distribution 

(Magliaro et al. 2019). 

However, the determination of kinetic 

parameters is becoming difficult nowadays 

following the increased complexity of 

chemical reactions, for example, estimating 

kinetic parameters in a chemical system 

involving multi-step reactions. Therefore, 

simplified means for data analysis of such 

complex systems are often thought. For 

example, the determination of kinetic 

parameters such as Michaelis-Menten 

constant Km and maximum reaction velocity 

Vmax usually are performed through a double 

reciprocal plot which Lineweaver and Burk 

first developed in their original article 

(Lineweaver and Burk 1934). However, 

accurate estimation parameters through this 

technique requires a large amount of data and 

substrate concentration higher than Km values 

(Bäuerle et al. 2017). Furthermore, a 

linearized Lineweaver-Burk plot involves 

data transformation that can result in severe 

drawbacks such as distortion error which may 

lead to biased parameter estimates (Zavrel et 

al. 2010). 

https://dx.doi.org/10.4314/tjs.v48i4.15
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In contrast, a non-linear fit of the initial 

reaction rates to the Michaelis-Menten 

expression has been a popular method whose 

popularity is supported by the initial linear 

region on the reaction progress curve. This 

linearity holds only at the assumption that 

only 10% of substrate concentration is 

converted into product. Nevertheless, the 

initial rate method has limitations, such as 

being sensitive to noise and becoming 

laborious to measure. Additionally, the 

method cannot be used to determine the 

phenomenon occurring at longer time 

intervals (Zavrel et al. 2010). Aside from 

those drawbacks, Cornish-Bowden 

questioned the linear fitting of data to the 

expression, claiming that only a 1% 

conversion is acceptable for defining initial 

rates. To elaborate, the author asserted that 

while the reaction progress curve may appear 

linear in the given range, an imperceptible 

non-linearity that is invisible to the human 

eye may occur, influencing the quality of the 

estimated parameters (Cornish-Bowden 2013, 

González et al. 2017). 

To address challenges observed by 

Cornish-Bowden, it has been recommended 

that the reaction progress curve be divided 

into approximate linear portions where 

gradients are evaluated for each linear piece, 

eventually extrapolating the varying slope to 

zero time (Baici 2015). The first- derivative 

with respect to time, set at time zero, can be 

used to compute the initial reaction rate for 

each best-fit non-linear model curve. 

However, rather than considering the 

presumed linear region, it is recommended 

that a more precise technique could be 

contemplating a non-linear fit for the entire 

reaction progress curve to all experimental 

data and extracting kinetic parameters of 

interest. The adoption of numerical schemes 

such as bi-section and Newton-Raphson 

methods to numerically integrated differential 

equations representing the dynamics of 

substrate depletion and product generation is 

the ideal instrument for achieving the 

suggested strategy. On the other hand, 

inadequate programming skills and 

individuals' mathematical backgrounds 

obstruct the implementation. Therefore, 

searching for a simple yet efficient and user-

friendly approach to minimize the limitations 

mentioned is paramount to bridging the gap. 

Thus, this work aims to present and 

demonstrate an efficient approach based on 

the Lambert W function for determining 

kinetic parameters. The paper presents a brief 

yet precise description of the derivation of 

explicit solutions of substrate concentrations 

on kinetic reactions analogous to the 

Michaelis-Menten based on the Lambert W 

function. Briefly, the remaining vignettes 

demonstrate the determination of the kinetic 

parameters and illustrate with examples the 

use of the derived expressions using the 

MATLAB package. 

 

Methods 

Theoretical framework 

We have considered a reversible 

inhibition when the inhibitor binds to both the 

free enzyme and the enzyme-substrate 

complex with varying affinities. Therefore, 

the inhibitor free mixed inhibition, 

competitive inhibition, noncompetitive 

inhibition and uncompetitive inhibition 

reaction models have been used to derive the 

time-dependent explicit solution of substrate 

conversion. 

 

Lambert W function 

The Lambert W function is a 

mathematical expression popular in many 

fields and known for its high accuracy in 

parameter estimation. However, the 

literature's description of Lambert W function 

to reversible inhibition kinetics is limited, 

especially in estimating kinetic parameters 

(Kesisoglou et al. 2021). Therefore, deriving 

expressions that describe substrate depletion 

and product accumulation over time can help 

achieve better-estimated parameters rather 

than the techniques based on initial velocity 

and other methods to estimate kinetic 

parameters, as discussed earlier in the 

introduction section. The general form of the 

Lambert W function is defined as the inverse 

function satisfying the transcendental 

Equation 1 (Goličnik 2012): 

𝑥 = 𝑦𝑒𝑦   (1) 
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and the solution to Equation 1 is expressed by 

the Lambert W function as: 

𝑦 = 𝑊(𝑥)  (2) 

where W is the Lambert W function and 𝑥 the 

argument of W. In particular, if 𝑥 is real, 

W(𝑥) is double-valued in the range (−𝑒−1, 0). 

Then if we consider W ≥ −1 and W ≤ −1, the 

two are well-defined functions. Thus, the 

Lambert W function has two branches of the 

solution, namely W0 and W−1. The branch 

satisfying W(𝑥) ≥ −1 is known as the 

principal branch, denoted by W0, while the 

one satisfying W(𝑥) ≤ −1 is known as the 

lower branch, represented by W−1. The two 

branches are demonstrated in Figure 1.  

 
Figure 1: The plot of principal branch W0 and the lower branch W−1 of Lambert W function. 

 

For simplicity, we shall write W0 simply as 

W. The branch W has real values in the range 

(−e
−1

, ∞). The following are special values 

for the Lambert W function: 

{
𝑊(−𝑒−1) = −1

𝑊(0) = 0

𝑊(1) ≈ 0.56714329

 (3) 

Lambert W function has self-decomposable 

property, which is the consequence of the 

ordinary differential equation (Pakes 2018): 
𝑑𝑊(𝑥)

𝑑𝑥
=

𝑊(𝑥)

𝑥(1+𝑊(𝑥))
  (4) 

The integrated form of Equation 4 is as 

follows: 

∫ 𝑊(𝑥)d𝑥 = 𝑥 (𝑊(𝑥) − 1 +
1

𝑊(𝑥)
) + 𝐶 (5) 

where C is the constant of integration. 

Equations 4 and 5 are valid for 𝑊(𝑥) ≠ −1 

and 𝑊(𝑥) ≠ 0, that is  𝑥 ≠ −𝑒−1 and 𝑥 ≠ 0, 
respectively (Consigli et al. 2017). 

 

 

 

Results 

Michaelis-Menten model: Inhibition free 

The initial rate of metabolism by an 

enzyme following classical Michaelis-

Menten enzyme kinetics is proportional to the 

concentration of the enzyme-substrate 

complex (Ring et al. 2014). The ordinary 

differential equation used to describe the 

dynamics of substrate concentration depletion 

is presented by Equation 6. 

𝑣 = −
𝑑[𝑆]𝑡

𝑑𝑡
=

𝑑[𝑃]𝑡

𝑑𝑡
=

𝑉max[𝑆]𝑡

𝐾m+[𝑆]𝑡
 (6)  

The integral form of Michaelis-Menten for 

first-order differential Equation 6 is as shown 

in Equation 7. 

𝑉max𝑡 = 𝐾m ln (
[𝑆]0

[𝑆]𝑡
) + [𝑆]0 − [𝑆]𝑡 (7) 

where 𝑣 is the rate of reaction; [𝑆]𝑡 is the 

concentration of substrate; [𝑃]𝑡 is the 

concentration of the product; 𝑉max is the 

maximal enzyme activity and 𝐾m is the 

Michaelis-Menten half saturation constant. 

Following a systematic derivation through 
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Equations 8-11, Equation 12 is the explicit 

solution for substrate concentration as a 

function of time for free inhibitor model. 

[𝑆]𝑡 = [𝑆]0exp (
[𝑆]0−[𝑆]𝑡−𝑡𝑉max

𝐾m
) (8) 

[𝑆]texp (
[𝑆]𝑡

𝐾m
) = [𝑆]0exp (

[𝑆]0−𝑡𝑉max

𝐾m
)  (9) 

[𝑆]𝑡

𝐾𝑚
= 𝑊 [

[𝑆]𝑡

𝐾m
exp (

[𝑆]𝑡

𝐾m
)] (10) 

= 𝑊 [
[𝑆]0

𝐾m
exp (

[𝑆]0−𝑡𝑉max

𝐾m
)]    (11) 

[𝑆]𝑡 = 𝐾m𝑊 [
[𝑆]0

𝐾m
exp (

[𝑆]0−𝑡𝑉max

𝐾m
)]   (12) 

 

Mixed inhibition 
Mixed-type inhibitors bind to both 

enzyme-substrate complex and free enzymes. 

They affect both substrate binding and the 

catalyzed reaction rate, leading to the 

variations of both Km and Vmax. This effect 

decreases the value of Vmax while decreasing 

or increasing Km value. These interactions 

result in the rate Equation 13: 

 

𝑣 = −
𝑑[𝑆]𝑡

𝑑𝑡
=

𝑑[𝑃]𝑡

𝑑𝑡
=

𝑉max[𝑆]𝑡

𝐾m(1+
[𝐼]

𝐾ic
)+[𝑆]𝑡(1+

[𝐼]

𝐾iu
)

 (13)

where [I], inhibitor concentration; Kic, 

inhibitor dissociation constant of enzyme-

inhibitor complex and Kiu, inhibitor 

dissociation constant of enzyme-substrate-

inhibitor complex. The simplification of 

mixed type of inhibition model gives rise to 

other inhibition models with fewer constants 

namely, competitive, noncompetitive, 

uncompetitive and inhibition-free (Ring et al. 

2014). Let, 

𝒳 = (
[𝐼]

𝐾ic

) 

𝜉 = 1 +
[𝐼]

𝐾iu

 

The integrated form of Equation 13 is: 

𝑉max𝑡 =  𝒳𝐾mln
[𝑆]0

[𝑆]𝑡
+ ([𝑆]0 − [𝑆]𝑡)𝜉  (14) 

Equation 14 is implicit with respect to the 

substrate concentration. To obtain the explicit 

form, Equation (14) is rearranged as follows: 

[𝑆]𝑡 = [𝑆]0exp (
𝜉([𝑆]0−[𝑆]𝑡−𝑡𝑉max)

𝐾m𝒳
)  (15) 

[𝑆]𝑡exp (
𝜉[𝑆]𝑡

𝐾m𝒳
) = [𝑆]0exp (

𝜉([𝑆]0−[𝑆]𝑡−𝑡𝑉max)

𝐾m𝒳
)

  (16) 

Multiply through to (16) by the factor 𝜉/𝐾m𝒳 

yields: 
𝜉[𝑆]𝑡

𝐾m𝒳
exp (

𝜉[𝑆]t

𝐾m𝒳
) =

𝜉[𝑆]0

𝐾m𝒳
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m𝒳
)  

(17) 
𝜉[𝑆]𝑡

𝐾m𝒳
= 𝑊 [

𝜉[𝑆]0

𝐾m𝒳
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m𝒳
)]  (18) 

[𝑆]𝑡 =
𝐾m𝒳

𝜉
𝑊 [

𝜉[𝑆]0

𝐾m𝒳
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m𝒳
)]   (19) 

Equation (19) presents real-time substrate 

concentration depletion. 

 

Competitive inhibition 

In this case, the inhibitor competes with 

substrates for the active sites on the enzyme. 

The reaction rate is obtained by considering 

Kiu → ∞, and thus [I]/Kiu → 0 in (13). 

𝑣 = −
𝑑[𝑆]𝑡

𝑑𝑡
=

𝑑[𝑃]𝑡

𝑑𝑡
=

𝑉max[𝑆]𝑡

𝐾m(1+
[𝐼]

𝐾ic
)+[𝑆]𝑡

 (20) 

The integral form of Equation (20) is as 

follows: 

𝑉max𝑡 =  𝐾m𝒳ln (
[𝑆]0

[𝑆]𝑡
) + ([𝑆]0 − [𝑆]𝑡) (21) 

The implicit Equation (21) is rearranged to 

obtain the expression in explicit solution in 

terms of substrate concentration as: 

[𝑆]t = [𝑆]0exp (
[𝑆]0−[𝑆]𝑡−𝑡𝑉max

𝐾m𝒳
) (22) 

[𝑆]𝑡exp (
[𝑆]t

𝐾m𝒳
) = [𝑆]0exp (

([𝑆]0−𝑡𝑉max)

𝐾m𝒳
) (23) 

Multiplying Equation (23) by the factor 

(𝐾m𝒳)
−1

 and rearranging the resultant 

equation gives: 
[𝑆]𝑡

𝐾m𝒳
exp (

[𝑆]𝑡

𝐾m𝒳
) =

[𝑆]0

𝐾m𝒳
exp (

[𝑆]0−𝑡𝑉max

𝐾m𝒳
) (24) 

Employing Lambert W function to Equation 

24 leads to the following: 
[𝑆]𝑡

𝐾m𝒳
= 𝑊 [

[𝑆]𝑡

𝐾m𝒳
exp (

[𝑆]𝑡

𝐾m𝒳
)] (25) 

= 𝑊 [
[𝑆]0

𝐾m𝒳
exp (

[𝑆]0−𝑡𝑉max

𝐾m𝒳
)] (26) 

[𝑆]𝑡 = 𝐾m𝒳𝑊 [
[𝑆]0

𝐾m𝒳
exp (

[𝑆]0−𝑡𝑉max

𝐾m𝒳
)] (27) 

Equation 27 presents an explicit solution 

governing time-dependent substrate depletion 

in the competitive type of inhibition. 

 

Noncompetitive inhibition 

Unlike competitive inhibition, where an 

inhibitor binds to the active site, in this type 

of inhibition, the inhibitor does not affect 

substrate binding; instead, entering the active 

site attaches itself to some other parts of the 

enzyme molecule. Noncompetitive inhibitors 
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can either bind to the enzyme alone or 

enzyme-substrate complex causing the Vmax 

to decrease, while the Km remains unaffected. 

In general, noncompetitive inhibition 

decreases the amount of enzyme capable of 

mobilizing the substrate. The rate of the 

reaction is given by: 

𝑣 = −
𝑑[𝑆]𝑡

𝑑𝑡
=

𝑑[𝑃]𝑡

𝑑𝑡
=

𝑉max[𝑆]𝑡

(𝐾m+[𝑆]𝑡)(1+
[𝐼]

𝐾ic
)
 (28) 

The integral form for noncompetitive 

inhibition first order differential Equation 28 

is as follows: 

𝑉max𝑡 =  𝒳 [𝐾mln (
[S]0

𝑆
) + [𝑆]0 − [𝑆]𝑡] (29) 

The implicit Equation 29 is rearranged to an 

explicit form solution in terms of substrate 

concentration through the following steps: 

[𝑆]𝑡 = [𝑆]0exp (
[𝑆]0−[𝑆]𝑡

𝐾m
−

𝑡𝑉max

𝐾m𝒳
) (30) 

[𝑆]texp (
[𝑆]𝑡

𝐾m
) = [𝑆]0exp (

[𝑆]0

𝐾m
−

𝑡𝑉max

𝐾m𝒳
) (31) 

Multiply through to Equation 31 by the term 

𝐾m
−1 results into: 

[𝑆]𝑡

𝐾m
exp (

[𝑆]𝑡

𝐾m
) =

[𝑆]0

𝐾m
exp (

[𝑆]0

𝐾m
−

𝑡𝑉max

𝐾m𝒳
) (32) 

Introducing Lambert W function to the left-

hand side of Equation 32, we obtain the 

following: 
[𝑆]𝑡

𝐾m

= 𝑊 [
[𝑆]𝑡

𝐾m

exp (
[𝑆]𝑡

𝐾m

)] 

= 𝑊 [
[𝑆]0

𝐾m

exp (
[𝑆]0

𝐾m

−
𝑡𝑉max

𝐾m𝒳
)] 

The explicit solution for the time-dependent 

substrate for a noncompetitive inhibition 

regime is: 

[𝑆]𝑡 = 𝐾m𝑊 [
[𝑆]0

𝐾m
exp (

[𝑆]0

𝐾m
−

𝑡𝑉max

𝐾m𝒳
)] (33) 

 

Uncompetitive inhibition 

For uncompetitive inhibition, the inhibitor 

has no affinity for the free enzyme. Thus, it 

binds to the enzyme-substrate complex and 

reduces Vmax and Km values. It means that as 

Kic → ∞, the term [I]/Kic → 0 in Equation 13. 

The ordinary differential Equation 34 is the 

rate equation for uncompetitive inhibition: 

𝑣 = −
𝑑[𝑆]𝑡

𝑑𝑡
=

𝑑[𝑃]𝑡

𝑑𝑡
=

𝑉max[𝑆]𝑡

𝐾m+[𝑆]𝑡(1+
[𝐼]

𝐾iu
)
 (34) 

Equation 35 represents enzyme kinetic time 

course information through the integrated 

form of uncompetitive type of inhibition. 

𝑉max𝑡 =  𝐾mln (
[S]0

[𝑆]𝑡
) + ([𝑆]0 − [𝑆]𝑡)𝜉 (35) 

An explicit solution can be obtained by 

rearranging Equation 36 into a few steps: 

[𝑆]𝑡 = [𝑆]0exp (
𝜉 [𝑆]0−[𝑆]𝑡−𝑡𝑉max

𝐾m
) (36) 

[𝑆]𝑡exp (
𝜉[𝑆]𝑡

𝐾m
) = [𝑆]0exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m
) (37) 

Multiplying 
𝜉

𝐾m
⁄  to Equation 37 yields 

Equation 38: 
𝜉[𝑆]𝑡

𝐾m
exp (

𝜉[𝑆]𝑡

𝐾m
) =

𝜉[𝑆]0

𝐾m
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m
) (38) 

Introducing Lambert W function techniques, 

we have: 
𝜉[𝑆]𝑡

𝐾m
= 𝑊 [

𝜉[𝑆]0

𝐾m
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m
)] (39) 

[𝑆]𝑡 =
𝐾m

𝜉
𝑊 [

𝜉[𝑆]0

𝐾m
exp (

𝜉[𝑆]0−𝑡𝑉max

𝐾m
)] (40) 

Following a systematic derivation, 

Equations 12, 19, 27, 33 and 40 represent the 

closed-form solutions for the progress of the 

substrate concentration, [S]t for the enzyme 

kinetics at any time, t relative to initial 

concentration [S]0, described using the 

Lambert W function. The concentration of the 

product at any time is obtained by applying 

the following expression: 

[𝑃]𝑡 = [𝑆]0 − [𝑆]𝑡 (41) 

for the inhibitor-free; where for the case of 

the presence of inhibition, the real-time 

concentration of product is governed by the 

following expression: 

[𝑃]𝑡 = [𝑃]0 + [𝑆]0 − [𝑆]𝑡   (42) 

where [P]0 is the initial product 

concentration. Equations 41 and 42 help 

predict the time a reaction takes to yield a 

certain amount of product and vice versa, 

depending on the information available. The 

expressions can fit the real-time experimental 

data, thus making it possible to estimate all 

kinetic parameters by utilizing codes 

implemented in MATLAB and R packages. 

The estimation of kinetic parameters involves 

the minimization of the residual sum of 

square errors (RSSE) between the observed 

and calculated values 

RSSE = ∑ [𝑆i
exp(𝑡) − 𝑆i

calc(𝑡)]
2N−1

i=0  (43) 

where 𝑆i
exp(𝑡) is the 𝑖th observed 

experimental concentration of substrate at 

time t, 𝑆i
calc(𝑡) represents 𝑖th calculated 

values for substrate at time t in a total of N 

observations. The process of estimating 

parameters involves finding an optimal fit; 

the parameters in question are varied to find 
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the function that mimics the time course of 

the reaction. The small value of RSSE 

indicates a tight fit of the model to 

experimental data. Eventually, parameters are 

derived directly via a complex function. 

 

Discussion 

The demonstration of the explicit 

solutions 12, 19, 27, 33 and 40 for 

applicability on the estimation of kinetic 

parameters was performed. Experimental 

uncertainties were simulated by adding noise 

to substrate concentration using a pseudo-

random number generator at the mean of zero 

and standard deviation (SD) values ranging 

from 1% to 4%. The ideal values for the 

kinetic parameters Km, Vmax, Kic and Kiu were 

fixed to 1.000 μM. Figure 2 demonstrates the 

progress curve analysis for the simulated data 

fitted with the derived equations for an initial 

concentration of 10 μM.  

 
Figure 2: Progress curve analysis with model predictions (solid red lines) fitted to simulated 

substrate depletion data points (blue dots). 

 

The estimated kinetic parameters for 

mixed, competitive, noncompetitive and 

uncompetitive are presented in Table 1 to 

Table 4, respectively. The results show that, 

even at a higher noise level of up to 4%, the 

estimated values are closer to the ideal values 

despite the relatively large error component. 

It is important to point out that we used the 

Lambert W function as implemented in 

MATLAB to solve a least-squares problem 

instead of nonlinearFit. One would anticipate 

Lambert W function to be faster than 

nonlinearfit for this purpose.  

 

Table 1: Mixed inhibition 

SD, μM Km, μM Vmax, μM h
−1 

Kiu, μM Kic, μM RSSE 

0.01 1.006 1.006 1.001 0.988 0.001 

0.02 0.976 0.978 0.999 1.049 0.023 

0.03 0.985 0.990 1.009 1.025 0.030 

0.04 1.103 1.143 1.002 0.768 0.070 
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Table 2: Competitive inhibition 

SD, μM Km, μM Vmax, μM h
−1

 Kic, μM RSSE 

0.01 1.000 1.000 1.000 0.003 

0.02 0.997 0.997 0.997 0.051 

0.03 0.997 0.996 0.997 0.084 

0.04 1.000 1.001 1.000 0.141 

 

Table 3: Noncompetitive inhibition 

SD, μM Km, μM Vmax, μM h
−1

 Kic, μM RSSE 

0.01 1.000 1.003 1.000 0.001 

0.02 1.008 1.022 1.008 0.042 

0.03 1.000 1.000 1.000 0.083 

0.04 1.000 1.016 1.000 0.179 

 

Table 4: Uncompetitive inhibition 

SD, μM Km, μM Vmax, μM h
−1

 Kiu, μM RSSE 

0.01 0.996 0.995 1.010 0.000 

0.02 0.999 0.999 1.002 0.050 

0.03 0.967 0.968 1.069 0.089 

0.04 1.003 1.003 0.994 0.164 

 

We also present in Figure 3 the residual sum 

of squares error (RSSE) that illustrates the 

errors during model fitting. The RSSE 

quantifies the degree of the accuracy of the 

method. At low standard deviation, the model 

fits well to the simulated values resulting in 

lowest RSSE values. 

  
Figure 3: The plots for the residual sum of squares error (RSSE) (a) mixed (b) competitive 

(c) noncompetitive and (d) uncompetitive inhibition. 

 

The RSSE increase with increase in SD 

values, higher amplitude of fluctuation in 

RSSE can be noted at a 4% SD value. 

Residuals in all types of inhibition appear 

randomly distributed below and above the 

predicted curve. The observation strongly 

indicates the absence of systematic errors and 

further confirms that the derived expressions 

describe well the simulated data. Statistical fit 

of the derived expressions to the simulated 

values upon randomization results in a 

maximum RSSE < 0.2.  

Unlike other methods such as non-linear 

fit and double reciprocal, the derived 

expressions fits to entire set of experimental 

measurements considering substrate depletion 

or product formation as function of time, thus 

minimizing errors on estimated kinetic 
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parameters. For example, Figure 4 (a) shows 

a non-linear fitting to the experimental data 

(Michaelis and Menten 1913) resulting in 

Vmax = 3.9109 and Km = 0.0179 in their 

respective units, while for Lineweaver-Burk 

plot Figure 4 (b) we obtain Vmax = 3.9509 and 

Km = 0.0184 estimated in their respective 

units. 

  
Figure 4: (a) Non-linear fitting and (b) Lineweaver-Burk fitting to the experimental data 

(Michaelis and Menten 1913).  

 
Through least-square fit to initial rates vs 

[S], the Km value differs to that through the 

reciprocal plot by 5 × 10
−4

, whereas the Vmax 

difference is 4 × 10
−2

. The differences may be 

attributed to the manipulation 

(transformation) of the original data to be 

analyzed, thus, using derived expressions 12, 

19, 27, 33 and 40 will eliminate such errors. 

We compared results obtained using our 

derived expressions (to be specific we used 

Equation 12) with those reported in the 

literature as presented in Table 5. In both 

cases, the ideal values were set to a unit. The 

obtained results for both Km and Vmax are 

comparable to those in Goudar et al. (2004). 

 

Table 5: The influence of standard deviation (SD) on the parameter estimated 

SD Km Km (Goudar et al. 2004) Vmax Vmax (Goudar et al. 2004) 

0.01 1.001 1.022 1.000 1.005 

0.02 0.996 0.997 0.998 1.002 

0.03 0.989 1.032 0.998 0.999 

0.04 0.954 1.038 0.987 1.017 

 

The errors for both Vmax and Km were 

observed to increase with the increasing noise 

level; this observation signifies that proper 

data handling is vital during experiments to 

minimize errors for accurate kinetic 

parameters. Therefore, the model can 

adequately handle experimental data and 

provide precise parameter estimates. Contrary 

to traditional approaches, such as reciprocal 

velocity where only a few data points are 

usually considered; the presented method 

ensures global regression. The software used 

in this work is easy to learn for scientists, we 

have also included source codes for 

implementation; also there are alternative 

tools for evaluation Lambert W function 

values such as excel spreadsheet add-in 

which can be found at  

 https://github.com/mdscheuerell/Lambert-

W-in-Excel, and for those using Fortran, C, 

C++ may use free library TOMS743 

(Evaluation of Lambert’s W function) 

developed by researchers based at Florida 

State University. 

 

 

https://github.com/mdscheuerell/Lambert-W-in-Excel
https://github.com/mdscheuerell/Lambert-W-in-Excel
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Conclusions 

In this work, we have presented closed 

form solution for various chemical kinetics 

models, the derived expressions are based the 

Lambert W function in obtaining explicit 

solutions for the differential equation 

describing the dynamics of substrate 

consumption and product formation. 

Furthermore, the study demonstrated that the 

obtained expressions can be applied in 

parameter estimation problems for the models 

analogous to Michaelis-Menten. The 

technique revealed significant robustness in 

estimated parameters; even at a higher noise 

level of up to 4%, results with accuracy of 

more than 90% could be obtained. The study 

recommends real-time recording of 

concentrations (substrate or product) as it is 

essential that measurements are taken over 

the entire duration of the reaction and not 

only for the initial phase. We propose that the 

recording should be taken at short time 

intervals since the accuracy is improved with 

the high number of data points. The derived 

expressions hold for both lower and higher 

substrate concentrations. Furthermore, the 

study showed that the derived explicit 

solution can be easily implemented in 

MATLAB, thus, eliminating some of the 

technical challenges typically faced when 

other numerical approaches are used. This 

justification emphasizes that the Lambert W 

function is easier to apply and may be 

extended to more complex models with 

several inhibitors, where, all parameters 

inherent in the model can be obtained in a 

single fit. Application of Lambert W function 

is therefore a tool and novel approach to 

resolve challenges associated with both 

dynamics and mathematical nature of the 

chemical systems. 
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Appendix: Supplementary Material  

 

Sample MATLAB CODES 

   ebar = -1/exp(1) 

% Primary branch 

s0 = 10; 

vmax = 1; 

km = 1; 

n = 50 

t = [linspace(0,25,n)]'; 

x = s0./km.*exp((s0-vmax.*t)./km) 

   sl = km.*Lambert_W(x,0); 

a = [0.01 0.02 0.03 0.04] 

b = 0; % Mean 

for i = 1:length(a) 

y(:,i) = a(i).*randn(n,1) + b; 

end 

s1 = sl +y(:,1); 

s2 = sl +y(:,2); 

s3 = sl +y(:,3); 

s4 = sl +y(:,4); 

z = [t sl s1 s2 s3 s4]; 

constant = lsqcurvefit(@fw,[5;10], t, s1); 

VMAX1 = constant(1); 

KM1 = constant(2); 

constant = lsqcurvefit(@fw,[5;10], t, s2);  

VMAX2 = constant(1); 

KM2 = constant(2); 

constant = lsqcurvefit(@fw,[5;10], t, s3); 

VMAX3 = constant(1); 

KM3 = constant(2); 

constant = lsqcurvefit(@fw,[5;10], t, s4);  

VMAX4 = constant(1); 

KM4 = constant(2); 

xfit = t; 

yfit = fw(constant,xfit) 

R1 = [sl yfit]; 

DS1 = (R1(:,1)-R1(:,2)).^2; 

RSSE1 = 0; 

for i = 1:length(DS1) 

    RSSE1 = RSSE1+DS1(i); 

end 

SEE1 = sqrt(RSSE1/(length(DS1(:,1))-2));  

R2 = [s2 yfit]; 

DS2 = (R2(:,1)-R2(:,2)).^2; 

RSSE2 = 0 

for i = 1:length(DS2) 

    RSSE2 = RSSE2+DS2(i); 

end 

SEE2 = sqrt(RSSE2/(length(DS2(:,1))-2)); 

R3 = [s3 yfit]; 

DS3 = (R3(:,1)-R3(:,2)).^2; 

RSSE3 = 0; 

for i = 1:length(DS3) 

    RSSE3 = RSSE3+DS3(i); 

end 

SEE3 = sqrt(RSSE3/(length(DS3(:,1))-2)); 

R4 = [s4 yfit]; 

DS4 = (R4(:,1)-R4(:,2)).^2; 

RSSE4 = 0; 

for i = 1:length(DS4) 

    RSSE4 = RSSE4+DS4(i); 

end 

SEE4 = sqrt(RSSE4/(length(DS4(:,1))-2)); 

 


