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Abstract 

Multipath caused by reflections from interior walls of buildings has been a long-standing 

challenge that affects through-the-wall radar imaging. Multipath creates ghost images that 

introduce confusion when detecting desired targets. Traditionally, multipath exploitation 

techniques under the compressive sensing framework have widely been applied to address the 

challenge. However, the multipath component emanating from target-to-target interactions has 

not been considered–a consequence that may, under multiple target scenarios, lead to incorrect 

image interpretation. Besides, far targets experience more attenuation due to free space path 

loss, hence resulting into target undetectability. This study proposes a signal model, based on 

multipath exploitation techniques, by designing a sensing matrix that incorporates multipath 

returns due to target-to-target interaction and path loss compensation. The study, in addition, 

proposes the path loss compensator that, if integrated into the proposed signal model, reduces 

path loss effects. Simulation results show that the Signal to Clutter Ratio and the Relative 

Clutter Peak improved by 4.9 dB and 1.9 dB, respectively, compared with the existing model.  

 

Keywords: Compressive sensing, multipath ghost, multipath exploitation, path loss, path loss 
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Introduction 

Through-the-Wall Radar Imaging (TWRI) 

refers to an emerging technology that uses 

Radio Frequency (RF) signals to reveal 

stationary and moving targets behind opaque 

obstacles. TWRI finds considerable values in 

civil and military applications, including 

rescue missions in fire and earthquake 

calamities and detection of hidden objects 

(Yoon and Amin 2010, Tivive et al. 2011, 

Leigsnering et al. 2014a, Muqaibel et al. 

2017, Abdalla et al. 2018). Challenges of 

TWRI include clutters caused by multipath 

returns and strong reflections from front 

walls that pose two additional problems: first, 

insufficient power transmitted through the 

wall and reflected back to the radar, leading 

to missed detections; second, multiple 

reflections, called ringing or reverberation, 

within the wall, leading to wall residuals 

along the range dimension (Setlur et al. 2013, 

Leigsnering et al. 2014a, 2014b, Abdalla 

2016). These problems can, respectively, be 

addressed by emitting more power, and by 

refocusing and wall mitigation techniques 

(Setlur et al. 2011). 

Path loss, if insufficiently addressed, may 

have significant consequences on the scene 

reconstruction and interpretation. Signals 

reflected from far targets suffer more path 

loss attenuation and, therefore, can be 

unintentionally masked out (Alahmed et al. 

2017). This challenge reduces resolution of 

the reconstructed images representing objects 
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behind opaque structures. Higher resolutions 

in radar imaging  demand wide bandwidth 

and large aperture, and these requirements 

translate to huge data volumes (Tivive et al. 

2011, Muqaibel et al. 2014, Leigsnering et al. 

2014b, Abdalla et al. 2018). Scholars 

recommend Compressive Sensing (CS) as a 

more appropriate approach to address the big 

data challenge (Yoon and Amin 2008a, Turk 

et al. 2016). In CS framework, only a small 

fraction of data is captured to reconstruct 

images without compromising the image 

quality (Yoon and Amin 2008a, Turk et al. 

2016).  

Multipath propagation causes the imaged 

scene to be populated by unwanted ghost 

targets, hence reducing sparsity of the scene. 

Modern research findings revealed that, in 

terms of image qualities, multipath 

exploitation-based signal models outperform 

aspect dependent based counter parts 

(Abdalla et al. 2018). Recent studies in 

(Muqaibel and Alkhodary 2012, Leigsnering 

et al. 2013, Leigsnering et al. 2014b) 

proposed multipath exploitation based signal 

models to sparsely reconstruct ghost free 

images of multiple targets. However, 

multipath component emanating from target-

to-target interaction, which is inevitable 

under multiple target scenarios, has not been 

considered, possibly due to its nonlinear 

behaviour. In addition, the effect of free 

space loss suggested in Alahmed et al. (2017) 

has not been addressed under multipath 

exploitation scenario.   

This paper proposes an improved signal 

model, based on multipath exploitation 

techniques, which tries to mimic a real TWRI 

scenario. The contribution of this work lies 

on the design of the sensing matrix that 

incorporates multipath returns due to target-

to-target interaction and path loss 

compensation. During image reconstruction, 

multipath components are exploited to yield 

ghost-free images and the path loss effect is 

also compensated using the proposed path 

loss compensator.    

 

Materials and Methods 

TWRI essentials 

The TWRI technology employs RF signals to 

disclose targets located behind the wall. The 

scene of interest in the wall is mostly 

interrogated using Stepped-Frequency Radar 

(SFR) systems. In SFR, a series of   

monochromatic waves of linearly increasing 

frequency are sequentially transmitted at each 

radar location (Figure 1). The frequency 

spacing,   , is critical because it dictates the 

maximum unambiguous distance,       
defined by equation (1) (Yoon and Amin 

2008b, Muqaibel and Alkhodary 2012, Wu et 

al. 2014, Abdalla et al. 2018): 

     
 

   
   (1) 

where   signifies the speed of the transmitted 

RF signal.  

The downrange resolution,   , expressed 

in meters, determines the number of 

transmitted monochromatic waves for a 

targeted maximum unambiguous range. This 

quantity, defined by equation (2) (Muqaibel 

et al. 2017), refers to the ability of the radar 

system to resolve discrete targets positioned 

along different downrange locations in the 

same angular displacement.   

   
 

    
  (2) 

The product,      defines the signal 

bandwidth. The mathematical equation (2) 

explains why modern TWRI systems employ 

ultra-wideband signals.  

The size of the aperture,  , is dictated by 

the system’s cross range resolution,    , 

which refers to the  ability of the radar to 

discriminate adjacent targets resting at the 

same downrange with different angular 

displacements. For the Synthetic Aperture 

Radar (SAR) system of aperture length,  , 

operating with RF signal of wavelength,  , 

imaging two targets located at a range,  , 

then     is given by equation (3) (Abdalla 

2018): 

    
  

  
  (3) 
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This is the reason why the modern TWR 

systems use SAR to realize large aperture 

once physical array becomes infeasible.  

 

 
Figure 1: Scene model in through-the-wall radar imaging. 

 

Proposed multipath exploitation-based 

signal model 

To address the challenges of the current 

multipath exploitation based ghost 

suppression methods, we propose a CS based 

multipath ghost suppression method, which 

suppresses the additional ghost resulting from 

target-to-target interactions. The developed 

signal model, also, reverses the unavoidable 

effect of free space path loss before sparsely 

reconstructing the images. 

Assume N wideband transceivers 

constituting a line array aperture, located 

parallel to the x-axis, and a step frequency 

signal consisting of M frequencies regularly 

spaced over a bandwidth        . The 

overall received signal,  ,   -, 
corresponding to the    frequency and the 

    transceiver can be expressed as the 

superposition of the front wall 

response   ,   -, target returns    ,   -, 
target interaction,   ,   -  and noise 

sample  (   )  as shown by the equation 

(4) 
 

 
 ,   -    (   )[  ,   -  

  ,   -     ,   -]   (   )                                 
(4) 

where  (   )  the function of distance from 

the target to the receiver and frequency of the 

transmitted signal, signifies the path loss 

compensation. If the scene of interest is 

subdivided into    by    pixels along cross 

range and downrange, respectively, equation 

(4) can be expressed as equation (5). The 

variables in this equation represent the 

following parameters:  (     ), path loss 

compensation at     frequency;      

transceiver for the    pixel location;    
( )

, 

round-trip propagation delay between the     

target and the     transceiver; and       time 

delay of the interaction return. Furthermore, 

  
  denotes the reflectivity of the     target’s 

pixel,   
   is the reflectivity of the wall pixels 

due to path      and          is the overall 

reflectivity when     and     targets interact; 

and,             and    
            respectively, are the numbers 

of multipaths from interior and front walls.  

Expressing equation (5) in matrix form, 

we have equation (6). 
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where  ( ),   
(  ), and   

( )          

represent the vectors of reflectivities,   
 , 

  
    and    

 , respectively. The entries of the 

matrices  ( ),   
(  )  and   

( )           

are defined as equations (7)–(10) 
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where                     

⌊
 

 
⌋                   

To apply CS theories, the measurement 

obtained in equation (6) is down-sampled 

using a binary matrix     *   +    . The 

matrix   can be thought of as an     
    identity matrix, where all but   rows 

have been deleted. The under-sampled 

measurement,  ̅ , is then given by equation 

(11) (Yoon and Amin 2008a). 

 ̅      (11) 

The image of the scene,  , defined by 

equation (6), is reconstructed by solving the 

optimization problem (12) (Donoho 2006, 

Yoon and Amin 2008a) 

 ̃  

       ‖  ‖
 
  

s.t. ‖ ̅    ‖  
   

(12) 

with 
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The choice of     which is the function of 

noise power, is defined in Huang et al. 

(2010).  

 

Results and Discussions  

The TWRI system was implemented 

using MATLAB software. For fair 

comparison, the room geometry was taken 

from Leigsnering et al. (2014b) (Figure 2). 

The centre of the aperture defined the 

system’s origin, where the right, left, and 

back walls were positioned at 1.8 m, 4 m  and 

6.37 m, respectively. A concrete front wall is 

located parallel to the array at 2.44 m 

downrange and has a thickness of d = 20 cm 

and relative permittivity of   = 7.6632. A 

SAR with 45 predefined locations, linearly 

spaced by 4.4 cm  was used to interrogate the 

scene sweeping a 2 m crossrange distance. At 

each location, 101 equally spaced frequencies 
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ranging from 1 GHz to 3 GHz were 

transmitted and received using monostatic 

SFR configuration. Two point targets were 

located at (0.31, 3.6) m and (–0.62, 5.2) m. 

The front wall contribution was mitigated 

using spatial filtering that was applied before 

the image reconstruction, as in Lagunas et al. 

(2013). During simulation, six signal returns 

were assumed, where the partial path 

corresponds to the following directions: 

direct, back-wall multipath, left-side, right-

side wall, and target-to-target interaction 

multipath. In this work, we define a path 

from the radar to the target or vice versa as 

partial path. 

For simplicity, we assume all side walls 

to be perfect reflectors. This assumption is 

justifiable because when the walls are 

imperfect, the ghost targets will have 

diminished powers and, therefore, can be 

easily suppressed. White noise of 0 dB 

Signal-to-Noise Ratio (SNR) was added to 

the simulated measurements. The Delay and 

Sum Beam Forming (DSBF) image using full 

data volume was obtained for benchmarking. 

For the sparse reconstructions, only half of 

the radar locations and half of the frequency 

bins were randomly collected to reconstruct 

the images using Yall1 algorithm (AlBeladi 

and Muqaibel 2018). 

 
Figure 2: Measurement setup and room 

layout. 

 In this section, we present results based 

on MATLAB simulation with three scenarios 

implemented. The first scenario assumes two-

point targets while the second one assumes 

three-point targets to observe the effect of 

target interaction when the number of targets 

increases. The third scenario simulates the 

effect of path loss compensation when 

reconstructing three-point targets.  

 

Scenario 1: Target interactions with two 

targets 

 This section analyses the effects of 

interaction for two-point targets that result to 

an additional ghost target (Figure 3 (a-c), see 

cycles). Figure 3 (a) shows an image formed 

using DSBF with total data volume and 

Figure 3 (b) is the image formed using 

conventional CS with only 25% of data 

volume with SCR and RCP of 26.9 dB and 

3.5 dB, respectively. Figure 3 (c) shows an 

image reconstructed using the existing 

multipath exploitation based model whereby 

the ghost due to target interaction still exist. 

The corresponding SCR and RCP values are 

28.8 dB and 10.2 dB, respectively. Figure 3 

(d) is the image reconstructed with the 

proposed model in which all ghosts are 

clearly eliminated and the SCR and RCP are 

respectively 33.7 dB and 12.1 dB.  

 The variations of SCR and RCP with 

SNR (Figure 4) show that both metrics 

improve with increasing SNR while the 

proposed model displays superior 

performance over the existing one. To 

investigate the effects of target interaction 

with increasing number of targets, we 

increased the number of targets to three. 

 

Scenario 2: Target interactions with three 

targets 

 This section analyses the effects of target 

interaction multipath when increasing the 

number of targets. An additional target was 

assumed to be located at (0.71, 1) m  and the 

image qualities using quantitative 

performances, SCR and RCP, were re-
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evaluated. Figure 5 (a) shows a 

benchmarking image using full data DSBF 

technique and Figure 5 (b) depicts the 

conventional CS image using 25% of the 

available data. Compared with the two-target 

scenario, the quantitative results registered 

notable reductions of SCR and RCP to 24 dB 

and to 3.3 dB, respectively. Figure 5 (c) 

shows an image reconstructed using existing 

multipath exploitation based model, where 

the number of additional ghosts increased, 

hence reducing the  SCR and RCP values to 

24.7 dB and  to 8.6 dB, respectively; but the 

performance of the proposed model reduced 

slightly to 28.6 dB and to 10.1 dB for SCR 

and RCP values, respectively, as shown in 

Figure 5 (d). The variations of SCR and RCP 

with SNR is shown in Figure 6. Both metrics 

improve with increasing SNR while the 

proposed model displays superior 

performance over the existing one. 

 

(a) (b) 

(c) (d) 

Figure 3: Sparse scene reconstruction (a) DSBF (b) Conventional CS (c) Existing model 

(d) Proposed model. 
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(a) 

 
(b) 

Figure 4: Variation of performance metrics with SNR (a) SCR (b) RCP. 

Figure 5: Images of the scene with three point targets (a) DSBF 100% (b) Conventional CS 

25% (c) Existing model 25% (d) Proposed model 25% 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(a) 

 
(b) 

Figure 6: Variation of performance metrics with SNR (a) SCR (b) RCP. 

Scenario 3: Target interactions with path 

loss compensation 

 In this section, the performance of the 

designed path loss compensator is analysed 

using setup of the preceding scenario, as 

shown in Figure 7(a). The added nearest 

target was strategically placed to appreciate 

the effects of path loss on the far targets 

because such targets, if uncompensated for 

the loss of power, suffer a notable effect. 

Simulation shows that, without compensating 

for the path loss effect, the furthest target 

disappeared completely and the near second 

target appeared with reduced intensity as 

Figure 7 (b) shows. This observation justifies 

that the free space path loss, if improperly 

handled during model design, significantly 

affects image reconstruction. Applying the 

proposed path loss compensation technique 

enabled successful detection of the three 

targets as shown in Figure 7 (c). 

 The probability of detection compares 

the number of detected targets and the 

number of the available targets, as illustrated 

in Figure 7 (d). For the threshold below 0.15, 

the proposed compensator managed to detect 

100% of targets compared with only 66% 

when the path loss was not compensated, 

which then dropped to 33% detection when 

threshold exceeds 0.2. This finding 

demonstrates the effectiveness of the 

proposed compensator. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 7: Reconstructed image (a) Original scene (b) Uncompensated (c) Path loss 

compensated (d) Detection probability for compensated and uncompensated images. 

Conclusions 

When dealing with multiple target scenarios 

in TWRI, target-to-target interaction is 

inevitable and the associated multipath 

component should be taken into 

consideration. Otherwise, the correctness of 

the scene interpretation will be questionable. 

Besides, the adverse effect of free-space path 

loss on different targets may result into 

masking of some physical targets, if the 

effect is not properly compensated. This 

study developed a path loss compensated 

multipath exploitation based model for 

multiple target sparse image reconstruction in 

TWRI. The designed signal model considers 

both target interaction and path loss 

compensation, hence making it more realistic 

and reliable compared with the existing one. 

Simulation results show significant 

improvement on SCR and RCP, especially 

when the number of targets increase, over the 

existing method. As an extension of this 

work, further studies may attempt to develop 

a more effective path loss compensator that 

exploits extra power associated with all 

possible multipath returns to enhance quality 

of the reconstructed targets. 
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