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Abstract 

A generalized student t distribution technique based on estimation of bilinear generalized 

autoregressive conditional heteroskedasticity (BL-GARCH) model is introduced. The paper 

investigates from empirical perspective, aspects of the model related to the economic and 

financial risk management and its impacts on volatility forecasting. The purposive sampling 

technique was applied to select four banks for the study, namely First Bank of Nigeria (FBN), 

Guaranty Trust Bank (GTB), United Bank for Africa (UBA) and Zenith Bank (ZEB). The four 

banks are selected, because their daily stock prices are considered to be more susceptible to 

volatility than those of other banks within the sampled period (January 2007–May 2022). The 

data collected were analyzed using MATLAB R2008b Software. The results show that the 

newly introduced generalized student t distribution is the most general of all the useful 

distributions applied in the BL-GARCH model parameter estimation. It serves as a general 

distribution for obtaining empirical characteristics such as volatility clustering, leptokurtosis 

and leverage effects between returns and conditional variances as well as capturing heavier and 

lighter tails in high frequency financial time series data.  
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Introduction 

Time varying parameter models have a 

long history in statistics. Modelling unequal 

variances in nonlinear time series is a 

challenging task. The ideas and techniques of 

modelling time series in these diverse areas 

of science and other related disciplines are 

proved to be useful and innovative (Box and 

Jenkins 1976, Park et al. 2023). Bilinear 

generalized autoregressive conditional 

heteroskedasticity (BL-GARCH) model is 

one of the major tools that statisticians and 

economists use to model financial markets’ 

behaviour in the presence of political 

disorders, economic crises, wars or natural 

disasters. In such stress periods, prices of 

financial assets tend to fluctuate very 

profusely (Posedel 2005). 

Statistically speaking, if the conditional 

variance of t  given ,, 21   tt of a 

time series is not constant over time, then the 

process t  is conditionally heteroskedastic. 

Heteroskedasticity refers to the random errors 

having unequal variances. In particular, a 

heteroskedastic model has 

)()( 2

tDiageCov   (Christensen 1996). 

Let ),,,( 21 n   be a Gaussian vector 

with mean vector    and variance matrix 

 ,  where 
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If the expected value of all error terms 

when squared is the same at any given point, 

then the vector is homoskedastic 

(homogeneous). Therefore, 

n  21 . When this assumption 

does not hold, the vector is heteroskedastic 

(Bollerslev et al. 1994, Box et al. 1994, 

Johnston and DiNardo 1997). There are 

several approaches to dealing with 

heteroskedasticity. If the error variance at 

different times is known, weighted regression 

is a good method. If as is the case with 

financial time series, the error variance is 

unknown, and must be estimated from the 

data, the changing error variance can be 

modelled with generalized autoregressive 

conditional heteroskedasticity model families 

using the bilinear generalized autoregressive 

conditional heteroskedasticity (BL-GARCH) 

model. One of the first authors to address 

variance changing over time was Mandelbrot 

(1963) who observed volatility clustering in 

modelling volatility that large (small) 

changes tend to be followed by large (small) 

changes of either sign. Klein (1977) used 

rolling estimates of quadratic residuals. Engle 

(1982) proposed autoregressive conditional 

heteroskedasticity (ARCH (q)) models that 

seemed to capture the empirical 

characteristics in the financial time series. 

These ARCH models have non-constant 

variances conditioned on the past which is a 

linear aggregate of recent past disturbances. 

This means that the more recent news will be 

the fundamental information that is relevant 

for modelling the present volatility with high 

frequency data.  

Some leading scholars who studied 

ARCH model families include: Geweke 

(1986, 1989), Diebold and Nerlove (1989), 

Engle (1990), Jones et al. (1994), Gourieroux 

(2007) and Onyeka-Ubaka (2013). Harvey et 

al. (1992) established the existence of a few 

common factors explaining exchange rate 

volatility movements. Engle et al. (1990) 

showed that US bond treasury bills volatility 

changes are closely linked across maturities. 

These commonality of volatility changes hold 

not only across assets within a market, but 

also across different markets. For example, 

Barsky (1989) established that US stock and 

bond volatilities move together as stock 

prices fall, government bond prices go up, 

while Hamao et al. (1990) and Engle and 

Susmel (1993) discovered close links 

between volatility changes across 

international stock markets. Lamoureux and 

Lastrapes (1990) deduced that conditional 

heteroskedasticity may be caused by time 

dependence on the rate of information arrival 

to the market. They used the daily trading 

volume of stock markets as a proxy for such 

information arrival and confirm their 

significance. Mizrach (1990) associated 

ARCH models with the errors of the 

economic agent’s learning processes. Cai 

(1994) proposed the switching ARCH 

(SWARCH) model in which there were 

several different ARCH models which 

showed that the economy switched from one 

point to another following a Markov chain. In 

this model, there could be extremely high 

volatility process which was responsible for 

events such as the stock market crash in 

2009. Gerald (2018) proposed estimating and 

forecasting West Africa stock market 

volatility using asymmetric GARCH models 

and concluded that the EGARCH model 

presented the best results in the analysis of 

the dynamics of market volatility behaviour. 

Ogundeji et al. (2021), on the other hand, 

used two Bayesian generalized autoregressive 

conditional heteroskedasticity (GARCH) 

models in capturing the volatility dynamics 

of the daily total cases and daily new cases of 

COVID-19 in Nigeria based on their 

conditional distributions. Their analyses 

revealed that the Bayesian Student t GARCH 

(1, 1) model performed better than the 

Bayesian Normal GARCH (1, 1) model. That 

volatilities move together should be 

encouraging to model builders, since they 

indicate that few common factors may 

explain much of the temporal variations in 

the conditional variances and covariances of 
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asset returns. Storti and Vitale (2003) 

proposed BL-GARCH model in Gaussian 

framework. Diongue et al. (2010) extended 

their works using elliptical noise to capture 

the leverage effect or negative correlation 

between asset returns and volatilities. This 

paper, therefore, extends the works of Storti 

and Vitale (2003) to non-Gaussian 

framework using generalized student t 

distribution to capture lighter and heavier 

tails present in high frequency financial time 

series data. 

 

Materials and Methods 

The paper adapts the three recommended 

iterative steps of Box-Jenkins approach to 

select a suitable stochastic model (Box and 

Jenkins 1976, Box et al. 1994). The steps are: 

(i) Identification, (ii) Estimation, and (iii) 

Diagnostic checks. 

The aim of the identification stage is to 

determine the transformation required to 

produce stationarity and also the order of 

autoregressive (AR) and moving average 

(MA) operators for the t  series. In a typical 

BL-GARCH modelling application, it is 

preferable that there are minimum of about 

80 data points in the t  series in order to get 

reasonable maximum likelihood estimates for 

the parameters. This identification starts with 

time series plot which may reveal one of the 

following characteristics: (a) trends either in 

the mean level or variance of the time series 

(b) extreme values and outliers (c) 

seasonality. At the estimation stage, estimates 

are usually calculated for the conditional 

mean, autoregressive conditional 

hetroskedasticity, generalized autoregressive 

conditional hetroskedasticity and leverage 

effect parameters with the p-values and t-

statistics as diagnostic checks. In this paper, 

natural logarithms are applied to obtain the 

transformation required to produce 

stationarity. The normality assumption of the 

residuals is usually not critical for obtaining 

good parameter estimates. As long as the t

’s are independent and possess finite 

variance, reasonable estimates (Gaussian 

estimates) of the parameters can be obtained 

(Abass 1980, Onyeka-Ubaka and Anene 

2020). Having observed that the conditional 

variance depends on the data, the paper uses 

maximum likelihood method (MLE) which is 

consistent and asymptotically normal. This is 

because financial time series data, for which 

BL-GARCH models are usually capable of 

capturing the characteristics, generate high 

frequency sampling of data. The paper uses 

the Gaussian (Normal) and the non-Gaussian 

(Generalized Student t) distributions to allow 

the model fit both the central part and the 

tails of the conditional distribution present in 

high frequency financial time series data. The 

elliptical normalized distributions (the 

Normal, Student t and the Generalized 

Student t) considered in this paper belong to 

exponential class. This is because their 

distributions can be expressed as 

 

 )()(exp)()(),(  DxCxpxf       (2) 

 

for  x , for all   in  and for a 

suitable choice of functions: 

)(),(),(  Cp  and )(D  defined to belong 

to the exponential family or exponential 

class, where )(p  is purely a function of  , 

B(x) is any function of x. Equation (2) is 

important in that any family of distribution 

that belongs to this class is complete and 

thus, there always exists a unique best 

estimator of  . This implies that they have 

complete sufficient statistics for the 

estimators. The distributions are:
 

(a) The normal distribution is uniquely 

determined by its first two moments (Dallah 

et al. 2004). Hence, only the conditional 

mean and variance parameters enter the log-

likelihood function  
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where n is the sample size. To obtain an analytical or numerical solution of the MLE, it is 

necessary to obtain the first derivative 






 )(L  and solve 0
)(








L
. Assuming   , we 

have the score functions as  
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Now, if the paper assumes that the innovations Ztt )(  have a conditional non-Gaussian: 

(b) The Student t distribution is given as 
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(c) The Generalized Student t distribution is given as  
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where  t , q is a complex number, 0, 21  . 1  and 2  are the left and right 

tail parameters, respectively, v is the degree of freedom. The standardized deviate 

sxt /)(   has distribution ),1,0( vt , where x is the observations,   is the mean and 

s is the standard deviation of the observations. The 0, 21   is a necessary condition 

because the probability density function must always be positive. Also, the normalization 

constant  
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of Equation (6) is real, because the integrand is a real function on ),(  . It is clear that if 

0q in Equation (6), the usual Student t distribution is derived. Moreover, for q = 0, the 

normalization constant of distribution Equation (6) is equal to the normalization constant of 

Student t distribution. The kurtosis of the Student t distribution is 
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which is greater than three if v < 4. The MLE estimator ̂  maximizes the log-likelihood 

function tl  given by 
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where  v2  and   is the Euler gamma function defined by 



0

11 .)( dtetx x
 When 

v , we have the normal distribution, so that the smaller the value of v the fatter the tails. 
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Results and Discussion 

In this paper, a BL-GARCH model is 

adopted in which the innovation is composed 

of several sources of errors where each of the 

error sources has heteroskedastic 

specifications of the GARCH form. Since the 

error components cannot be separately 

observed given past observations, the 

independent variables in the variance 

equations are not measurable with respect to 

the available information set which 

complicates procedures. Following earlier 

work of Storti and Vitale (2003) and adopting 

Mohler (1973) non-linear representation of 

bilinear model, the state space representation 

of a bilinear model (of order m) in the control 

theory literatures is of the general form: 
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where the system matrix A and the input 

matrix B are square matrices of order 

);( mm  the state vector x and the control 

vector   are column vectors of order 

)1( m . The input   is a usually 

unobservable random process and the 

systems coefficient matrices are to be 

estimated. If the paper nests the GARCH 

model and Equation (11), the BL-GARCH 

model is given as: 
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If c = 0, the model Equation (14) reduces 

to the state space representation of the 

GARCH model. In this sense, the bilinear 

generalized autoregressive conditional 

heteroskedasticity model is an asymmetric 

extension of the symmetric generalized 

autoregressive conditional heteroskedasticity 

model. Given the parameter space,  , and 

the expected parameter vector, ),(   , 

the assumption is that the parameter 

0 ℝ
1 rqplk

 is in the interior of 

 , a compact parameter space. Specifically, 

for any vector   , we assume that  

(a) The AR and MA polynomials have no 

common roots and that all their roots lie 

outside the unit circle.  
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where the compact space is given as: 

}0)][ln(:{
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
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  (15) 

The generalized student t distribution with 

one skewness parameter and two tail 

parameters offers the study the potential to 

improve our ability to fit the data in the tail 

regions which are critical to the risk 

management and other financial economic 

applications. This is because downward 

movement of the markets is followed by 

higher volatilities than upward movement of 

the same magnitude (Pagan and Schwert 

1990, Locke and Sayers 1993, Linton 1993, 

Muller and Yohai 2002, Eraker et al. 2003). 

So, it is important to use BL-GARCH (1, 1) 

model to capture asymmetric shocks to 

volatility. This distribution function will be 

acceptable if it converges to the probability 

density of the standard normal distribution 

and this leads to proposition 1. 

 

Proposition 1  

If  21 ,,,),(  qzf t
 as in 

Equation (6) is distribution flexible, then it 

contains Pearson subordinate distributions. 

Proof  

The generalized student t distribution can be 

derived from a generalization of the Pearson 

differential equation as follows 

  
)(

)()(

zh

zfzg

dz

df 
         (16) 

where g(z) and h(z) are polynomials in the 

random variable z, and f(z) is the density 

function of z. In the standard Pearson system, 

g(z) is a polynomial in z of the degree less 

than or equal to one, whereas h(z) is a 

polynomial in z of degree less than or equal 

to two. The generalized solution of Equation 

(16) is  

Dzds
sh
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where the normalizing constant is given by 

dzds
sh
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The domain D of f(z) in Equation (17) is the 

open interval where h(z) is positive. The 

choice of )(g  and )(h  for the generalized 

student t distribution are: 

   
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


1

0

)(
i

i
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22)( zzh         (20) 

 

 

By substituting Equation (19) and Equation (20) in Equation (16), the generalized student t 

distribution is given by 
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And the distribution parameters i  are functions of the parameters };1,,1,0,{   ii
 

given in Equation (19) and Equation (20). Provided that in Equation (22), 0 , all 
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moments of the distribution exist. This distribution can exhibit a range of shapes including fat 

tails; sharp peaks and even multimodality (Lye et al. 1998). As the generalized student t 

distribution given by Equation (21) is derived from an extension of the Pearson exponential 

family, it directly contains many of the Pearson subordinate distributions as special cases. In 

particular, from the point of view of the existing ARCH models, these special cases include the 

Normal and Student t distributions. The standard normal distribution occurs when 5.03   

and all remaining parameters are zero. The Student t distribution occurs when 

)1(5.0 2

2    and all remaining parameters are zero. A special case which turns out to 

be important in the empirical application is given by Equation (21) with 2,0  ii  and 

)1(5.0 2

2   . 

    
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i

i

i
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22221

1
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
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where ~  is the normalized constant. This distribution is referred to as the skewed Student t 

distribution where skewness is controlled by the parameter, 
1 . When 01  , there is no 

skewness and the distribution becomes Student t distribution. 

This completes the proof. 

 

Empirical study of real data 

The adopted normalized elliptical 

distributions are empirically tested in four 

banks: First Bank of Nigeria (FBN), 

Guaranty Trust Bank (GTB), United Bank for 

Africa (UBA) and Zenith Bank (ZEB), 

selected by means of purposive sampling 

technique. These selected four banks are 

considered to be more susceptible to 

volatility than other banks and had passed the 

screening exercise conducted by the Central 

Bank of Nigeria (CBN) in August 2009. 

Their volumes of stocks traded on the floor of 

the Nigeria Stock Exchange (NSE) for the 

sampled period (January 2007–May 2022) 

were collected and analyzed using BL-

GARCH model to observe the volatile nature 

of stocks within the sampled period. The 

series plots of the banks exhibit leptokurtosis 

and heavier tails as indicated in Figure 1.   

The series returns show evidence of fat 

tails, the kurtosis is positive and evidence of 

skewness, which means that the tails are 

either heavier or lighter than the usual student 

t distribution. Looking at the plot of GTB 

stock prices, the student t distribution tends to 

infinity. This prompts the study to use the 

generalized student t distribution to capture 

the extreme values in Figure 2.  

Figure 2 shows that the generalized 

student t distribution seems to be a more 

appropriate distribution for the selected banks 

data. The generalized student t distribution 

allows for situations where the tails are 

heavier or lighter than the usual student t 

distribution. The extreme values (left )( 1 and 

right tails )( 2 ) for different banks are 

estimated automatically together with the plot 

of the P-P plots of the selected banks. The 

probability-probability plots of the four banks 

show that they are primarily a few large 

outliers that cause the departures of the 

system from normality. These departures are 

pointing out that there are other factors that 

interrupt the expected volatility of stock 

market prices of these banks on the floor of 

the Nigeria Stock Exchange. The factors may 

include among other things, giving loans to 

private and corporate firms to buy shares 

without due process, lack of strategic 

management and regular supervision. 

The parameter results estimated by 

method of the maximum likelihood estimator 

using MATLAB (R2008b) software are given 

in Table 1. 
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Figure 1: Histogram and student t distribution of the selected banks. 

 

 
Figure 2: Plots of generalized student t distribution for banks that exhibit heavier and lighter 

tails. 
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Table 1: Conditional variance bilinear generalized autoregressive conditional heteroskedasticity (BL-GARCH (1, 1)) model parameter estimation 

results 
 

0̂  
1̂  

1̂  1̂c  v̂  
1̂  2̂  

Gaussian -0.2950         0.01842* 

(0.01292,    22.4458) 

0.2832      0.00352* 

(0.00823,  34.4107) 

0.9511      0.01065* 

(0.01937   49.1017)  

-0.0118      0.00537* 

(0.00568,    -2.0775) 

              -   

Student t -0.3002         0.02178* 
(0.05049,    -5.9457) 

0.4051      0.00413* 
(0.02279,  17.7753) 

0.9238     0.00683* 
(0.07014, 13.1708) 

-0.1036      0.01075*  
(0.01773,  -5.8432) 

3.3429   0.03937* 
( 0.15028 22.2443) 

  

G. Std t -0.3106         0.00572* 

(0.04512,     -6.8839) 

0.3916      0.00294* 

(0.02187,  17.9058)  

0.9162     0.00158* 

(0.05218 17.5585)  

-0.5314      0.02416* 

(0.08023,   -6.6235) 

3.5841    0.01927* 

(0.17209, 20.8269)    

20.3 17.1 

Gaussian 
FBN 

1.8145e-005     0.02481* 
(2.4118e06,    7.5234) 

0.17507    0.00322* 
(0.01720, 10.1778) 

0.82493   0.00723* 
(0.01371, 60.1560) 

0.00591      0.00537* 
(0.05316,   0.1112)  

              -   

Student t 

FBN 

2e-007          0.02178* 

(5.2309e-008,  0.8234) 

0.3634     0.00318* 

(0.04007, 9.0691) 

0.6765    0.00659*  

 (0.01941, 34.8531) 

-0.0856      0.01075* 

(0.01575,  -5.4349) 

2.0682    0.05137*        

(0.1035,  19.9826)     

  

G. Std t 
FBN 

2e-005          0.03217* 
(5.1308e-008, 0.8234) 

0.3831     0.00594* 
(0.04107, 9.3279) 

0.6483    0.06253*  
 (0.02394, 27.0802) 

-0.0880      0.01075* 
(0.01455,  -6.0481) 

2.5618     0.05137*        
(0.1065,  24.05446)     

23.4 10.8 

GaussianGTB
 

-3.7376        0.02338* 

(0.69453,    -5.3815) 

0.7452     0.00813*  

(0.04746, 15.0695) 

0.4548    0.05247*  

(0.09867, 4.6103) 

-0.0760      0.05327* 

(0.03834,  -1.9823) 

              -   

Student t 

GTB 

-1.1341        0.02057* 

(0.29667,    -3.8226) 

0.4904     0.05164*  

(0.07519, 6.5221) 

0.8391     0.06945*  

(0.04146, 2.0239) 

-0.0283      0.06197* 

(0.05117,   -5.5306) 

2.2948     0.36092*  

(0.74276, 3.0896) 

  

G. Std t 
GTB 

-3.1893        0.02178* 
(0.36262,    -8.7952) 

0.5190     0.01006*  
(0.05761, 9.0089) 

0.4398     0.05352*  
(0.01567, 28.0664) 

-0.0980      0.05169* 
(0.05212,   -1.8803) 

7.8974     0.06673*  
(0.84215, 9.3778) 

18.4 7.8 

Gaussian 

UBA 

-1.8027        0.04358* 

(0.13484,    -13.3690) 

1.0215     0.01062*  

(0.05546, 18.4191) 

0.7333     0.01965*       

(0.01753, 41.8311)   

-0.1560      0.00951* 

(0.03737,   -4.1745) 

              -   

Student t 
UBA 

-0.4415        0.03761* 
(0.09842,     -4.4859 ) 

0.4915     0.00923*  
(0.04615, 10.6501) 

0.94166   0.00714*  
(0.01326, 71.0078) 

-0.1234      0.00714* 
(0.03633,   -3.3966) 

2.1625     0.03637*  
(0.31338, 6.9006)  

  

G. Std t 

UBA 

-0.6134        0.02516* 

(0.18793,   -3.2640 ) 

0.4257     0.00623* 

(0.06183, 6.8850) 

0.8419     0.00412*  

(0.03128, 26.9150) 

-0.1760      0.01398* 

(0.02904,   -6.0606) 

5.9763  0.03637*  

(0.52160, 11.4576)  

20.9 14.0 

Gaussian 

ZEB 

2.194e-005     0.05329* 

(2.1776e-006,  10.0754) 

0.2285     0.01067* 

(0.01069, 21.3751) 

0.7717     0.01594* 

(0.00894, 86.3199) 

-0.0294      0.01553* 

 ( 0.03008,  -0.9774) 

              -   

Student t 

ZEB 

2e-007            0.04087* 

(5.9104e-008,  3.3838) 

0.3081     0.00771* 

(0.03615, 8.5228) 

0.6918     0.01439* 

(0.02081, 33.2436) 

-0.0189      0.03369*   

(0.02644,    -0.7148) 

3.6334   0.05213* 

(0.31416, 11.5654) 

  

G. Std t 
ZEB 

2e-005          0.02106* 
(5.8104e-008,  4.3927) 

0.3176     0.01194* 
(0.02581, 12.3058) 

0.6543     0.00339* 
(0.02167, 30.1938) 

-0.0297      0.03369*   
(0.01962,   -1.5138) 

5.6735     0.00168* 
(0.40267, 14.0897) 

24.1 13.5 

The asterisks (*) are the p-values. The values in parenthesis say (a, b) are the standard errors and t-statistics, respectively. 
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Table 1 represents conditional variance BL-GARCH (1, 1) model parameter estimation 

results. Results reveal that parameter estimates are satisfactory (asymptotically unbiased, 

efficient and consistent) in that the standard errors are small and the t-statistic for GARCH 

parameters )(  is high. It is clear from the analysis that estimate 1̂  and  1̂  in the BL-

GARCH (1, 1) model are significant at the 5% level with the volatility coefficient greater in 

magnitude. Hence, the hypothesis of constant variance is rejected, at least within sample 

period. Furthermore, the stationarity condition is satisfied for the three distributions, as 

1ˆˆ
11    

 
at the maximum of the respective log-likelihood functions. Even when 

1ˆˆ
11   , so long as 0)][ln( 1

2

1   tz , covariance stationarity is established. The 

estimated asymmetric volatility response 1̂c  is negative and significant for all models 

confirming the usual expectation in stock markets where downward movements (decreasing 

returns) are followed by higher volatility than upward movements (increasing returns). The 

results also follow the empirical findings of Storti and Vitale (2003), in that the kurtosis 

strongly depends on the leverage-effect response parameter. The results indicate that the BL-

GARCH (1, 1) processes are appropriate for modelling the conditional variance of the selected 

banks returns. Using Akaike (1974), the BL-GARCH (1, 1) model with minimum AIC was 

selected as the best. The BL-GARCH (1, 1) conditional variance model that best fits the 

observed data is 

11

2

1

2

1

2 5314.09162.03916.03106.0   ttttt    (23) 

where  9162.0)1(ˆ,3916.0)1(ˆ,3106.0ˆ
110  GARCHARCH   and 

 5314.0ˆ
1  effectLeveragec  

 

From the results obtained, the BL-GARCH (1, 1) model with Generalized Student t 

distribution fits GTB, UBA and ZEB data better while the First Bank of Nigeria data follows 

the Student t BL-GARCH (1, 1) models.  This is because adding more parameters in modelling 

the FBN data does not improve the parameter estimates of the FBN. The parameter   is 

therefore a good approximation of the degree up to which one is able to explain the 

variance/kurtosis of the disturbances.  The GTB, UBA and ZEB series confirm these 

statements as seen in Figure 2. 

 

Conclusion 

The newly introduced generalized student 

t distribution in this paper is the most general 

of all the useful distributions applied in the 

BL-GARCH model parameter estimation. It 

offers a three parameter form which makes it 

more general than those available in the 

literature for obtaining empirical 

characteristics such as volatility clustering, 

leptokurtosis and leverage effect between 

returns and conditional variances as well as 

capturing heavier and lighter tails in high 

frequency financial time series data. The 

results of the extreme departure of some data 

are very crucial to risk managers for planning 

and decision-making processes. Thus, the 

empirical results of BL-GARCH model show 

that parameters can be evaluated from 

Gaussian and non-Gaussian distributions.  
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