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Abstract 

In this paper, we proved that if F is a non-normable and separable Fréchet space without a 

continuous norm, then there exists an operator T ∈L (F) such that λ T is hypercyclic for any λ ∈ 

ℂ ∖{0} of modulus 1 and has similar set of hypercyclic vectors as T. An illustrative example to 

the main theorem is also provided. 
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Introduction 

Density of an orbit (or hypercyclicity) of 

continuous linear operators on non-normable 

Fréchet spaces has been considered by several 

authors like Gethner and Shapiro (1987), 

Godefroy and Shapiro (1991) and many 

others. 

Rolewicz (1969) proved that no linear 

operator on a finite-dimensional Banach space 

is hypercyclic. He raised the question in 

1969: whether or not every separable infinite-

dimensional Banach space carries a 

hypercyclic continuous linear operator. This 

was recently and independently answered in a 

positive sense by Ansari (1997) and Bernal- 

González (1999). This result was extended to 

complete and metrizable locally convex 

spaces (Fréchet spaces) by Bonet and Peris 

(1998).  Gethner and Shapiro (1987) and 

Kitai (1984) independently found an adequate 

condition for hypercyclicity that produces the 

results of Rolewicz (1969), Birkhoff (1929), 

and MacLane (1952) and gave new cases of 

operators with hypercyclic vectors. 

In 1991, Godefroy and Shapiro studied 

the hypercyclicity of partial differential 

operators with constant coefficients on Fréchet 

spaces with a continuous norm as H (ℂN
), 

the space of all entire functions on ℂN 
or 

without a continuous norm as C
∞ 

( ℝN 
), the 

space of infinitely continuous real valued 

functions on ℝN 
. 

Bonet (2010) in his short expository 

article stated an open problem about the 

linear structure of non-normable Fréchet 

spaces and related this question with some 

other open problems about continuous linear 

operators on Fréchet spaces. Bonet (2010) 

stated the following problem: Is there a non-

normable Fréchet space F such that every 

continuous linear operator T on F has the 

form T = λ I + S, where S maps a 0-

neighbourhood of F into a bounded set? 

For example, Bonet (2010) related this 

problem with the following question: 

Question 1.1 (Bonet 2010): Does every non-

normable separable infinite dimensional 

Fréchet space admit a hypercyclic operator T 

such that λT is hypercyclic for all λ≠0? The 

most important case is for infinite 

dimensional Fréchet Montel spaces. 
     Below are the notions about the 

mailto:drsengar2002@gmail.com


Aloyce et al. - On scalar multiples of hypercyclic operators on Fréchet spaces 

 

432 

 

development of hypercyclicity: 

Definition 1.1 (Bonet and Peris 1998): An 

operator T on a locally convex space F is 

called hypercyclic if Orb (T, v): = {v, T v, T 
2

v, 

· · ·} is dense in F for some v ∈ F, that is, 

𝑂𝑟𝑏(𝑇, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅={𝑣, 𝑇𝑣, 𝑇2𝑣, … }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =  F. 

In this case, v is a hypercyclic vector 

for T. 

Definition 1.2 (Bonet and Peris 1998): An 

operator T ∈ L (F) is said to be supercyclic if 

there is a vector y ∈ F such that the set {λ T 
k 

y: λ ∈ ℂ, k = 

0, 1, 2, · · ·} is dense in F.  The vector y with 

this property is called supercyclic vector for T. 

     In this work, we present the scalar 

multiples of hypercyclic operators on non-

normable and separable Fréchet spaces. We 

respond to Question 1.2 below due to Frerick 

and Peris (2012) by first considering the 

existing partial solutions to the question and 

then develop our results. Throughout this 

paper, an operator means a continuous linear 

map and L (F) is the space of all operators T: 

F  → F. 

The main goal of this paper is to 

investigate the following question: 

Question 1.2: If F is a non-normable, 

separable Fréchet space, is there an 

operator T ∈  L (F) such that λ T is 

hypercyclic for any λ ∈ ℂ\{0}? 

Preliminaries 

To establish the main results for this paper, 

we will require the following definitions, 

propositions, lemmas, theorems and 

corollaries: 

Definition 2.1 (Bayart and Matheron 

2009): Let F be a topological vector space. 

The operator T ∈ L(F) is said to satisfy the 

hypercyclicity criterion if there exists an 

increasing sequence of integers (nk) , two 

dense sets A, B ⊂ F and a sequence of 

maps  Snk: B → F such that 

(i) T 
nk (x) → 0 for any x ∈ A 

(ii) Snk (y) → 0 for any y ∈ B 

(iii) T 
nk Snk (y) → y for each y  ∈ B.         

Definition 2.2 (Bonet and Peris 1998): A 

continuous linear operator T on a locally 

convex space F is called Montel if it maps 

each bounded set into compact subsets of F, 

while T is compact if it maps a 0-

neighborhood in F into a compact subset of 

F. 

Remark 2.1 (Bonet and Peris 1998): Each 

bounded operator on a Fréchet Montel space 

is compact and each compact operator is 

Montel, and the opposite holds for Banach 

spaces yet not in general, as the identity on 

an infinite-dimensional Fréchet Montel 

space appears.  

Definition 2.3: A Fréchet space (or complete 

metrizable locally convex space) is said to be 

non-normable if it is not isomorphic to a 

normed space, or in the same meaning if it 

has no bounded 0-neighborhood.  

     Bonet and Peris (1998) proved that, every 

non-normable, separable infinite dimensional 

Fréchet space supports a continuous 

hypercyclic operator. The following results 

were established: 

Theorem 2.1 (Bonet and Peris 1998): 

Every separable infinite dimensional 

Fréchet space admits a hypercyclic 

surjective operator. 

Lemma 2.1 (Bonet and Peris 1998): Let F 

be a separable infinite dimensional Fréchet 

space, F ≠ ω. There are sequences (xk)k ⊂ 

F and ( fk )k ⊂ F
’
such that 

(i) (xk)k converges to 0 in F, and span{xk 

; k ∈ℕ} is dense in F . 

(ii) (𝑓𝑘 )k is F -equi-continuous in F
’
. 

(iii)  ⟨𝑥𝑘 , 𝑓𝑚⟩ = 0 𝑖𝑓 𝑘 ≠

𝑚 𝑎𝑛𝑑 (⟨𝑥𝑘,   𝑓𝑘⟩)
𝑘

⊂ (0,1). 

Lemma 2.2 (Bonet and Peris 1998): Let F 

be a locally convex space. Let (xk)k ⊂ F and 
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(𝑓𝑚)m ⊂ F
’ 
satisfy the following conditions: 

(a) (xk )k converges to 0 ∈ F , and the 

closed absolutely convex cover C of  (xk ) 

k satisfies that 𝐹𝑐  is a Banach space 

and 𝐹𝑐  is dense in F, where 𝐹𝑐  is a 

locally convex space F sub the closed 

absolutely convex cover C of  (xk)k . 

(b) (𝑓𝑚)m is F -equi-continuous in F
’
 

(c) 〈𝑥𝑘, 𝑓𝑚〉 = 0 if k ≠  m and (〈𝑥𝑘, 𝑓𝑚〉 )𝑘  is 

a bounded sequence in (0, ∞). 

Then the operator T: F → F, 

𝑇𝑥 ≔ 𝑥 + ∑ 2−𝑘⟨𝑥, 𝑓𝑘+1⟩𝑥𝑘
∞

𝐾=1
 where 𝑥 ∈

𝐹 , is hypercyclic, open, has closed range 

(hence is surjective) and has finite 

dimensional kernel. 

     The following result was shown by Bonet 

(2010) for a non-normable Fréchet space: 

     If 𝐹0 is a non-normable Fréchet space such 

that each operator T ∈ L (𝐹0) is of the form T 

= λ I + S with S bounded, then no hypercyclic 

operator T on 𝐹0  satisfies that µT is 

hypercyclic for all µ≠0; hence solving 

question 1.2 described above in the negative 

sense. 

Proposition 2.1. (Bonet 2010) If S is a 

bounded operator on a Fréchet space F and λ ∈ 

ℂ, then there is µ > 0 such that µ (λ I + S) is 

not hypercyclic on F. 

     León-Saavedra and Müller (2004) proved 

that, let T be a bounded linear operator acting 

on a separable complex Banach space Y.  Let T 

∈ B(Y) be a hypercyclic operator and λ a 

complex number of modulus 1, then λ T is 

hypercyclic and has a similar set of 

hypercyclic vectors as T. 

An adaptation of this outcome allows 

characterizations for a wide class of 

supercyclic operators: Let T ∈ B(Y).  The 

vector v ∈ Y i s  said to be supercyclic for T if 

and only if the set {rT 
k 

v: r > 0, k = 0, 1, · · 

·} is dense in Y. This offers answers to several 

questions examined in the literature. 

In appropriate way, to solve Question 1.2 it is 

sufficient to demonstrate that a non-normable 

and separable Fréchet space F admits a 

continuous linear operator T such that λ T is 

hypercyclic for every λ > 0. 

     Frerick and Peris (2012) established the 

following result: 

Proposition 2.2 (Frerick and Peris 2012): 

Every separable Fréchet space F without a 

continuous norm supports a continuous linear 

operator T ∈ L(F) such that λ T is hypercyclic 

for every λ ≠ 0. 

We intend to show that in fact λ T is 

hypercyclic for every non-zero λ ∈ ℂ of 

modulus 1. Additionally, T and λ T have 

similar sets of hypercyclic vectors if λ = 

e
2π ir 

where r is a rational number. The 

main result also has a significant outcome 

in the supercyclicity setting. 

The concept of ℝ+
-supercyclicity is 

defined below. 

Definition 2.4 (León-Saavedra and Müller 

2004): A vector z is said to be ℝ+
-

supercyclic for the operator T if the set {t 

T 
k 
z: t > 0, k = 0, 1, 2, · · ·} is dense. 

     Herrero (1991) discovered that, there are 

two kinds of supercyclic operators T, which 

are: Operators fulfilling σp (T 
∗
) = ∅ where 

σp denotes the point spectrum and operators 

with σp(T 
∗ 

) = {α } for some non-zero α ∈ 

ℂ; (here we have dim ker(T 
∗ 

− α ) = 1 = dim 

ker(T 
∗ 

− α )
n 

for every n ≥ 1). 

The following theorem and corollary were 

proved by León-Saavedra and Müller (2004): 

Theorem 2.2 (León-Saavedra and Müller 

2004): Let N ⊂ B(Y) be a semigroup of 

operators and let y ∈ Y satisfy that the set {λ 

Sy: S ∈ N, λ ∈ ℂ, |λ| =1} is dense in Y. Assume 

that there exists an operator T ∈ B(Y) with 

σp (T 
∗
) =∅ satisfying T S = ST for each S ∈ 

N. Then the set {Sy: S ∈ N} is dense. 

Corollary 2.1 (León-Saavedra and Müller 

2004): Let T ∈ B(Y).. Then y ∈ Y is 

hypercyclic for T if and only if the set {λ T 
k 

y: λ ∈ ₸ (where ₸ is a unit circle), k = 0, 1, 
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2, · · ·} is dense in Y. 

The following corollary follows from 

Theorem 2.2 above: 

Corollary 2.2 (León-Saavedra and Müller 

2004): Let T ∈ B(Y) be hypercyclic and λ ∈ 

₸. Then the operator λ T is hypercyclic and 

has similar set of hypercyclic vectors as T. 

 

Main Results 

Before we state our main results by 

responding to the Proposition 2.2, we need to 

deduce several observations from Theorem 

2.1 above, as follows: 

Observation 3.1 

It is notable that, the countable product of 

lines ω:  = K
ℕ 

(where “ K ”  is a scalar 

field) produced with the product topology is 

a separable Fréchet space which supports a 

hypercyclic operator. For example, the 

backward shift  

T: ꞷ →ꞷ,  

𝑇(𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 … ) := (𝑥2 , 𝑥3 , 𝑥4 , 𝑥5, … ) 

is hypercyclic.  

The verification is prompt by the 

hypercyclicity criterion. It does the 

trick to discover dense subsets A and 

B of  

ꞷ(𝐴 = 𝐵: =  ⊕𝑘∈ℕ 𝐾)  
where “ K ”  is a scalar field and a map 

      S : B → ω,    S(𝑦1, 𝑦2, 𝑦3, 𝑦4, ·· ·):  

 =   (0, 𝑦1, 𝑦2, 𝑦3, · · · ) 

such that (T 
k 

x) k converges pointwise to 0 

for all x ∈ A, T Sy = y and (S
k 

y) k converges 

to 0 for every y ∈ B. Likewise we need to 

demonstrate the outcome for a separable 

infinite dimensional Fréchet space F ≠ ω. 

 

Observation 3.2 

We notice the following results: 

Lemma 3.1: Let F be a separable infinite 

dimensional Fréchet space,  

F ≠ ω.    There are sequences  

(xk )k ⊂ F and ( fk )k ⊂ F
’
,

   
such that 

(i) (xk)k converges to 0 in F, and 

span{xk ; k ∈ℕ} is dense in F. 

(ii) ( fk )k is F -equi-continuous in F
’
. 

(iii) ⟨𝑥𝑘 , 𝑓𝑚⟩ = 0 𝑖𝑓 𝑘 ≠

𝑚 𝑎𝑛𝑑 (⟨𝑥𝑘,   𝑓𝑘⟩)
𝑘

⊂ (0,1). 

 

Proof. From the result by Metafune and 

Moscatelli (1989), there exists a dense 

subspace D of F which has a continuous norm 

p. Let us choose a linearly independent 

sequence (yk )k ∈ D whose linear span is 

dense in D and therefore in F .  

Through a classical method of Klee 

applied to the dual pair (D, (D, p)
 
) (as used 

by Carreras and Bonet (1987), we discover 

sequences (zk )k ⊂ D, (um)m ⊂ (D, p)
 
to 

such an extent that 

span {zk ; k ∈ ℕ} = span{yk ; k ∈ ℕ}, 

and zk , um = δk,m  where   k, m ∈ ℕ. 

∀𝑚 ∃ 𝑘𝑚 ≥ 1 such that   

|um(x)| ≤  Km p(x), ∀ x ∈ D. 

There exists a continuous seminorm q on F 

whose restrictions to D agrees with p. Every 

um has a unique continuous extension to F 

denoted again by um since D is dense in F.  

Indeed, 

∀ m, |um(x)| ≤  Km q(x), ∀ x ∈ F. 

Consequently, {Km
−1

um; m ∈ ℕ} is 

equicontinuous on F
’
. There exists a 

sequence (αk )k ⊂ (0, 1) such that xk := αk 

zk ; k ∈ ℕ converges to 0 ∈ F since F is 

metrizable. Therefore, by setting 

fm := Km
−1

um where   m ∈ ℕ 

we get (i) → (ii) → (iii).  

Lemma 3.2: Let F be a locally convex space. 

Let (xk)k ⊂ F and (fm)m ⊂ F
’   

satisfy the 

following conditions: 

(a) (xk)k converges to 0 ∈ F , and the closed 

absolutely convex cover C of (xk )k fulfils 

that 𝐹𝑐  is a Banach space and 𝐹𝑐  is 

dense in F .  

(b) ( fm)m is F-equi-continuous in F
’ 
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(c) 〈𝑥𝑘, 𝑓𝑚〉 = 0 if k ≠ m and (〈𝑥𝑘, 𝑓𝑚〉 )𝑘  is 

a bounded sequence in (0, ∞). 

Then the operator T: F → F ,   

𝑇𝑥 ≔ 𝑥 + ∑ 2−𝑘⟨𝑥, 𝑓𝑘+1⟩𝑥𝑘
∞

𝐾=1
 where     

x ∈ F, is hypercyclic, open, has closed 

range (hence is surjective) and has finite 

dimensional kernel. 

Proof.  From Carreras and Bonet (1987), the 

closed absolutely convex cover C of (xk)k is 

compact and agrees with 

{∑ 𝛼𝑘𝑥𝑘

∞

𝑘=1

: ∑|𝛼𝑘|

∞

𝑘=1

≤ 1} 

Indeed T := idF + S, with 

𝑆𝑥 ≔ ∑ 2−𝑘⟨𝑥, 𝑓𝑘+1⟩𝑥𝑘

∞

𝐾=1

 

where x ∈ F, 

By equicontinuity of ( fk )k , it means that S := 

F →  F maps a 0-neighbourhood into a 

relatively compact set. From Grothendieck 

(1973), Theorem 1), T is open onto the 

range (that is homomorphism) with closed 

range and finite dimensional kernel. 

     Let us define 

Q : l1 → FC ,    Q((α j ) j ) := ∑ α j x j , 

which is surjective, linear and continuous. 

Through a result of Salas (1995), the operator 

T̃ : l1 → l1, T̃ ((α j ) j ) :=  

(𝛼, +
𝑓2(𝑥2)

2
𝛼2, 𝑎2

+
𝑓3(𝑥3)

22
𝛼3, ⋯ ) 

is hypercyclic. 

Additionally, T Q = QT̃ on l1. If e ∈ l1 is a 

hypercyclic vector of T̃ on l1 then the set   

{QT̃ k 
e; k ∈ ℕ} = {T 

k 
Qe; k ∈ ℕ}, 

is dense in 𝐹𝑐  .   We conclude that, Qe is 

a hypercyclic vector of T ∈ F since 𝐹𝑐  is 

dense in F.  Accordingly, the range of T 

(which is dense and closed) is F and T is 

surjective. 

Remark 3.1: In fact, Lemma 3.2 enhances 

and simplifies Theorem 1 of Ansari (1997). 

Observation 3.3 

Since F is complete, the sequences 

(xk)k ⊂ F and ( fm)m ⊂ F 
0   

constructed in 

Lemma 3.1 fulfills all the assumptions of 

Lemma 3.2. Therefore, the operator T: F → 

F is hypercyclic and surjective. 

     We have shown that the operator  

T: F→F is hypercyclic and surjective. Now, 

we will show that for every non-normable and 

separable Fréchet space F without a 

continuous norm as 𝐶∞(ℝ𝑁) the space of 

infinitely continuous real-valued functions on 

 ℝN, λ T is also hypercyclic for every non-

zero λ ∈ ℂ of modulus 1.  

We now extend Theorem 2.2 and 

Corollary 2.1 from separable complex 

Banach spaces to non-normable and 

separable Fréchet spaces without a 

continuous norm. Analogous to Theorem 2.2 

above, we present the following result:  

Theorem 3 . 1 : Let N ⊂ L (F) be a 

semigroup of operators and let y ∈ F satisfy 

that the set {λ Sy: S ∈ N, λ ∈ ℂ, |λ | = 1} is 

dense in F. Assume that there exists an 

operator T ∈ L (F) with σp(T 
∗
)= ϕ 

satisfying T S = ST for each S ∈ N. Then 

the set {Sy: S ∈ N} is dense. 

Proof. For every v ∈ F, we set Nv = 

{𝑆𝑣 ∶  𝑆 ∈  𝑁}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . For v, w ∈ F we set Gv,w = {λ 

∈ ℂ : |λ | = 1, λ w ∈ Nv}. Indeed, Gv,w is a 

closed subset of the unit circle T = {λ ∈ ℂ : 

|λ | = 1}. We let F0 be the set of all vectors v 

∈ F such that {λ𝑆𝑣 ∶  𝑆 ∈  𝑁, 𝜆 ∈ T}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = F and 

proceed with the following steps: 

Step 3.1: We let v ∈ F0. At that point Gv,w ≠ ∅  

∀ w ∈ F. 

There exists sequences Sk  ⊂ N and 𝜆k  ⊂ T 

such that 𝜆 k Sk v →  w, since the set 

{λ𝑆𝑣 ∶  𝑆 ∈  𝑁, 𝜆 ∈ T}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is dense in F. Moving 

toward a subsequence if necessary, it is 

possible to assume that λk is convergent, λk 

→ λ for some λ ∈ ₸. 

 

Then, 
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||Sk v − λ 
−1

w|| ≤ ||Sk v − 𝜆𝑘
−1||  

+|| (𝜆𝑘
−1− λ 

−1
) w|| → 0.  

Therefore,  𝜆−1 ∈ 𝐺𝑣,𝑤. 

 Step 3.2: We let 𝑣, 𝑤, 𝑢 ∈ 𝐹, 𝜆1 ∈ 𝐺𝑣,𝑤 then 

𝜆1𝜆2 ∈ 𝐺𝑣𝑤   and 𝜆2 ∈ 𝐺𝑤,𝑈 . Then 𝜆1𝜆2 ∈

𝐺𝑣,𝑢. 

We let 𝜀 > 0 . Then there exist 𝑠1 ∈ 𝑁 

such that ‖𝑆1𝑤 − 𝜆2𝑢‖ <
𝜀

2
  and 𝑠2 ∈ 𝑁  such 

that ‖𝑆2𝑣 − 𝜆1𝑤‖ <
𝜀

2‖𝑆1‖
. 

Then  
‖𝑆1𝑆2𝑣 − 𝜆1𝜆2𝑢‖ ≤ ‖𝑆1(𝑆2𝑣 − 𝜆1𝑤)‖

+ ‖𝜆1(𝑠1𝑤 − 𝜆2𝑢)‖ < 𝜀 

Hence 𝜆1𝜆2 ∈ 𝐺𝑣,𝑢. 

Let us now fix 𝑦 ∈ 𝐹0 .  𝐺𝑦,𝑦  is a non-empty 

closed subsemigroup of the unit circle ₸ by 

step 3.1 and step 3.2 above. First, we assume 

𝐺𝑦,𝑦 = ₸. Then step 3.1 and step 3.2 above 

infer that 𝐺𝑦,𝑥 =₸ ∀𝑦 ∈ 𝐹.  In this way 𝑁𝑦 =

𝐹, thus the set {𝑆𝑦: 𝑆 ∈ 𝑁}  is dense in F. 

In the following step we suppose 𝐺𝑦,𝑦 ≠  ₸ 

and prove that this supposition leads to the 

contradiction. 

Step 3.3: There exists 𝑛 ∈ ℕ such that  

𝐺𝑦,𝑦 = {ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝑗 = 0,1, … , 𝑛 − 1}. 

We let 𝑟 = {𝑡 > 0: ⅇ2𝜋ⅈ𝑡 ∈ 𝐺𝑦,𝑦}. Certainly, r 

> 0 since otherwise 𝐺𝑦,𝑦 would be dense in T. 

Therefore, ⅇ2𝜋ⅈ𝑟 ∈ 𝐺𝑦,𝑦 . 

Let 𝑛 = 𝑚𝑖𝑛{𝑘 ∈ ℕ: 𝑘𝑟 ≥ 1}. If 𝑛𝑟 > 1 then 

ⅇ2𝜋ⅈ(𝑛𝑟−1) ∈ 𝐺𝑦,𝑦 𝑎𝑛 𝑑 𝑂 < 𝑛𝑟 − 1 < 𝑟 which 

is a contradiction with the definition of r. 

Thus nr = 1 and  

𝐺𝑦,𝑦 ⊂ {ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝑗 =  0, 1, … , 𝑛 − 1} 

If there exists a 

 𝜆 ∈ 𝐺𝑦,𝑦 ∖ {ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝐽 = 0,1, . . , 𝑛 − 1}.  

Then, 

𝜆 = ⅇ2𝜋𝑖𝑡𝑎𝑛𝑑 𝑗0 𝑛⁄ < 𝑡 < (𝑗0 + 1) 𝑛⁄  for 

some 𝑗0, 0 ≤ 𝑗0 ≤ 𝑛 − 1. 

 Then, 

 𝜆 ⋅ ⅇ−2𝜋ⅈ𝑗0 𝑛⁄ = ⅇ2𝜋𝑖(𝑡−𝑗0 𝑛⁄ )
∈ 𝐺𝑦,𝑦 

where 0 < 𝑡 − 𝑗𝑜 𝑛⁄ < 1 𝑛⁄ = 𝑟 

which is again the contradiction with the 

definition of r. 

Therefore, 

{ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝐽 = 0,1, ⋯ , 𝑛 − 1} = 𝐺𝑦,𝑦. 

 

Step 3.4: We let 𝑥 ∈ 𝐹0 . Then there exists 

𝜆𝑥 ∈ 𝑇  such that 𝐺𝑦,𝑥 = {𝜆𝑥ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝑗 =

0,1. . , 𝑛 − 1}.  

By step 3.1, there are 𝜆𝑥 ∈ 𝐺𝑥,𝑦 𝑎𝑛𝑑 𝛼 ∈ 𝐺𝑥,𝑦 

and by step 3.2, we have 𝜆𝑥𝐺𝑦,𝑦 ⊂

𝐺𝑦,𝑥 𝑎𝑛𝑑 ∝ 𝐺𝑦,𝑥 ∈ 𝐺𝑦,𝑦. 

Specifically, the number of elements in 𝐺𝑦,𝑥 is 

equal to the number of elements in  𝐺𝑦,𝑦 

and 𝐺𝑦,𝑥 = 𝜆𝑥𝐺𝑦,𝑦 = {𝜆𝑥ⅇ2𝜋ⅈ𝑗 𝑛⁄ : 𝑗 =

0,1 … 𝑛 − 1}. 

Step 3.5:  (𝑇 − 𝑧)𝑦 ∈ 𝐹0,∀𝑧 ∈ ℂ. 

We have 

   (𝑇 − 𝑧)𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐹 𝑠𝑖𝑛𝑐ⅇ 𝜎𝑃(𝑇∗) = ∅  

Therefore,  

(𝑇 − 𝑧){𝜆𝑆𝑦: 𝑆 ∈ 𝑁, 𝜆 ∈ 𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂ 

{𝜆(𝑇 − 𝑧)𝑦: 𝑆 ∈ 𝑁, 𝜆 ∈ 𝑇}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑇 − 𝑧)𝐹, 
which is a dense subset of F. 

For every non-zero vector x in the subspace 

produced by   y and Ty, we define  

f(x) =  𝜆𝑛 where 𝜆 ∈ 𝐺𝑦,𝑥. 

Indeed, a function f is well defined by step 3.4 

above. 

Step 3.6:   f is a continuous function. 

  We assume on the contrary that there exits 

non-zero vectors 𝑣𝑘 , 𝑣 ∈ ⋁{𝑦, 𝑇𝑦}  such that 

𝑣𝑘 → 𝑣 𝑎𝑛𝑑 𝑓(𝑣𝑘) ↛ 𝑓(𝑣). 

Without loss of generality, we suppose that the 

sequence (𝑓(𝑣𝑘))  converges to some 𝛼 ∈ ₸,

𝛼 ≠ 𝑓(𝑣). 

Letting 𝜆𝑘 ∈ 𝐺𝑦,𝑣𝑘
, we can suppose that 𝜆𝑘 → 𝜆 

for some 𝜆 ∈ ₸. Then 𝜆𝑘𝑣𝑘 ∈ 𝑁𝑦 𝑎𝑛𝑑 𝜆𝑘𝑣 →
𝜆𝑣 . We now have 𝜆𝑣 ∈ 𝑁𝑦 𝑎𝑛𝑑 𝜆 ∈ 𝐺𝑦,𝑣  

since 𝑁𝑦   is closed. 

Thus, 𝛼 = 𝑙𝑖𝑚 𝑓(𝑣𝑘) = 𝑙𝑖𝑚 𝜆𝑘
𝑛 = 𝜆𝑛 = 𝑓(𝑣) , 

which is a contradiction. Hence f is continuous 

on the set ⋁{𝑦, 𝑇𝑦} ∖ {0}. 
We now finish the proof of theorem 3.1 as 

follows: 

Step 3.7: Let us start by showing that vectors 𝑦 

and 𝑇𝑦 are linearly independent. Assume on the 

contrary that 𝑇𝑦 = 𝛼𝑦  
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for some 𝛼 ∈ ℂ. Then  

𝑆 𝑘ⅇ𝑟(𝑇 − 𝛼) ⊂ 𝑘ⅇ𝑟(𝑇 − 𝛼),∀∈ 𝑁 

and  

𝐹 = {𝜆𝑆𝑦: 𝑆 ∈ 𝑁, 𝜆 ∈ ₸}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝑘ⅇ𝑟(𝑇 − 𝛼). 

Therefore, T is a scalar multiple of the identity, 

which contradicts to the assumption that 

𝜎𝑝(𝑇∗) = ∅.  

Now let ⅅ = {𝑧 ∈ ℂ: |𝑧| ≤ 1} indicate the unit 

disc and the function 𝑔: ⅅ →₸ be defined by 

                𝑔(𝑧) = 𝑓(𝑧𝑦 + (1 − |𝑧|)𝑇𝑦).  

Indeed, g is a continuous function. Then  

𝐺𝑦,𝑧𝑦 = 𝑧−1𝐺𝑦,𝑦 𝑎𝑛𝑑 𝑔(𝑧) = 𝑓(𝑧𝑦) = 

𝑧−𝑛𝑓(𝑦) = 𝑧−𝑛  , ∀𝑧  fulfilling |𝑧| = 1. 
By Rudin (1987) the function g does not exist, 

but rather gives a homotopy between a constant 

path 𝜑1: ⟨0,2𝜋⟩ →₸ given by 𝜑1(𝑡) = 𝑔(0) and 

the path  

    𝜑2: ⟨0,2𝜋⟩ → ₸  

defined by  𝜑2(𝑡) = 𝑔(ⅇⅈ𝑡) = ⅇ−𝑛ⅈ𝑡 , where -n 

is a winding number. Therefore, 𝐺𝑦,𝑦 = ₸ 

and the set   
 {𝑆𝑦: 𝑆 ∈ 𝑁} is dense in F. 

        Analogous to corollary 2.1 above, we 

prevent the following result:  

Corollary 3.1: Let T 𝜖𝐿(𝐹) . Then 𝑦 ∈ 𝐹  is 

hypercyclic for T if and only if the set 

{𝜆𝑇𝑘𝑦: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, ⋯ }   

is dense in F. 

Proof. (⇒) Forward implication:  

This is trivial. 

     (⇐) Backward implication: 

We let  𝑦 ∈ 𝐹 fulfil  

{𝜆𝑇𝑘𝑦: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, … }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐹 

Letting N = {𝑇𝑘: 𝑘 = 0, 1, 2 … }, it is enough to 

prove that 𝜎𝑃(𝑇∗) = ∅. 

Assume in other way that 𝛼 ∈ 𝜎𝑝(𝑇∗)  and let 

𝑦∗ ∈ 𝐹∗  be the relating eigenvector, 𝑇∗𝑦∗ =
𝛼𝑦∗ . We have  

  ℂ = {⟨𝜆𝑇𝑘𝑦, 𝑦∗⟩: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, … }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

      = {⟨𝜆𝑦, 𝛼𝑘𝑦∗⟩: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, … }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

      =  ⟨𝑦, 𝑦∗⟩ ⋅ {𝜆𝛼𝑘: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, ⋯ 1}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . 

 

If   |𝛼| > 1 𝑎𝑛 𝑑 ⟨𝑦, 𝑦∗⟩ ≠ 0 then the set  

⟨𝑦, 𝑦∗⟩ ⋅ {𝜆𝛼𝑘: 𝜆 ∈ ₸, 𝑘 = 0, 1, 2, ⋯ }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is bounded below and thus is not dense in ℂ,  
either.  

Hence, 𝜎𝑃(𝑇∗) = ∅. 

We now present an illustrative example to 

support the result above. We use Definition 2.1 

and apply the results by Rolewicz (1969), and 

Bonet and Peris (1998) to construct this 

example, as follows: 

Example 3.1: Let T: 𝜔 → 𝜔,   defined by 

𝑇(𝑥0, 𝑥1 ⋯ ) = (𝑥1, 𝑥2 ⋯ )  be the hypercyclic 

backward shift operator on a separable infinite-

dimensional Fréchet space 𝜔 ≔ 𝐾ℕ  (that is, 

countably infinite product of the real or 

complex scalar field 𝐾)  given the product 

topology. Then the operator 𝜆𝑇   is hypercyclic 

for any scalar   𝜆 such that |𝜆| > 1   and has 

similar sets of hypercyclic vector as T. 

Proof.  To verify the hypercyclic of  𝜆𝑇 , we 

apply the hypercyclicity criterion to the whole 

sequence  (𝑛𝑘) ≔ (𝑘). There exists dense 

subsets A and B of  𝜔  such that 𝐴 = 𝐵 ≔
 ⊕𝑘∈ℕ 𝐾, where “ K ”  is a scalar field and the 

maps 𝑆𝑘: 𝐵 → 𝜔  given by 𝑆𝑘 ≔ 𝜆−𝑘𝑆𝑘 , where 

S is the forward shift operator defined by  

     𝑆(𝑦0, 𝑦1, ⋯ ) = (0, 𝑦0 , 𝑦1, ⋯ ) 

such that ((𝜆𝑇)𝑘𝑥)𝑘  converges pointwise to 0 

for all 𝑥 ∈ 𝐴,  (𝑆𝑘𝑦)𝑘 converges to 0 for every 

𝑦 ∈ 𝐵   and (𝜆𝑇)𝑆𝑦 = 𝑦, ∀𝑦 ∈ 𝐵. 

     To see that the requirements ( 𝑖 ), ( 𝑖𝑖 ) and 

(𝑖𝑖𝑖 ) of Definition 2.1 are satisfied, it is enough 

to note the following: 

(a) holds because (𝜆𝑇)𝑘(𝑥) → 0, ∀𝑥 ∈ 𝐴. 
(b) holds because by applying norm to the map 

given by 𝑆𝑘 ≔ 𝜆−𝑘𝑆𝑘 we have 

    ‖𝑆𝑘‖ = ‖𝜆−𝑘𝑆𝑘‖  

≤ |𝜆|−𝑘‖𝑆𝑘‖ 

       ‖𝑆𝑘‖ ≤    |𝜆|−𝑘, 

since ‖𝑆𝑘‖ = 1  𝑎𝑛𝑑  (c) holds because 
(𝜆𝑇)𝑆 = 𝐼𝐵. 

Conclusion 

In this paper, we have proved that if F is a 

non-normable and separable Fréchet space 

without a continuous norm, then there exists 

an operator T ∈ L (F) such that λ T is 

hypercyclic for any λ ∈ ℂ ∖{0} of modulus 

1 and has similar set of hypercyclic vectors as 
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T. The results proved here are supported with 

suitable examples. 

 

Acknowledgement 

Authors are thankful to the learned referee for 

their valuable comments. 

 

References 

Ansari SI 1997 Existence of hypercyclic 

operators on topological vector spaces. J. 

Funct. Anal. 148(2): 384-390. 

Bayart F and Matheron É 2009 Dynamics of 
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