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Abstract
In this paper, a study of preventive measures capable of curbing the spread of COVID 19
pandemic to avoid its second wave was carried out. The existence and uniqueness of the
proposed mathematical model is assured, the basic reproduction number is established, the
local and global stability of the disease free equilibrium are well obtained and the variational
iteration method is applied to solve the mathematical model. Numerical simulation of the
included control parameters are carried out. The obtained results and outcomes are presented
graphically. It was revealed that enlightenment to vaccination awareness should be encouraged

as vaccination is a good strategy of capturing the spread of the disease.
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Introduction

The novel virus (2019-nCoV) is highly
transmissible. This infection causes a severe
acute respiratory syndrome and it has spread
across the world. The confirmed cases of
COVID-19 are over 10.27 million, and there
have been more than 0.5 million deaths till 30
June 2020 globally (WHO 2020). The WHO
confirmed that the virus can be contacted via
breathing. The incubation period of the
disease is 2-14 days and around 97.5 per cent
of infected individuals usually show
symptoms within 11 to 12 days of infection
(Del and Malani 2020, Li et al. 2020, Lai et
al. 2020).

To gain understanding of the spread and
preventive measures that could be applied to
curtail the disease, researchers have presented
varieties of mathematical models. Das et al.

Local stability, Global Stability,

(2021) established a mathematical model that
described COVID-19 transmission dynamics
with isolation class. The data acquired from
an ongoing event in India was applied and
their outcomes recommended how to control
the spread of COVID-19, keeping in mind
contact and recovery rate. An analysis of the
COVID-19 transmission in Lagos Nigeria
was also conducted by Okuonghae and
Omame (2020); their results revealed that if
at least 55% of the population comply with
the social distancing regulation with about
55% of the population effectively making use
of face masks while in public, the disease will
eventually die out in the population. In the
same vein, an analysis of the outburst of
COVID-19 pandemic was examined in
Nigeria by Ajisegiri et al. (2020), their
outcome revealed possible evidence of
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ongoing and  increasing  community
transmission of COVID-19 infections and
inadequate testing capacity and
overwhelming of health resources.

Numerical simulations often give realistic
impacts of the parameters embedded in
mathematical models. To carry out this
simulation, numerical methods such as the
variational iteration method proposed by He
(1999) are often applied to solve the
epidemiology models. Peter et al. (2018)
applied this method to obtain the solution of a
deterministic mathematical model of typhoid
fever. The accuracy of the method is
confirmed as it shows good agreement with
the classical inbuilt RK4 on Maple 18.

Materials and Methods
Model formulation and analysis

In this research, we modified a
mathematical model of COVID 19
transmission dynamics proposed by Wusu et
al. (2022) by incorporating vaccination and
enlightenment to vaccination parameter
capable of capturing the spread of COVID-19
to avoid second wave. The qualitative
analysis of the model which involves
establishing the basic reproduction number,
disease free equilibrium and the threshold for
local stability and global stability is
conducted. The variational iteration method
is applied to solve the epidemic model and
numerical simulations are carried out with the
aid of Maple 18 software.

The coupled differential equations which portray the epidemic model are presented as

follows:

ds A-w)psI
=2 = A—(0+2) + p)S + aR — =272
m OL+2)+1)S +a N_D
dE  (1- p)psl

— =TI (-5, + p)E

m ) (y =61+ u)

Y (5, -+l

dt 2 H

dv

—=01+2)S -V

m (L+2)S—u
%—T=51E+52|—(a+y)R

dD

—=0ol —uD

dt a

Model description

S(t) represents the individuals prone to contacting the virus, the susceptible class already in contact
with the virus showing no clinical symptoms yet are represented by E(t), | (t) represents the
infected population, the population that have been vaccinated is represented by V(t), R(t) are
recovered individual, D(t) denotes the exited population, and the total population is represented by

N(t).

@

We define the initial condition as S(0) = sy, E(0) =&y, 1(0) =iy.V (0) =v,,R(0) =1,

D(0) =d,

The descriptions, parameters, and values are presented in Table 1.
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Table 1: Descriptions, parameters and values

Description Parameters  Values References

Initial susceptible population So 200 Assumed

Initial exposed population e, 120 Assumed

Initial infected population io 80 Assumed

Initial vaccinated population V, 60 Assumed

Initial recovered population I 40 Assumed

Exited population Do 40 Assumed
Recruitment rate A 500 Fitted

Effective recovery rate o 0.1 Estimated
Vaccination rate 7 0<o<1 incorporated
Acceptance rate of enlightenment z 0<z<1 incorporated

for vaccine

Infected recovery rate 5 0.0035 Wousu et al. (2022)
Infected rate o 0.04539 Wusu et al. (2022)
Natural death rate H 0.03 Estimated
Infection contact rate B 0.655 Wusu et al. (2022)
Progressive rate of infected to o 0.0002931 Wousu et al. (2022)
susceptible

Incidence rate A 0.002 Fitted

Existence and uniqueness of solution
Theorem 1a: Suppose E! represents the region 0 < @ < R, then the coupled equations in

f,
(1) has a unique solution, provided that 0

‘ i=12,---,6 are bounded and continuous.
i

Proof:
From equation (1), let; f, = A —(O(+2) + 1)S + oR — (1&#),53'
1- |
=D 0 -d e
f3 =7E—(52—G+/J)|
f, =0(1+2)S— v
f6 :O'| —ﬂD
oo+ p [Teloo, [Tl g [Tl o [T (g
ds '[dE| '[dR dD
%: ,dlz(j/_l,-é‘l_l,_/_l)’d_zz ’ﬂz ,%: %ZO
ds dE di dv dr dD
%: ,%: ’dfs =0, +o+4), fs ’%:0’%:0
ds dE dl dv| ’|drR dD
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sl s z),[IMal g [dfa] _g [dfa] _ ) [9Ta] o [dfa| g
ds dE di dv dr dD
dfs| o [dfs]_ 5 [dfs|_ 5 |dfs|_ df5

ds dE| Mldi| T2lav] ’
dfs| o [%fel o, dfe ,%:o,%:o,%:o.

ds| "'[dE] dv dR dD

It could be observed that all the partial derivatives are Lipschitz continuous and bounded.
Hence, the system of equations (1) has a unique solution.

Positivity of solution
All parameters of the modified model are positively represented. We have that;
N(t) = S(t) + E(t) + 1(t) + V(1) + R(t) + D(1). )
Taking its derivatives,
dN _ dS dE dI dV dR dD
dt dt dt dt dt dt dt
dN
—<A— N
a N

t

Ae . . .
N(t)e” = +C, where C is a constant of integration.

Applying the initial condition att = 0,
c-n@) -2
7

Attimet=0,

lim N(t) < Iim{é+(N(0)—AJe‘M}:A
t—o t—o| U Y% U
Hence all terms are positive and the solution is said to be bounded.

Equilibrium analysis
In this section, we discuss the disease free and endemic equilibrium of the model, respectively.

Existence of disease-free equilibrium
dN _dS dE dI dV+d_R+d_D

=—t—+—+— =
dt dt dt dt dt  dt dt
From (1), set1=0as S((1+ z)6’+,u)— A,

At equilibrium point N (t) =0, i.e

This implies Sp ———
OL+2)+ p

Thus, the disease free equilibrium E; = (SO EoloVoRg DO) where S, #0and 1 =0,

E,= (soz; E=0,1 :OV:M,R:O,D:OJ

O0+2)+u’ ’ OL+12)+ u
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Existence of endemic equilibrium state

Let E,=(SE IV R"D") as disease endemic equilibrium. Consider the system of equations
(1) at equilibrium as obtained from each compartment;

D*=G|—*E (S +o+u)l” *:9(14-2)5*_R*=(51(52+0+,u)+}/52)|*_
H y V v y(a+ ) '
g S+ S+ o AHa )
y(— ) pA A= w)(o + 6, + 1) By

Basic reproduction number
From the system of equations (1), consider the disease compartments in the system of

equations. G = FxV* and SO:; . The transition matrix V and the transmission
O+2)+u
matrix F are obtained from the partial derivatives of F and V with respect to (E, 1), i.e.
dE (- w)psl
— = —(y-6, +)E
dt N_D (r=0,+mn)

=@ o4

Which can be evaluated at the disease free equilibrium E, and A= L

N-D
Thus, F = (%) and V; = avils) such that
oX; OX;
1 0
BA-—ppu 1o+
F= O(l+2)+u cand V7= % 7/1 #) 1
0 0

(G +o+u)(y+o,+u) (0, +0+p)
Since R, is the spectral radius of G = F xV

Therefore,
PL- )y
(OQ+2) + )6 + o+ )y + 61 + 1)

RO:

Stability analysis

Local stability analysis of diseases-free equilibrium
The local stability of the disease free equilibrium is determined by computing |J g, — il | =0

and evaluating using

E=[s,=— 2 E-g1=0v="0+DA o _gp_o
Ol+2)+u Ol+2z2)+u

To obtain the eigenvalues A; fori=12,34,5,6.
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Therefore:
O+ 2)+ p+(1— ) fl 0 —% 0 a 0
A-)pS 0
1- 1 —(y+o,+ — 0 0
L-mp (r+61+p) N_D 0
Jg = 0 y -(6,+o+u) O 0 0
o1+ 2) 0 0 7 0 0
0 5 8, 0 —(a+u)
0 0 o 0 0
Determining the eigenvalues,
0
0L+ 1)+ i+ (- A - 0 LB ¢« 0
1- 0
T B (TR S M L o,
Jg, = 0 7 ~(5,+0+m) 13 0 0 0
0(l+2) 0 0 H=24 0
0 oy 0y 0 —(a+p)- /15_# 2
0 0 o 0 0

Computing for A, 4,4,
21:—(9(14'2)4‘#), A’Z :_(a+/u)l 13 :_ﬂvﬂu =-

(1-p)pS°
—(y+d, +u)-2 T N_D  |=0
/4 —(d, +o+u)-4

R a(y+dy+pu+dy, +o+ A+ (y+dy + p)(dy +a+u)—%:0Reca”thm

BA— )y =Ry (0 +2) + u)(5, + o+ p)(y + 6, + 1)

Then the quadratic equation becomes:

Ra(+d+dy+0+2m)A++dy + ) (dy + 0+ 2)1-Ry) =0

Using Descartes’ rule of sign; the equation will have negative roots when R, <1 because
there will be no sign change.

Global stability at disease free equilibrium

Applying Lyapunov function approach to proceed for the result for the global stability of the
model at disease free equilibrium state.

V(t,S,EIV,R, D):C1E+C2I

d\t/ =C, E+ C2

1((1 1) pSI —(r+4, +ﬂ)Ej+cz(7| (8, +0+ 1))

N —
(C27 Ci(r+9; +ﬂ))E +(C1 (1N,u),BSI

C,(0, +o+ ,u)jl
d-p)pu

00D+ 1) -Cy (6, +0'+#)]|2

< (Coy—Cily + 6, + )y + (cl
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14 Q- ) Bu
- 1) | - (5 |
(6, + 7+ )5, +a+,u)((t9(1+z)+,u) (r+0p+40) j+5z +a+,u(7E (% +o-+u))
y (=) fu - S N y (=) Bu

(O, +7+ )0, +o+ u) o, +o+u S, +o+u (O, +7+ )0, +o+ 1)
Since R, = yd— ) Bu

(01 + 7+ )6, + 0+ p)
Therefore we have, Ryl — 1 = (R, —1)I

an =
6y +7+ )6, +0+ p) (6, +0 + 1)
V' < (8, +0+w)(R, -1l
It is imperative to note that V' = Qonly when E = 0, the substitution of E = 0 into the model

. A
system of equations (1) shows that S=———— att —>oo. Based on LaSalle’s

(0A+2)+ p)
invariance principle. Hence E, =0 is globally asymptotically stable whenever R, < 1.
Numerical simulation
Here we apply the variational iteration method to obtain the numerical solution of the

epidemiology model. For easy computation, we let 1=

and with and constructing

an iteration formula for each compartments of the model;

Snaa(t) =S, (1) - j% Sp () = A+ 0@+ 2)S, (7) — R, (7) + (1= 1) S, (1)1 (r) Ad T
0

t

Ena (D) =E, (1) —I% En(@) —A=0)85, (@)1, ()4 = (y + 61 + w)E, (r)d7

0

t
o ® =10~ [ 21,6 = B (0) + (3, — 0 + )1 ()07
0

t

Vaa ) =Vo 0~ [V, () ~ 00+ 25, 6) — ¥V, (e
0

t

Ry =Rn(t) - (f)% Rn(7) —61En(z) —921In(7) + (@ + ©)Rp (r)dz

t
Dra ) = Dy (0~ [ =Dy () 0t (1) D, ()9
0

At n=0

S1(t) = (A= (0L +2) + 1)sg + arg — (L= 1) BSgig)t Eq(t) = (L~ p0) fsglg — (¥ — 81 + 1)ep)t
1,(t) = (g — (62 — o + )it

Vi (t) = (0L +2)sg — )t

Ry (1) = (618 + S3lp — (a + 1) 1p)t

Dy (t) = (ol — tDo)t
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Subsequent iterations such as N =1,2,-- -k can computed using the following maple 18 codes;
Restart:

ic:={S, (1) = (A - (01+ 2) + )s +ary — (1 12) fgio)L.

S$1(7) = (A= (O +2) + p)s¢ + ary — (1= 1) BSolg)7

Ey(8) = (1- 1) Bgig — (7 = 61 + m)eo)t, Ey (z) = (L— 1) Bsoly — (v — 6y + m)eg)T

1,(t) = (18 — (0, — o+ )ig)t, 11(7) = (18 — (0 — o+ )ig)7, Vi (t) = (O(1+ 2)s0 — pvp)t,
Vi(7) = (0(L+2)sg — )7, Ry (t) = (618q + Flg — (@ + p)1g)t, Ry (7) = (6,80 + Flg — (@ + 2)1p)7,
D; (t) = (0o — #Dg)t, Dy (¢) = (i — 4Dg)7}

#second iteration

S, (t) = collect(eval(S,,;,{n =1 ic}),t)

E, (t) =collect(eval(E,,; {n =1ic}),t)

I, (t) =collect(eval(l,,;,{n =1ic}),1)

V, (t) = collect (eval (V4 . {n =1 ic}),t)

R, (t) = collect(eval(R,,;,{n =1 ic}),t)

D, (t) = collect(eval(D, 4, {n =1ic}),t)
Thus, the solution of each class evaluated using the parameters defined on Table 1 are

200 + (487.1008000 - 2000(1+ z))t —0.0005797992927((487.1008000 - 200(A(1 + z)))t>

S(t) =
® + t2[8.4496000009(1+ ) —20.97381839 -%0(1+ 2)(487.1008000 - 200(6 (1 + z))]

| +0.0005797992927(487.1008000 - 2000(1 + 2) )3

I (t) = 80 + 2.5534320t + (- 0.01022349938 )2
60 + (1.8 + 2000(1+ z))t

£ {120 +1.53920000t + (13.38643359 - 5.4496000000(1 + z))tz}

V(t) = 1 2
+| 0.02700000000 - 36(1+ z) - 5(9(1+ 2) - 487.1008000 - 2000(1 + 2)) |t

R(t) = 40 — 4.416880t + 0.2955858139t2 D(t) = 40 —1.1765520t + 0.01802248546t>
Results and Discussions

Results
The acquired results for the numerical simulation are presented in Figures 1 to 4.
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0.1, p=0.48,1=0.002, 4 =0.03,0 = 0.0002931,z = 0.5

Figure 1: Effects of vaccination rate on susceptible individuals.
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So = 200,e, =120,iy =80,V, = 60,1, = 40,D, = 40, 8 = 0.655, y = 0.0445, A = 500
0, =0.0035,6, =0.04539,« = 0.1, p =0.48,4 = 0.002, 1« = 0.03,0 = 0.0002931,z = 0.5
Figure 2: Effects of vaccination rate on exposed individuals.
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Figure 3: Impacts of acceptance rate of enlightenment z on susceptible class.
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0, =0.0035, 5, =0.04539, ¢ = 0.1, p = 0.48, 1 = 0.002, 1 = 0.03, o = 0.0002931, & = 0.6
Figure 4: Impacts of acceptance rate of enlightenment z on vaccination class.

Discussion enlightenment rate in the prevalence of

The graphs (Figures 1-4) reveal the impacts COVID-19. It could be observed that
of vaccination and acceptance of vaccination is a good control factor that
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should be implemented by health care
workers to reduce the disease outburst. Figure
1 particularly indicates that high rate of
vaccination tends to reduce the number of
individuals prone to contacting the disease. In
fact, this correlates with the simulation
outcome presented in Figure 2 where a
drastic reduction in the number of exposed
population is observed. Figures 3 and 4 show
that the rate of prevalence of COVID-19 is
dependent on the rate at which people accept
the enlightenment to be vaccinated. An
observation from the presented graph in
Figure 4 shows that more people tend to be
vaccinated if the rate at which the populations
embrace enlightenment to be vaccinated is
high. Figure 3 confirms a transitive property
of the enlightenment parameter on the
vaccination and susceptible class of the
model, respectively. It signifies that the
higher the enlightenment rate, the more
people tend to be vaccinated and the less
people tend to be prone to contact the disease.

Conclusion and recommendation

The analysis, simulation and results obtained
from this research work showed that effective
vaccination should be implemented to curb
the spread of COVID-19 pandemic. It is
advised that the media and health care
workers should enlighten the masses to go for
awareness programs as it will boost the rate
at which people see positivity in taking
vaccine.
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