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Abstract 

The effect of harvesting and predation on a Holling type II stage-structured predator-prey system 

with assumption that harvesting and predation happen only to mature preys was investigated. 

Stability of interior point was analysed using Routh Hurwith Criterion. Numerical simulations were 

carried out. The results show that harvesting and predation have strong negative impacts on 

population dynamics of stage structured predator-prey system. 
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Introduction 

The dynamic relationships between 

predators and their preys have long been and 

will continue to be one of the dominant themes 

in both ecology and mathematical ecology due 

to their universal existence and importance (Kar 

2005). Predator and prey interact by means of 

predation. A predator may prey on immature or 

mature individuals. A predator-prey system 

which includes the stages of growth for species 

is called stage structured predator-prey system. 

Much attention has been paid to biological 

systems with stage structures (Xu et al. 2004). 

This is due to the fact that there are many 

species whose individual members have a life 

history taking them through two stages, 

immature and mature. Thus considering stage 

structure in population, corresponds with the 

natural phenomenon (Zhang and Zhang 2016). 

The current study investigated a stage structured 

predator-prey system with Holling type II 

functional response, in which prey population is 

assumed to have two stages, immature and 

mature. By functional response we mean how 

predator responds to the prey density. In Holling 

type II functional response, the predator spends 

more time in searching for the prey at low prey 

densities, while the predator spends more time 

handling the prey at high prey densities.  

In ecology, species live in communities 

where two or more species either share some 

basic requirements or compete for resources, 

habitats or territories (Andre 2014). However 

there are many factors that affect the dynamics 

of predator-prey interactions such as diseases, 

harvesting, prey refuge, among others (Naji and 

Majeed 2016). Many biological species have 

been driven to extinction and many others are at 

the verge of extinction due to several external 

forces such as over-exploitation, 

over-predation, environmental pollution and 

mismanagement of the habitats (Dubey 2007, 

Sagamiko et al. 2015). In order to protect these 

species, appropriate measures such as 

restriction on harvesting and creating reserved 

zones should be adopted in efforts to decrease 

the interactions of these species with external 

forces (Dubey 2007). Kar (2006) pointed out 

that harvesting has a strong impact on the 

dynamical evolution of a population subjected 

to it. 
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Several studies have been conducted on the 

stage structured predator-prey system such as 

those by Georgescu and Hsieh (2007), Kar and 

Chattopadhyay (2010), Tian and Xu (2011), 

Gakkhar and Gupta (2017), Naji and Majeed 

(2016), but the aspect of logistic growth to both 

species with harvesting efforts applied to prey 

species has not been considered. Thus this study 

investigated the predator-prey system subjected 

to Holling type II functional response with stage 

structure to prey species, in the presence of 

harvesting.  

 

Materials and Methods 

Formulation of the model 

Consider one prey and one predator system. 

Let x(t) and y(t) represent the population density 

of prey species and predator species at time t, 
respectively. The prey species population is 

divided into two sub-populations, namely the 

immature and mature sub-populations. Now let 

x1(t) and x2(t) represent the population densities 

of immature and mature prey species at time t, 

respectively. The population density of prey 

species at time t is given by 

1 2( ) = ( ) ( )x t x t x t . For clarity x , 
1x , 

2x  

and y  will be used throughout this study 

instead of ( )x t , 
1( )x t , 

2( )x t and ( )y t , 

respectively. 

The study adopts Holling type II functional 

response to the consumption of prey by 

individual predator. The model is developed 

from the following assumptions: 

i. All external factors do not affect the system.  

ii. The immature preys depend on mature 

preys. 

iii. The immature prey population density 

grows logistically with intrinsic growth rate 

1 > 0r  and environmental carrying capacity 

1 > 0k and they become mature at the rate 

> 0 while experiencing natural death at the 

rate 
1 > 0 . 

iv. The matured preys are harvested at constant 

per capita rate > 0h , and face natural 

death at the per capita rate 
2 > 0 . They are 

also captured by predators at the rate > 0a  

( a  is the predation rate), and predator’s 

handling time is > 0
b

a
. 

v. The predator depends on matured prey 

species with conversion factor > 0c . Also 

predator has different sources of food which 

leads to the population density of predators 

grow logistically with the rate 
3 > 0r  and 

environmental carrying capacity 
3 > 0k  in 

the absence of preys, and face natural death 

at the per capita rate
3 > 0 . 

Following the above assumptions, the model 

equations will be described as  

1 2
1 2 1 1

1

2 2
1 2 2

2

2
3 3

3 2

1 2

= (1 ) ( ) ,

= ( ) ,
1

= 1 ,
1

, , > 0.

dx x
r x x

dt k

dx ayx
x h x

dt bx

dy y ayx
r y y c

dt k bx

x x y

 

 



  

  


   
     

  

       (1) 

The model system (1) is solved in the region  
3

1 2 1 10 2 20 0={( , , ) , ( (0) = , (0) = , (0) = )}.x x y x x x x y y R

 

Boundedness of the System 

Lemma 1 The solutions 
1 2 3( , , )x x y R  of 

the system (1) subjected to the given initial 

conditions are ultimately bounded in 3

R .  

Proof 1: let 
1 2 3( , , )x x y R  be any solution 

of the system (1) with initial conditions

1 10 2 20(0) = 0, (0) = 0,x x x x  and

0(0) = 0y y  , we define a time dependent 

function which describes the total population 

density of species, as 

  1 2 .t x cx y   
 

(2) 
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Calculating the derivative of ( )t  along the 

solutions of the system (1), yields  

1 2= .
d dx dx dy

c
dt dt dt dt


   (3) 

 Substituting equations of the system (1) into 

equation (3), results into  

2
1 2 3 1 1 2 2 3

1 3

= 1 1 ( ) ( ) .
d x y

r x r y c x c h x y
dt k k


    

  
          

   

Let 
0 1=a c     and

0 2=b h  , we 

have  

2
1 2 3 0 1 0 2 3

1 3

= 1 1 .
d x y

r x r y a x cb x y
dt k k




  
       

   

For any arbitrary  chosen arbitrary, we have  

2
1 2 3 0 1 0 2 3

1 3

= 1 1 ( ) ( ) ( ) .
d x y

r x r y a x c b x y
dt k k


    

  
           

   

 

Choose 
0 0 3= min( , , )a b   , we have  

2
1 2 3

1 3

1 1
d x y

r x r y
dt k k




  
      

   
 

Now 
2 1 1

1 2

1

max 1 =
4

x k r
r x

k

  
  

  
 and 

3 3
3

3

max 1 =
4

y k r
r y

k

  
  

  
 this implies that  

1 1 3 3 .
4 4

d k r k r

dt


    

Let 1 1 3 3=
4 4

k r k r
K  , thus we have  

.
d

K
dt


   

Using integrating factor = tI e , we have 

( ) ,tK
t ce 



   

at = 0t , 
0(0) =   thus  

0 0( ) max ,tK K K
t e   

  

   
      

  
 

Therefore  

00 ( ) .t
K K

t e  
 

 
    

 
 

As t   , it gives  

0 ( ) ,
K

t


   

hence   is bounded in 3

R , implies  
1,x

2 ,x and y are bounded. This completes the 

proof.  

 

Equilibrium solutions of the system 

This section establishes conditions for existence 

of equilibrium points of the system (1). By 

equating 1 2= = = 0' ' 'x x y , the system (1) 

becomes  

2
1 2 1 1

1

2
1 2 2

2

2
3 3

3 2

1 ( ) = 0,

( ) = 0,
1

1 = 0.
1

x
r x x

k

ayx
x h x

bx

y ayx
r y y c

k bx

 

 



 
   

 

  


   
     

       

(4) 

Solving for y  from the third equation of the 

system (4), we get 

= 0,y                                (5) 

 or  

3 2
3 3

3 2

= .
1

k cax
y r

r bx


 
  

 
           (6) 

In the absence of predators, we have = 0y . 

Thus, substituting = 0y  into second equation 

of the system (4), yields  

1 2 2( ) = 0,x h x    

implying that  

2 1

2

= .x x
h





 
 

   

(7) 

 

Now, substituting equation (7) into the first 

equation of the system (4), yields  
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1
1 1 1 1

2 2 1

1 ( ) = 0,
( )

r
x x x

h h k

 
 

 

  
    

   

 

implying that  

1 = 0x                        (8) 

 or  

 1 2
1 0

( )
= 1 ,

k h
x Q






             (9) 

where 1 2
0

1

( )( )
= .

h
Q

r

  



  
 
 

 

Thus, when 
1 = 0x , implies 

2 = 0x  

(according to equation (7)). Hence the system 

(1) has trivial equilibria 
0(0,0,0)E . 

Similarly, when 1 0x  , implies 

 2 1 0= 1x k Q . Hence the system (1) has 

predator free equilibria 1 1 2( , ,0)E x x . For 

positive
1E we need 1 > 0x  and 2 > 0x , 

implies the equilibria 
1E
 
exists in 3

R  if  

0 < 1.Q
                          (10) 

Therefore, in absence of predator, the threshold 

value 
0Q  should be less than one, for the 

predator free equilibrium 
1E  to exist; 

otherwise prey population goes to extinction. 

The 
0Q  is the ratio between maximum death 

rate to the maximum growth rate of prey, it 

describes the average decrease of prey 

population. The results agree with the model 

assumptions that, prey population grows 

logistically in absence of predators. The 

following theorem summarizes the results.  

Theorem 1 The predator free equilibrium point 

1E  of the system (1) exists for
1 > 0x  and 

2 > 0x , if 
0 < 1Q , otherwise it does not exist. 

In the presence of predator population, we have 

0y  . Now, substituting equation (6) into the 

second equation of the system (4), yields  

3 2 2
1 2 2 3 3

3 2 2

( ) = 0,
(1 ) 1

ack x acx
x h x r

r bx bx
  

  
      

   

Making 
1x  the subject, we get  

3 2 2
1 2 2 3 3

3 2 2

1
= ( ) .

(1 ) 1

ack x acx
x h x r

r bx bx
 



   
      

        

(11) 

 Now, substituting equation (11) into the first 

equation of the system (4), yields  

2 1 3 2 2
1 2 2 2 3 3

1 3 2 2

1 ( ) = 0,
(1 ) 1

x ack x acx
r x h x r

k r bx bx

 
 



     
          

      

 

implying that  

2 = 0,x                        (12) 

 or  
3 2

2 2 2 1 2 0 = 0,x a x a x a       (13) 

 where 

   0 1 3 3 1 02

1
= 1 ,a D r k Q

b


 
      

 
 

 1 1 0 1 3 3 12

1
= 1 2 (1 ) ( ) ,a k b Q D b r acD

b


 
     

 

 

 2 1 0

2
= 1 ,a k Q

b
   

1 3 1
1

1 3

( )
=

ak k
D

rr

 




. 

For 
2 = 0x , implies 

1 = 0x  (according to 

equation (11)) and 3
3

3

= 1y k
r

 
 

 
 

(according to equation (6)). Thus, the system (1) 

has prey free equilibria 
2(0,0, )E y . 

For positive 
2E  we need > 0y , implies 

that the prey free equilibria exists in 3

R  if 

3 3> .r  Therefore in absence of prey 

population, the growth rate 
3r  of predator 

population should be greater than its death rate 

3  for the prey free equilibrium 
2E  to exist, 

otherwise the population goes to extinction. 

This agrees with the model assumption that the 

predator has different sources of food which 

leads to its population to grow logistically in 
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absence of preys. The following theorem 

summarizes the results.  

Theorem 2 The prey free equilibrium point 
2E  

of the system (1) exists for > 0y , if 
3 3>r  , 

otherwise it does not exist.  

For 
2 0x  , we have the cubic equation (13). 

Using Sturm’s theorem together with Descate’s 

Rule of Signs to discuss the possible real zeros 

of the cubic equation (13). 

The Sturm sequence corresponding to equation 

(13) is given by 
3 2

0 2 2 2 2 1 2 0( ) =p x x a x a x a   , 

2

1 2 2 2 2 1( ) = 3 2p x x a x a  , 

2

2 2 2 1 2 1 2 0

2 2 1
( ) = ( ) ( )

9 3 9
p x a a x a a a   , 

and 

2 2

3 2 2 1 2 2 1 22

1

1
( ) = (2 3 )p x a w w w w a

w
  , 

where 
2

1 2 1

2 2
=

9 3
w a a  and 

2 1 2 0

1
=

9
w a a a . 

For the roots to be biologically feasible to this 

study, the cubic equation (13) should have 

positive real zeros. So now 
2 (0, )x   and 

 I . Evaluating Sturm’s sequence at 

2 =x   gives, 

3 2

0 2 1 0( ) =p a a a      , 

2

1 2 1( ) = 3 2p a a    , 

2

2 2 1 1 2 0

2 2 1
( ) = ( ) ( )

9 3 9
p a a a a a    , 

and 

2 2

3 2 1 2 2 1 22

1

1
( ) = (2 3 )p a w w w w a

w
   . 

Descate’s Rule of Signs gives six cases on 

Sturm’s sequence evaluated at 
2 =x  , for 

cubic equation (13) to have real roots in 

( , ] . 

Case I 

If 
0( ) > 0p  , 

1( ) > 0p  , 
2( ) > 0p   and 

3( ) > 0p  , then the equation (13) will have 

no positive real zeros in 
R . Now 

0( ) > 0p   

and 
1( ) > 0p   if 

0 > 1Q , 
3 3<r   and 

1 < 1acD where 1 2
0

1

( )( )
= .

h
Q

r

  



  
 
 

And
2( ) > 0p   if 

0 < 1Q , 3 3>r   and 

1 > 2Q , where  1 1 0= 1Q bk Q . Since 

0( ) > 0p  , 
1( ) > 0p   and 

2( ) > 0p 
 

cannot happen simultaneously, then this case is 

not biologically feasible to this study. 

 

Case II 

If 
0( ) < 0p  , 

2( ) > 0p  , 
3( ) > 0p   with 

1( ) > 0p   or 
1( ) < 0p  , then the equation 

(13) will have exactly one positive real zero in 
R . This condition is biologically feasible to 

this study if 
1( ) < 0p  . So 

0( ) < 0p   if 

3 2

2 1 0 < 0a a a     ,
1( ) < 0p   if 

2

2 13 2 < 0a a   ,
2( ) > 0p   if 

0 < 1Q , 

3 3>r   and 
1 > 2Q ,and 

3( ) > 0p  if 

2 > 0,Q where 
2 2

2 2 1 2 2 1 2= 2 3Q a w w w w a  . 

Thus, system (1) has one positive interior 

equilibrium 
3E . Therefore, Co-existence 

equilibrium point 
3E  exists in 3

R  if the 

above conditions hold under case II. The 

following theorem summarizes the results.  

Theorem 3 An equilibrium solution 

3 1 2( , , )E x x y  of the system (1) exists for 

1 > 0x , 
2 > 0x  and > 0y  if 

1E  and 
2E  

also exists with 
1 > 2Q  and 

2 > 0Q  

otherwise it does not exist.  
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Theorem 4 Three equilibrium solutions 
1E , 

2E  and 
3E  of the system (1) co-exist if 

0 < 1Q , 
3 3>r  , 

1 > 2Q  and 
2 > 0Q .  

Case III 

If 
0( ) > 0p  , 

1( ) > 0p  , 
2( ) > 0p   and 

3( ) < 0p  , then equation (13) will have 

exactly one positive real zero in 
R . Since 

0( ) > 0p  , 
1( ) > 0p   and 

2( ) > 0p   

cannot happen simultaneously, then this case is 

not biologically feasible to this study.  

Case IV 

If 
0( ) < 0p  , 

2( ) > 0p  , 
3( ) < 0p   with 

1( ) > 0p   or 
1( ) < 0p  ,then equation (13) 

will have two or no positive real zeros. This 

condition is biologically feasible to this study if 

1( ) < 0p  . So 
3( ) < 0p   if 

2 < 0Q . 

Thus, the system of equations (1) may have two 

or zero positive interior equilibria 3,4E . 

Therefore, co-existence equilibrium point 3,4E  

exists in 3

R  if the above conditions hold 

under case IV. The following theorem 

summarizes the results.  

Theorem 5: Four equilibrium solutions 
1E , 

2E , 
3E  and 

4E  of the system (1) co-exist if 

0 < 1Q , 
3 3>r d , 

1 > 2Q  and 
2 < 0Q .  

Lemma 2: The system of equations (1) has two 

interior equilibrium points.  

Theorem 6: If the system has two interior 

equilibrium points, then there exists backward 

bifurcation.   

Case V 

If 
0( ) > 0p  , 

1( ) < 0p  , 
2( ) > 0p   and 

3( ) > 0p  , then the equation (13) will have 

two or zero (none) positive real zeros in 
R . 

Since 
0( ) > 0p   and 

2( ) > 0p  cannot 

happen simultaneously, then this case is not 

biologically feasible to this study. 

 

Case VI 

If 
0( ) > 0p  , 

1( ) < 0p  , 
2( ) > 0p   and 

3( ) < 0p  , then equation (13) will have three 

or one positive real zeros in 
R . Since 

0( ) > 0p   and 
2( ) > 0p   cannot happen 

simultaneously, then this case is not biologically 

feasible to this study. 

 

Local stability of the equilibrium points 

The stability of each equilibrium point is studied 

by computing Jacobian matrix and finding the 

eigenvalues evaluated at each equilibrium point. 

The real parts of eigenvalues of the Jacobian 

matrix must be negative for stability of 

equilibrium points. The corresponding Jacobian 

matrix for the system (1) is  

1 2
1 1

1

2
2 2

2 2

3 2
3 32

2 3 2

2
( ) 0

= .
(1 ) 1

2
0 ( )

(1 ) 1

r x
r

k

ay ax
J h

bx bx

cay r y cax
r

bx k bx

 

 



 
    
 
  

     
   

 
   

  

 

Local stability of boundary equilibrium 

points 

The Jacobian matrix of the system (1) evaluated 

at equilibrium point 
0(0,0,0E ) is given by 

1 1

0 2

3 3

( ) 0

= ( ) 0 .

0 0 ( )

r

J h

r

 

 



  
 

 
 
  

 

The corresponding characteristics polynomial is  
2

3 3 1 2( ) = 0,r             
where 

1 1 2= ( )h      , 

 2 1 0= 1 ,r Q  
 

where 1 2
0

1

( )( )
= .

h
Q

r

  



  
 
 

 

By using Routh-Hurwitz criteria, the necessary 

conditions for equilibrium point 
0E  of the 

system (1) to be locally asymptotically stable 
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are 
1 > 0  and 

2 > 0 , implies 
3 3<r   

and 
0 > 1Q , otherwise the population free 

equilibrium point 
0E  of the system (1) is 

unstable. The following theorem summarizes 

the results.  

Theorem 7 The equilibrium point 
0E  of the 

system (1) is locally asymptotically stable if 

0 > 1Q  and 
3 3<r  , otherwise is unstable.  

 

The Jacobian matrix evaluated at predator free 

equilibrium point  

   1 2
1 0 1 0

( )
1 , 1 ,0

k h
E Q k Q





 
  

 
 of the 

system (1) is given by  

 

 

 

 

1 1 0

1 0

2 2

1 0

1 0

3 3

1 0

( ) (2 1) 0

1
= ( ) .

1 1

1
0 0

1 1

r Q

ak Q
J h

bk Q

ack Q
r

bk Q

 

 



 
 
   
 
  

  
 

  
   

The corresponding characteristic equation is  

 

 
21 0

3 3 1 2

1 0

1
( ) = 0,

1 1

ack Q
r

bk Q
     

 
     

  

By Routh-Hurwitz criteria, the necessary 

conditions for predator free equilibrium point 

1E  of the system (1) to be locally 

asymptotically stable are 
1 > 0 , 

2 < 0 , 

3 3> r  and < 1M , where 

 

 
1 0

1 0 3 3

1
=

1 1 ( )

ack Q
M

bk Q r

 
 
      

. This 

would imply
3 3<r  , 

0 < 1Q , and < 1M , 

otherwise the predator free equilibrium point 

1E  of the system (1) is unstable. The following 

theorem summarizes the results.  

Theorem 8 The predator free equilibrium point 

1E  of the system (1) is locally asymptotically 

stable if 
3 3<r  , 

0 < 1Q , and < 1M , 

otherwise is unstable.  

The Jacobian matrix of the system (1) evaluated 

at prey free equilibrium point 

3
2 3

3

0,0, 1E k
r

  
  

  

 is given by 

1 1

3
1 2 3

3

3
3 3 3

3

( ) 0

= ( ) 1 0 .

0 1 ( )

r

J h ak
r

ack r
r

 


 




 
 
  
         
   
 

  
    

  

The corresponding characteristic polynomial is  
2

3 3 3 4( ( ) )( ) = 0,r          

where 

3
3 1 2 3

3

= ( ) 1h ak
r


   

 
     

  , 

  3
4 1 0 3 1

3

= 1 ( ) 1r Q ak
r


   

 
     

   
By using Routh-Hurwitz criteria, the necessary 

conditions for prey free equilibrium point 
2E  

of  system (1) to be locally asymptotically 

stable are 
3 3>r   and 3,4 > 0 , implies 

0 > 1Q  and 
3 3>r  . Otherwise the prey free 

equilibrium point 
2E  of system (1) is unstable. 

The following theorem summarizes the results.  

Theorem 9 The prey free equilibrium point 
2E  

of the system (1) is locally asymptotically stable 

if 
0 > 1Q  and 

3 3>r  , otherwise is unstable.  
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Local stability of interior equilibrium point(s) 

The Jacobian matrix of the system (1) evaluated at Co-existence equilibrium point 
3 1 2( , , )E x x y  

is given by 

1 2
1 1

1

2
3 2 2

2 2

3 2
3 32

2 3 2

2
( ) 0

= ( ) .
(1 ) 1

2
0 ( )

(1 ) 1

r x
r

k

ay ax
J h

bx bx

cay r y cax
r

bx k bx

 

 



 
    
 
 

    
  

 
   

    

Substituting 3 2
3 3

3 2

=
1

k cax
y r

r bx


 
  

 
 from equation (6) into 

3J , yields: 

1 2
1 1

1

3 2 2
3 2 3 32

3 2 2 2

3 2 2
3 3 3 32

3 2 2 2

2
( ) 0

= .
(1 ) 1 1

0 ( )
(1 ) 1 1

r x
r

k

ak cax ax
J h r

r bx bx bx

ack acx cax
r r

r bx bx bx

 

  

 

 
    
 
   
        
     
 

  
         

The corresponding characteristics polynomial is given by  
3 2

1 2 3 = 0,         

where 

3 2
1 1 2 3 32

3 2 2

= ( ) 1 ,
(1 ) 1

ak acx
h r

r bx bx
    

  
        

   
2

3 2 3 1 2 3 2
2 1 2 3 3 3 33 2 2

3 2 3 2 2 3 2 2

( )
=

(1 ) (1 ) 1 (1 ) 1

ack x ak acx ak acx
h r r

r bx r bx bx r bx bx

 
     

    
              

        

 1 01 ,r Q 
and

 

 
2

2

3 1 2 2 3 2
3 1 0 3 3 3 33 2

3 2 2 3 2 2

( )
= 1 .

(1 ) 1 (1 ) 1

a ck x acx ak acx
r Q r r

r bx bx r bx bx

 
   

    
          

         

 
By using Routh Hurwitz criteria, the necessary 

conditions for equilibrium point 
3E  of the 

system (1) to be locally asymptotically stable 

are 
1 > 0 , 

3 > 0  and 
1 2 3>    otherwise 

the equilibrium point 
3E  of the system (1) is 

unstable. The above conditions are satisfied if 

0 < 1Q , 
3 3>r   and < 1a . The following 

theorem summarizes the results.  

Theorem 10: The equilibrium point 
3E  of the 

system (1) is locally asymptotically stable if 

0 < 1Q , 
3 3>r   and < 1a , otherwise is 

unstable.  
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Results 

The effect of harvesting and predation on stage 

structured predator-prey system is investigated 

by using the following  parameter values:

1 =1.82r , 
3 = 0.008r , 

1 = 0.001 , 

2 = 0.05 , 
3 = 0.009 , 

1 = 300k , 
3 = 50k , 

=1.5 , = 0.5h , = 0.674a , =1b , 

= 0.125c . The results are presented in Figures 

1-4. 

 

Discussion 

The effect of harvesting on the structured 

predator-prey system was simulated and 

analysed numerically and the discussion of 

results is as follows. 

Figure 1 shows the phase portraits for 

co-existence of equilibrium points and that there 

are orbitally asymptotically stable periodic 

solutions in the presence of both harvesting and 

predation. Figure 2(a) shows the increase of 

immature prey population resulting from the 

absence of predation and harvesting to matured 

prey species. The increase of immature prey 

population follows the assumption that all 

immature prey species are being raised by their 

matured prey species. Similarly from the Figure 

2(b) it is observed that there is an increase in 

matured prey population to the carrying 

capacity at different maturity rates. There is also 

a decrease of matured prey population when 

there is no immature prey species that become 

matured (that is, when = 0 ). Figure 2(c) 

shows the increase of predator population 

caused by other sources of food.  

Figures 3(a) and 3(b) show the increase of prey 

population densities at low predation and 

harvesting. These observations follow the above 

results that, low harvesting and predation have 

less effect on prey population densities. 

Similarly, we observe the decrease of prey 

population density at high predation and 

harvesting. These observations follow the 

results that high harvesting and predation cause 

severe effect on prey population densities. Also, 

Figure 3(c) shows the increase of predator 

population due to consuming matured prey 

species. At high maturity rate, it is observed 

from Figures 4(a) and 4(b) the increase of prey 

populations to its carrying capacity.  

 

Figure 1: Phase diagram for the dynamical behaviour of interior equilibrium point 
3E .
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 (a) Immature prey 

 

 
(b) Matured prey 

 (c) Predator 

 

Figure 2(a)-(c): The effect of Stage structure on predator and prey population densities. 
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(a) Immature prey 

 
(b) Matured prey 

 
(c) Predator 

Figure 3(a)-(c): The effect of harvesting and predation on predator and prey population densities 

at = 0.5.  
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(a) Immature prey 

 
(b) Matured prey 

 
(c) Predator 

Figure 4(a)-(c): The effect of harvesting and predation on predator and prey population densities at

= 0.9.  

 

Conclusion 

In summary this study concludes that the 

population of preys and predators cannot exceed 

their environmental carrying capacity. It has 

been shown analytically that, in the absence of 

prey population, the predator’s growth rate 

should be greater than its death rate for it to 

persist otherwise the population will perish. 

Also in the absence of predator population, the 

average decrease of prey population should be 

less than one, for the prey population to persist, 

otherwise the population will perish. The two 

populations co-exist if the threshold value is less 

than one. Numerical results have shown that the 

rate at which immature preys become mature 

plays a crucial role in the existence of prey 

species. Harvesting and predation have negative 

impacts on population dynamics of stage 

structured prey-predator system. Thus, the study 

suggests that, future work should include life 

stages of predator species.  
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