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Abstract 

In this paper, a study of preventive measures capable of curbing the spread of COVID 19 

pandemic to avoid its second wave was carried out. The existence and uniqueness of the 

proposed mathematical model is assured, the basic reproduction number is established, the 

local and global stability of the disease free equilibrium are well obtained and the variational 

iteration method is applied to solve the mathematical model. Numerical simulation of the 

included control parameters are carried out. The obtained results and outcomes are presented 

graphically. It was revealed that enlightenment to vaccination awareness should be encouraged 

as vaccination is a good strategy of capturing the spread of the disease.  

 

Keywords: Covid-19, Basic Reproduction Number, Local stability, Global Stability, 
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Introduction 

The novel virus (2019-nCoV) is highly 

transmissible. This infection causes a severe 

acute respiratory syndrome and it has spread 

across the world. The confirmed cases of 

COVID-19 are over 10.27 million, and there 

have been more than 0.5 million deaths till 30 

June 2020 globally (WHO 2020). The WHO 

confirmed that the virus can be contacted via 

breathing. The incubation period of the 

disease is 2–14 days and around 97.5 per cent 

of infected individuals usually show 

symptoms within 11 to 12 days of infection 

(Del and Malani 2020, Li et al. 2020, Lai et 

al. 2020). 

To gain understanding of the spread and 

preventive measures that could be applied to 

curtail the disease, researchers have presented 

varieties of mathematical models. Das et al. 

(2021) established a mathematical model that 

described COVID-19 transmission dynamics 

with isolation class. The data acquired from 

an ongoing event in India was applied and 

their outcomes recommended how to control 

the spread of COVID-19, keeping in mind 

contact and recovery rate. An analysis of the 

COVID-19 transmission in Lagos Nigeria 

was also conducted by Okuonghae and 

Omame (2020); their results revealed that if 

at least 55% of the population comply with 

the social distancing regulation with about 

55% of the population effectively making use 

of face masks while in public, the disease will 

eventually die out in the population.  In the 

same vein, an analysis of the outburst of 

COVID-19 pandemic was examined in 

Nigeria by Ajisegiri et al. (2020), their 

outcome revealed possible evidence of 
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ongoing and increasing community 

transmission of COVID-19 infections and 

inadequate testing capacity and 

overwhelming of health resources.  

Numerical simulations often give realistic 

impacts of the parameters embedded in 

mathematical models. To carry out this 

simulation, numerical methods such as the 

variational iteration method proposed by He 

(1999) are often applied to solve the 

epidemiology models. Peter et al. (2018) 

applied this method to obtain the solution of a 

deterministic mathematical model of typhoid 

fever. The accuracy of the method is 

confirmed as it shows good agreement with 

the classical inbuilt RK4 on Maple 18.  

In this research, we modified a 

mathematical model of COVID 19 

transmission dynamics proposed by Wusu et 

al. (2022) by incorporating vaccination and 

enlightenment to vaccination parameter 

capable of capturing the spread of COVID-19 

to avoid second wave. The qualitative 

analysis of the model which involves 

establishing the basic reproduction number, 

disease free equilibrium and the threshold for 

local stability and global stability is 

conducted. The variational iteration method 

is applied to solve the epidemic model and 

numerical simulations are carried out with the 

aid of Maple 18 software.  

 

 

Materials and Methods 

Model formulation and analysis 

The coupled differential equations which portray the epidemic model are presented as 

follows: 
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Model description 

)(tS represents the individuals prone to contacting the virus, the susceptible class already in contact 

with the virus showing no clinical symptoms yet are represented by )(tE , )(tI represents the 

infected population, the population that have been vaccinated is represented by )(tV , )(tR are 

recovered individual, )(tD denotes the exited population, and the total population is represented by 

)(tN .  

We define the initial condition as oo rRvViIeEsS  )0(,)0(.)0(,)0(,)0( 000 , 

odD )0(  

The descriptions, parameters, and values are presented in Table 1. 
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Table 1: Descriptions, parameters and values

 

Description Parameters Values References 

Initial susceptible population  
0s

 
200  Assumed 

Initial exposed population 
0e  120 Assumed 

Initial infected population 
0i  80 Assumed 

Initial vaccinated population 
0v  60 Assumed 

Initial recovered population 
0r  40 Assumed 

Exited population 
0D  40 Assumed 

Recruitment rate   500 Fitted 

Effective recovery rate    0.1 Estimated 

Vaccination rate    10     incorporated 

Acceptance rate of enlightenment 

for vaccine 

z
 

10  z   incorporated 

Infected recovery rate 
1  0035.0  Wusu et al. (2022) 

Infected rate  
2  04539.0  Wusu et al. (2022) 

Natural death rate   0.03 Estimated 

Infection contact rate   655.0  Wusu et al. (2022) 

Progressive rate of infected to 

susceptible 

  0.0002931 Wusu et al. (2022) 

Incidence rate   002.0  Fitted 

 

Existence and uniqueness of solution 

Theorem 1a:

 

Suppose 1  represents the region ,0 R   then the coupled equations in 

)1( has a unique solution, provided that 6,,2,1, 



i

x

f

i

i

 

are bounded and continuous. 
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It could be observed that all the partial derivatives are Lipschitz continuous and bounded. 

Hence, the system of equations (1) has a unique solution. 

 

Positivity of solution 

All parameters of the modified model are positively represented. We have that; 

N(t) = S(t) + E(t) + I(t) + V(t) + R(t) + D(t).      (2) 

Taking its derivatives, 
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Hence all terms are positive and the solution is said to be bounded. 

 

Equilibrium analysis 

In this section, we discuss the disease free and endemic equilibrium of the model, respectively. 

 

Existence of disease-free equilibrium 

At equilibrium point N (t) = 0, i.e. 0
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Existence of endemic equilibrium state

 
Let )( ****** DRVIESEe   as disease endemic equilibrium. Consider the system of equations 

(1) at equilibrium as obtained from each compartment; 
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Basic reproduction number
 

From the system of equations (1), consider the disease compartments in the system of 
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Stability analysis

 
Local stability analysis of diseases-free equilibrium  

The local stability of the disease free equilibrium is determined by computing 0
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To obtain the eigenvalues i  for 6,5,4,3,2,1i . 

 

 

 

 

 



Tanz. J. Sci. Vol. 48(3) 2022 

685 

Therefore: 
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Using Descartes’ rule of sign; the equation will have negative roots when 10 R because 

there will be no sign change. 

 

Global stability at disease free equilibrium 
 

Applying Lyapunov function approach to proceed for the result for the global stability of the 

model at disease free equilibrium state.  
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Numerical simulation  
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Subsequent iterations such as kn ,2,1 can computed using the following maple 18 codes; 
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Thus, the solution of each class evaluated using the parameters defined on Table 1 are
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Results and Discussions 

Results 

The acquired results for the numerical simulation are presented in Figures 1 to 4. 
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Figure 1: Effects of vaccination rate on susceptible individuals. 
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Figure 2: Effects of vaccination rate on exposed individuals. 
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Figure 3: Impacts of acceptance rate of enlightenment z on susceptible class. 
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Figure 4: Impacts of acceptance rate of enlightenment z on vaccination class. 

 

Discussion 

The graphs (Figures 1–4) reveal the impacts 

of vaccination and acceptance of 

enlightenment rate in the prevalence of 

COVID-19. It could be observed that 

vaccination is a good control factor that 
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should be implemented by health care 

workers to reduce the disease outburst. Figure 

1 particularly indicates that high rate of 

vaccination tends to reduce the number of 

individuals prone to contacting the disease. In 

fact, this correlates with the simulation 

outcome presented in Figure 2 where a 

drastic reduction in the number of exposed 

population is observed. Figures 3 and 4 show 

that the rate of prevalence of COVID-19 is 

dependent on the rate at which people accept 

the enlightenment to be vaccinated. An 

observation from the presented graph in 

Figure 4 shows that more people tend to be 

vaccinated if the rate at which the populations 

embrace enlightenment to be vaccinated is 

high. Figure 3 confirms a transitive property 

of the enlightenment parameter on the 

vaccination and susceptible class of the 

model, respectively. It signifies that the 

higher the enlightenment rate, the more 

people tend to be vaccinated and the less 

people tend to be prone to contact the disease. 

 

Conclusion and recommendation 

The analysis, simulation and results obtained 

from this research work showed that effective 

vaccination should be implemented to curb 

the spread of COVID-19 pandemic.  It is 

advised that the media and health care 

workers should enlighten the masses to go for 

awareness programs as it will boost the rate 

at which people see positivity in taking 

vaccine. 
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