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Abstract 

Volumetric apparatus calibration is a very sensitive matter in metrological institutions. Identification 

and evaluation of the uncertainty factors affecting volume calibration of volumetric apparatus such as 

small laboratory glassware is a critical issue to investigate in order to increase accuracy in calibration. 

This study investigates the contributions of ambient conditions and water temperature in volume 

calibration of small laboratory glassware. The study used existing empirical data from the Tanzania 

Bureau of Standards. The multiple linear regression model was used to establish better relationship 

between explanatory variables and response variable. The model analyzed three predictor variables 

namely ambient temperature, pressure and relative humidity. Water temperature was dropped due to 

high multicollinearity with ambient temperature. The results from this study revealed that the 

variations in calibration of small volumetric laboratory glassware have strong association with ambient 

temperature, pressure and their interaction and weak one with ambient relative humidity. It is therefore 

recommended to have appropriate settings of these ambient conditions in volume calibration of small 

laboratory glassware to ensure that the glassware used for analysis and other practices are accurately 

calibrated for betterment of practical or test results. 
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Introduction 

Calibration is the process of configuring an 

instrument to provide a result for a sample 

within an acceptable range of accuracy. This 

practice is performed by special organs such as 

accredited laboratories and institutes of 

standards. The present study focused on 

uncertainty factors associated with calibration 

of volumetric glassware, especially small 

laboratory glassware such as micropipette or 

piston pipettes, graduated tubes and other 

volumetric vessels (Almeida et al. 2013, 

Rahman et al. 2015, de Groot 2018). Small 

laboratory glassware are important equipment 

which find use in different fields. The 

measurement of small amounts of liquids is 

very important in fields like research, health, 

chemistry, microbiology and genetics (Almeida 

et al. 2013, Rahman et al. 2015). So, for 

accurate results from volumetric glassware, 

accurate and precise calibration is important for 

best results in production, investigation or 

research. 
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Small laboratory glassware is calibrated by 

the use of gravimetric method, using a liquid of 

known specific density (generally pure water 

e.g., distilled water) at a reference temperature 

of 20 °C and an analytical balance (Almeida et 

al. 2013, de Groot 2018). This practice is based 

upon determination of the volume of water 

either contained in or delivered by the vessel 

under specified ambient conditions (specified 

room temperature, pressure and relative 

humidity) (Rahman et al. 2015). This method is 

not a straight forward approach (de Groot 

2018). The method involves a lot of processes 

and measurements like weighing the weight of 

water contained or delivered by a vessel and 

then convert it to volume using special formula 

at a reference temperature (normally 20 °C) 

(Sutton and Reid 2017, Almeida et al. 2013, de 

Groot 2018). The formula used for conversion 

of liquid weight to volume depends on 

accuracy measurements of water temperature, 

air temperature and pressure (Almeida et al. 

2013, de Groot 2018). Also, appropriate setting 

of ambient relative humidity helps in accuracy 

weight measurements of water if evaporation is 

a concern (Faison and Brickenkamp 2004, 

Sutton and Reid 2018). Normally, ambient 

conditions of the calibration laboratory are 

controlled by weather control system with 

installed equipment like barometer, 

thermometer and hygrometer to monitor and 

control the ambient conditions (Ogu et al. 

2016, de Groot 2018). 

When ambient conditions and water 

temperature measurement are not well 

monitored and controlled, they will result in 

wrong or poor calibration (Rahman et al. 2015, 

de Groot 2018). To manage degree of 

uncertainty caused by irregularities of ambient 

conditions and water temperature during 

calibration, several studies have been done to 

ascertain the degree of uncertainty for ambient 

conditions and water temperature (Faison and 

Brickenkamp 2004, Sutton and Reid 2017). 

The findings have shown that calibration 

within uncertainty range of relative air 

humidity between 40% and 60% with an error 

of ± 10% and temperature between 20 °C and 

23 °C at local constant of ± 1 °C produces an 

accurate calibration result (Faison and 

Brickenkamp 2004). Malengo et al. (2018) in 

their report on ambient conditions for 

gravimetric volume calibration, the setting of 

ambient pressure between 600 hPa and 1100 

hPa, ambient temperature between 15 °C and 

27 °C and relative humidity between 20% and 

80% have shown better calibration results. 

Also, to overcome calibration errors due to 

water temperature, the findings have shown 

accurate calibration when the test water was 

allowed to stay in the working room for a 

sufficient time (1 h to 2 h) to reach equilibrium 

with the room conditions (BIS 2012). 

Despite establishment of uncertainty or 

working range of ambient conditions, there is 

no study in the existing literature which has 

been done to analyze the effects of ambient 

conditions and water temperature on volume 

calibration of small laboratory glassware. The 

current study employed a multiple linear 

regression model to investigate the influence of 

ambient conditions and water temperature in 

volume calibration of small laboratory 

glassware. The results of this study will allow 

the improvement of the calibration procedures 

of small laboratory glassware and 

harmonization of the results between 

laboratories for better comparable results. 

 

Material and Methods 
The current study used secondary data 

from metrology laboratory of Tanzania Bureau 

of Standards (TBS) and the collection 

permission was assisted by a Senior 

Metrologist in that laboratory. Seventy (70) 

observations were collected from a series of 

repeated observations which were carried out 

during 1000 mL strike measure calibration. The 
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data included calibration volume (cvol) as a 

response variable and four predictor variables 

namely ambient temperature (ambtemp), 

ambient pressure (ambpres), ambient relative 

humidity (ambrh) and water temperature 

(wtemp). The data were analyzed descriptively 

in terms of measures of central tendency and 

measures of variability. The measures of 

central tendency include the mean, median and 

mode. The measures of variability include 

standard deviation, skewness and kurtosis. This 

analysis of data is necessary as it helps to 

determine the normality of the distribution.  

The response variable assumed to be 

directly related to a linear combination of 

explanatory variables. Multiple Linear 

Regression (MLR) model was used to fit the 

data. The model aimed at establishing the 

relationship between calibration volume of 

small laboratory glassware as response variable 

denoted by Y and the explanatory variables 

which are ambient temperature X1 ambient 

pressure X2, ambient relative air humidity X3 

and water temperature X4 together with their 

interaction terms (𝑋15 + ⋯ + 𝑋𝑖𝑗). The 

interaction terms represent the dependence 

contribution of one explanatory variable on a 

certain level or value of one or more 

explanatory variables (Fitzmaurice 2000). The 

relationship between the response variable and 

the explanatory variables is represented by the 

following equation: 

𝑌𝑖 = 𝛽0 + 𝛽1𝛸𝑖 1 + 𝛽2𝛸𝑖 2 + 𝛽3𝛸𝑖 3 + 𝛽4𝛸𝑖 4 

                + 𝛽5𝛸𝑖 5+ . . . +𝛽𝑗𝛸𝑖 𝑗 + 𝜀𝑖 ,              (1) 

where kjj , . . . ,3 ,2 ,1 ,0;  are regression 

coefficients for k explanatory variables, the 

subscript i denote the number of observations, 

 is an error term assumed to be normally 

distributed with the properties that 0)( iE  , 

the errors have constant variance (i.e.,

2)(  iVar ) and 0),( jiCov  for ji  . 

From this we obtain 

i jji ii xβ  xββ)xE(Y|XY  110
ˆ . 

The MLR model was developed starting 

with the linear combination of the response 

variable with the explanatory variables without 

interaction terms (model equation (2)),             
𝑌𝑖 = 𝛽0 + 𝛽1𝛸𝑖 1 + 𝛽2𝛸𝑖 2 + 𝛽3𝛸𝑖 3 + 𝛽4𝛸𝑖 4 

+ 𝜀𝑖,                                                      (2) 

followed by a model with addition of 

interaction terms (model equation (1)). 

Addition of interaction terms followed 

hierarchical approach, which enters variables in 

a series of blocks of variables to examine 

whether each new block adds anything to the 

prediction produced by the previous block.  

The independent effects of the explanatory 

variable on the response variable were not 

considered since the calibration practice takes 

place in the environment where all these 

explanatory variables coexist. The process of 

developing and analyzing the model were 

performed using Stata. 

The correct use of the MLR model 

requires that several critical assumptions be 

satisfied in order to apply the model and 

establish validity. The assumptions include 

linearity, independence of errors, 

homoscedasticity, normality, and collinearity 

(Garson 2012). The test for these assumptions 

was performed using Statistical Package for the 

Social Sciences (SPSS) and Stata software 

package. 

The linearity relationship between each 

explanatory variable and the response variable 

were determined by constructing a scatter plot 

for the explanatory variables against the 

response variable Y. Multicollinearity among a 

set of explanatory variables were examined by 

variance inflation factor (VIF). The VIFs above 

10 are seen as a cause of multicollinearity 

among explanatory variables. The explanatory 

variables with high VIF (VIF above 10) imply 
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that their effects in the model can be explained 

by another explanatory variable within the 

model and they are excluded (Landau and 

Everitt 2004). 

The Durbin-Watson statistic was used to 

determine the independence of error. The 

Durbin-Watson statistic is generally ranging 

from 0 to 4. The values between 1.5 and 2.5 

mean that the errors are independent of one 

another (uncorrelated), and if the value 

approaches 0, it indicates increasingly stronger 

positive correlation and values towards 4 

indicate increasingly stronger negative 

correlations (Garson 2012, Stirba 2016). 

Furthermore, the plot of the standardized 

residuals (the errors) against the standardized 

predicted values was used to test variance of 

error term (homoscedasticity). When this 

assumption is satisfied, residuals normally 

form a non-pattern cloud of dots around the 

regression line (Keith 2014). 

When the assumptions of the MLR model 

(1) were satisfied, the method of least squares 

was used to find the optimal estimator of the 

unknown regression coefficients s'j  of the 

model. The estimates s'ˆ
j  of the model 

parameters were estimated using sample data in 

Stata software to give the best fit of the 

observations (Montgomery and Runger 2014). 

The coefficient of determination R
2
 and 

adjusted coefficient of determination 
2

R were 

computed. The R
2 

was used to measure 

usefulness of the model for predicting 

calibration volume as a response variable. The 

R
2 

depicts how well the response variable can 

be explained by explanatory variables. 
2

R has 

similar interpretation as R
2
, however it attempts 

to improve estimation of R
2

. R
2

 takes on values 

between 0 and 1, and 
2

R is always smaller 

than R
2
. The predictive power of explanatory 

variables increases as the values of R
2
 move 

from 0 to 1. If the extreme value of the 

coefficient of determination is zero, it implies 

that the model explains none of the variability 

of the response data around its mean, and if it is 

one, it implies that all variations in the 

suggested model are explained by the predictor 

variables and that the fit is perfect. 

Furthermore, the Analysis of Variance 

(ANOVA) was performed to examine the 

significance of the model. ANOVA is a 

statistical test that allows consideration of 

parameters of several populations at once, by 

testing hypothesis on two or more parameters 

at a time. It tests the null hypothesis that 

𝐻0:  𝛽1 = 𝛽2 = 𝛽3 = ⋯ = 𝛽𝑗 = 0 (intercept 

only model) against the alternative 

hypothesis 𝐻1: At least one of the 𝛽 parameters 

listed in 𝐻0 differs from 0 (predictor 

dependence model) (Graybill and Iyer 1994, 

Mendenhall and Sincich 2012). The p–value 

for F statistic was used to test the significance 

of the model at the level of significance of α = 

0.05. The model with predictors is considered 

to be significant if the F–value is greater than 

the level of significance (i.e., there exists 

relationships between response variable and 

explanatory variables). If the F–value is less 

than the level of significance, it implies that the 

model with no predictor is significant (no 

relationship between response variable and 

explanatory variables) (Graybill and Iyer 1994, 

Mendenhall and Sincich 2012). 

 

Results 
As shown in Table 1, the average values of 

the ambient temperature, pressure, relative 

humidity and water temperature from the 

sample data are 22.48 °C, 961.96 hPa, 59.8% 

and 22.59 °C, respectively. Also, the middle 

values (p50) of the ambient temperature, 

pressure, relative humidity and water 

temperature are 21.96 °C, 1000.35 hPa, 57.6% 

and 22.20 °C, respectively.  
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The standard deviation (𝑠𝑑) for the ambient 

temperature, pressure, relative humidity and 

water temperature are 4.73, 79.34, 12.85 and 

4.23, respectively. Because standard deviation 

is a measure of the variability about the mean, 

this is shown as the mean plus or minus one or 

two standard deviations(𝑖. 𝑒. , 𝑚𝑒𝑎𝑛 ±
𝑠𝑑 or 𝑚𝑒𝑎𝑛 ± 2𝑠𝑑). As shown in Figure 1 and 

Figure 2, majority of the observations are 

within one standard deviation of the mean, and 

nearly all within two standard deviations of the 

mean.

Table 1: Descriptive statistics of ambient conditions and water temperature 

Statistics ambtemp ambpres ambrh wtemp 

N 70 70 70 70 

Mean 22.48071 961.9556 59.80629 22.59414 

p50 21.955 1000.35 57.63 22.195 

Sd 4.730788 79.3436 12.84925 4.227372 

Min 14.81 789.28 31.6 15.39 

Max 31.1 1056.8 86.3 29.89 

Range 16.29 267.52 54.7 14.5 

Skewness 0.2062174 -0.5584883 0.0189588 0.0726298 

Kurtosis 1.856683 1.73412 2.549749 1.888542 

  

The coefficient of skewness is and 

indicator for symmetrical or asymmetrical 

distributions. The coefficient of skewness for 

the ambient relative humidity and water 

temperature are very small (relatively close to 

zero) such that their distributions look fairly 

normal as shown in Figure 1. 

The distribution of the ambient 

temperature is slightly skewed to the right 

(slightly positively skewed) with coefficient of 

skewness of 0.21 and that of the ambient 

pressure is slightly skewed to the left (slightly 

negatively skewed) with the coefficient of 

skewness –0.56. Figure 2 shows the 

distributions of ambient temperature and 

pressure. 

Lack for normality of ambient 

temperature and pressure were corrected by 

transformation of these data. Square root 

transformation was done for ambient 

temperature values. For ambient pressure, its 

values were first reflected and then 

transformed by taking square root of the 

reflected values (Howell 2010, Tabachnick et 

al. 2019). The resulted distributions for both 

transformed ambient temperature (tr.amtemp), 

𝑋1
∗ data values and transformed ambient 

pressure (tr.ambpres), 𝑋2
∗ data values are 

shown in Figure 3. 
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Figure 1: Histograms for the distributions of water temperature and ambient relative humidity. 

  

Figure 2: Histogram for the distributions of ambient temperature and ambient pressure. 
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Figure 3: Histogram for the transformed distributions of ambient temperature and pressure. 

 

Model assumptions 

Multicollinearity  

Test for multicollinearity among 

explanatory variables is very important. Table 

2 shows variance inflation factors for the four 

explanatory variables, transformed ambient 

temperature, transformed ambient pressure, 

relative humidity and water temperature. 

The VIFs for the ambient temperature and 

water temperature are very high; this indicates 

the presence of multicollinearity between them. 

Therefore, in this study water temperature was 

excluded in the model as its effects can be 

explained by ambient temperature. 

 

Table 2: Variance inflation factors for the 

explanatory variables 

Variables Multicollinearity status 

Tolerance VIF 

tr.ambtemp 0.059 17.082 

tr.ambpres 0.545 1.836 

ambrh 0.748 1.336 

wtemp 0.071 14.152 

 

Linearity  

Figure 4 shows that all the explanatory 

variables have linear relationships with the 

response variable, hence the assumption is 

confirmed.  
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Figure 4: Scatter plots of every predictor variable against response variable. 

 

The matrix scatter plot shows a stronger 

linear relationship between calibration volume 

and ambient temperature, moderate linear 

relationship between calibration volume and 

ambient pressure, and slightly linear 

relationship between calibration volume and 

ambient relative humidity. Though ambient 

temperature shows a linear relationship with 

ambient pressure and relative humidity, its 

correlation is less than 80% which cannot 

affect much the regression. 

 

Independent errors 

In this study the Durbin-Watson statistic 

is 2.177 which is between 1.5 and 2.5 and very 

close to 2 as shown in the last right column of 

Table 3; therefore the errors are independent of 

one another. 

 

Table 3: Autocorrelation analysis of errors by Durbin-Watson 

Model R R square Adjusted R square Std. error of the estimate Durbin-Watson 

1 0.966 0.933 0.929 0.217500612019461 2.177 

 

Normality  

In Figure 5, the residual plots in the 

histogram show that the distribution of errors 

follows a normal distribution (i.e., the residuals 

are normally distributed around zero). The 

expected and observed cumulative probabilities 

in normal probability plot are fairly normal as 

most of the points cluster around the straight 

line. This analysis shows small deviations of 

observed calibration volume from predicted 

calibration volume. In this case, the assumption 

is not violated. 
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(a) Histogram of the standardized residual. 

 
(b) Normal probability plot of the residue. 

Figure 5: Residue analysis. 
 

Homoscedasticity  

The plot in Figure 6 shows no pattern, 

and thus the data points seem fairly randomly 

distributed with a fairly even spread of 

residuals at all predicted values. Therefore, the 

error variation of the sample data under 

investigation is the same for the entire range of 

response variable (homoscedasticity). 

 
Figure 6: Residual plot. 
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Regression model 

The Stata output for fitting the multiple 

regression model of the response variable 𝑌 

with three explanatory variables (without 

interaction) 𝑋1
∗, 𝑋2

∗ and 𝑋3 are presented in 

Table 4. The results in Table 4 show that the 

combinations of explanatory variables 

significantly contribute in volume calibration. 

The R
2
 using all explanatory variables 

(𝑋1
∗, 𝑋2

∗ and 𝑋3) simultaneously is 0.92. This 

indicates that 92% of variation in volume 

calibration of small laboratory glassware was 

explained by the model. The F–statistic (F (3, 

66) = 255.41) with p–value < 0.00001 at the 

level of significance α = 0.05, suggest that the 

combination of these explanatory variables 

contribute significantly to the calibration 

volume of the small laboratory glassware. Only 

ambient temperature and pressure are 

significantly contributing to the volume 

calibration at the significance level of p < 0.05. 

That is, ambient temperature and pressure 

together explain 92% of the variations in 

volume calibration of small laboratory 

glassware. But this does not imply that ambient 

relative humidity is not important factor in 

calibration. It has contribution, though it is 

little compared to the other two explanatory 

variables. The resulted model after substituting 

parameter coefficient in model (2) as estimated 

by least square method is 

�̂� = 991.84 + 1.77𝑋1
∗ − 0.03𝑋2

∗ − 0.005𝛸3.     (3) 

 

The parameter coefficients in model (3) 

suggest that ambient temperature contribute 

more in volume calibration of small laboratory 

glassware. 

 

Table 4: Stata output fitting calibration volume to ambient temperature, pressure and relative humidity 

     Number of obs  = 70 

Source  SS df MS  F (3, 66)            = 255.41 

Model  42.2079686 3 14.0693229  Prob > F            = 0.0000 

Residual 3.63567494 66 0.055085984  R-squared         = 0.9207 

Total 45.8436436 69 0.664400632  Adj R-squared  = 0.9171 

     Root MSE         = 0.2347 

 

𝑌 �̂�𝑗 Coef. Std. Err.               t P>|𝑡| [95%  Conf. Interval] 

𝑋1
∗ 1.774911 0.0810247       21.91 0.000 1.61314 1.936682 

𝑋2
∗ -0.0294398 0.0089588       -3.29 0.002 -0.0473267 -0.01155 

𝑋3 -0.0048241 0.0024892       -1.94 0.057 -0.009794 0.000146 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 991.835 0.3112123      3187.01 0.000 991.2137 992.4564 

 

When interaction terms were added to 

model (3) only one block variables were 

significantly adding value to the prediction 

produced by previous explanatory variables. 

Table 5 shows the model results of the MLR 

model (3) when the interaction terms were 

added hierarchically. The addition of 

interaction term between ambient temperature 

and pressure to model (3), has shown a 

significant improvement on the calibration of 

small laboratory glassware, (F (4, 65) = 

226.15, p < 0.00001. The R
2
 has increased from 
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92% to 93% and the residual has decreased by 

0.57. That is, addition of the interaction term 

between ambient temperature and pressure 

explains 1% more of the variation in volume 

calibration than explained by model (3). Only 

7% of variation in volume calibration can be 

explained by other factors not included in the 

model. The parameter coefficient for the 

ambient temperature, ambient pressure and that 

of the interaction between ambient temperature 

and pressure were tested significantly at the 

level of significance α = 0.05. The resulted 

model is  

�̂� = 993.88 − 0.27𝑋1
∗ + 1.30𝑋2

∗ − 0.002𝛸3 + 0.05𝑋1
∗𝑋2

∗.                        (4) 

 

Table 5: Stata output fitting calibration volume to ambient temperature, pressure, relative humidity 

and interaction terms 

     Number of obs = 70 

Source  SS df MS  F (4, 65)            = 226.15 

Model  42.7703614 4 10.6925903  Prob > F            =  0.0000 

Residual 3.07328219 65 0.047281264  R-squared         = 0.933 

Total 45.8436436 69 0.664400632  Adj R-squared  = 0.9288 

     Root MSE         = 0.21744 

 

𝑌 �̂�𝑗 Coef. Std. Err.            t P>|𝑡| [95%  Conf. Interval] 

𝑋1
∗ -0.2748404 0.0716366     -3.84 0.000         -0.4179086 -0.1317722 

𝑋2
∗ 1.300565 0.1566886      8.30 0.000          0.9876357 1.613493 

𝑋3 -0.0023535 0.0024149     -0.97 0.333         -0.0071763 0.0024694 

𝑋5 0.0513645 0.0148932      3.45 0.001          0.0216207 0.0811083 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 993.8817 .6597723      1506.40 0.000          992.5641 995.1994 

𝑋5 is the interaction between ambient temperature and pressure 𝑋1
∗𝑋2

∗  

 

 The 𝛽 coefficients in the MLR model (4) 

suggest that the ambient pressure has more 

influence in volume calibration of small 

laboratory glassware. This is different 

compared to model (3) where ambient 

temperature was the leading cause of variations 

when the explanatory variables were tested 

without interaction effects. The ambient 

temperature is negatively related to volume 

calibration while ambient pressure and the 

interaction of ambient temperature and pressure 

are positively related to volume calibration. 

The interaction term suggests that for every 

unit increase in ambient pressure, the constant 

term (993.88) will increase by 1.3 and the slope 

of ambient temperature will increase by 0.05 as 

shown in model (5). 
�̂� = (993.88 + 1.30) + (−0.27+0.05)𝑋1

∗ − 0.002𝛸3 

 �̂� = 995.18 − 0.22𝑋1
∗ − 0.002𝛸3                (5) 

 Likewise, for every unit increase in 

ambient temperature, the constant term will 

decrease by 0.27 and the slope of the ambient 

pressure increases by 0.05 as shown in model 

(6). 
  �̂� = (993.88 − 0.27) + (1.30+0.05)𝑋2

∗ − 0.002𝛸3  

  �̂� = 993.61 + 1.35𝑋2
∗ − 0.002𝛸3                     (6) 

 In model (5), the unit change in ambient 

pressure has shown an absolute large 

contribution to the constant term compared to 
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the unit change in ambient temperature in 

model (6). 

 

Discussion 

The observed variations in volume 

calibration of small laboratory glassware can 

be explained in terms of ambient temperature, 

pressure, relative humidity and the interactions 

between ambient temperature and pressure. 

The analyses of the models (3) and (4) have 

shown a highly significant contribution of 

ambient temperature and pressure and at a 

small extent with relative humidity in model 

(3). Literature reveals that during determination 

of the volume of water, the accuracy of 

measurements is affected by ambient 

temperature, pressure and relative humidity 

(Mangukiya and Panchal 2016). These factors 

are usually combined to give the Z-factor used 

in calculation of volume of water. The Z-factor 

or correction factor equation can be found in de 

Groot (2018), though the dependence of this Z-

factor from humidity is insignificant in 

comparison with the other parameter 

dependencies (de Groot 2018). The ambient 

relative humidity has a significant contribution 

in volume calibration of small laboratory 

glassware during mass weighing of the water 

delivered or contained by a vessel if 

evaporation is of concern (Liang et al. 2012). 

In addition to that, the study by Lorefice 

(2009) has also shown the contribution of 

ambient temperature, pressure and relative 

humidity in volume calibration of volumetric 

glassware. Figure 7 summarized the interactive 

contribution of ambient temperature, pressure, 

relative humidity and water temperature.  

 
Figure 7: Traceability of uncertainty chain for volume measurements at INRIM (Lorefice 2009). 

 

Interactions between ambient temperature 

and pressure have shown significance 

contributions in volume calibration of small 

laboratory glassware specifically during 

ambient air density measurements (Lorefice 

2009, de Groot 2018). Air density is important 
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especially when weighing the liquid mass to the 

highest accuracy (Lorefice 2009). 

Furthermore, studies indicate that 

volumetric glassware calibration is affected by 

its make material. Volumetric glass material 

expands or shrinks against small change in 

temperature as different types of glass materials 

have different expansion coefficients hence 

affecting volumetric glassware volume 

calibration (Rahman et al. 2015). Also, water 

density is affected by ambient temperature as 

the water density depends on water temperature 

in equilibrium to ambient temperature (Rahman 

et al. 2015, Sutton and Reid 2018, de Groot 

2018).  

 

Conclusion  

In this study, analysis of variance 

(ANOVA), and regression techniques were used 

to determine the contribution of ambient 

conditions and water temperature in volume 

calibration of small laboratory glassware. F 

statistics and p–values were used to test 

hypotheses about relationships between 

explanatory and response variables. Ambient 

temperature, pressure and relative humidity 

were considered. Both the ANOVA and 

regression techniques produced significance 

tests for ambient temperature and pressure 

together with their interaction term. The results 

have shown a potential contribution of ambient 

temperature, pressure and the interaction 

between ambient temperature and pressure in 

volume calibration of the small laboratory 

glassware. Ambient relative humidity has 

shown a week contribution in volume 

calibration when the interaction effects were not 

considered for a p–value less than the 0.05 

significance level. Therefore, it is recommended 

to consider appropriate settings of these ambient 

conditions in volume calibration of small 

laboratory glassware to ensure that the 

glassware used for analysis and other practices 

is accurate and is within the tolerance limits of 

the nominal value. 

Furthermore, the amount of variance 

explained could be maximized by including 

other factors such as factors originating from 

the balance (e.g., readability, repeatability, and 

departure from nominal value), influences from 

physical conditions of the weighing object and 

the use of nonlinear methods and models. 
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