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Abstract 

This paper describes an optimal harvesting policy for a wildebeest-lion prey-predator system in 

the Serengeti ecosystem with prey refuge. A Holling Type II prey-predator model with a 

nonlinear harvesting aspect was developed. Theoretical and numerical analyses were 

performed, and the dynamic behaviour of the system was found to be mathematically well-

posed. Data on lion population density from the Serengeti ecosystem were used to fit the model 

using the maximum-likelihood method. The optimal harvesting policy was numerically 

determined using Pontryagin’s maximum principle. Furthermore, the impact of prey refuge on 

the predator population was numerically evaluated. The results of this study highlight the 

importance of managing the lion population in the ecosystem, specifically in terms of 

harvesting criteria, to ensure that the threshold for wildebeest-lion coexistence is not exceeded. 

Based on the findings, this paper argues that the lion population should be given special 

attention in terms of managerial harvesting criteria so that the threshold for the wildebeest-lion 

coexistence in the ecosystem is not exceeded. 

 

Keywords: Prey-predator System, Wildebeest-Lion Harvesting, Serengeti Ecosystem, Prey 

Refuge.  

 

Introduction  

Human harvesting of species has been a 

topic of considerable interest in population 

ecology and community dynamics, and 

numerous theoretical studies have been 

conducted to investigate its effects on various 

populations. Given that human harvesting is 

often considered a significant cause of 

mortality and population variability, it is 

crucial to present and consider these studies 

in detail, particularly for the exploited 

populations (Costa and Anjos 2021). As a 

result, harvesting procedures must be 

carefully monitored to avoid resource over-

utilization.  

Species harvesting practices among other 

areas are also found in the Serengeti 

ecosystem, which is one of the most 

important and famous cross-border 

conservation regions worldwide (Sinclair 

1979). The ecosystem which is located in the 

northern part of Tanzania is well known for 

the annual migration of the wildebeests and a 

healthy stock of other resident wildlife 

particularly the big five namely; lion, African 

leopard, African elephant, black rhinoceros, 
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and African buffalo (Boone et al. 2006, 

Sagamiko et al. 2015). Furthermore, 

harvesting of species in the Serengeti 

ecosystem is permitted only in game reserves 

such as Maswa, Kirejeshi, Gurunnet, 

Loliondo, and Ikorongo, whereas it is 

prohibited in the national park. 

This study considers the optimal 

harvesting of wildebeests and lions in a prey-

predator relationship. According to the 

theory, predator populations rely on prey 

species for survival, lowering prey population 

survival and fecundity rates (Sagamiko et al. 

2015). The study also incorporates the 

concept of prey refuge because migratory 

wildebeests seek refuge in the western part of 

the ecosystem, where there is human 

habitation, tending to reduce their risks of 

predation. Furthermore, their gregarious 

behaviour reduces the likelihood of being 

detected and preyed upon by predators (Riipi 

et al. 2001, Sagamiko 2015).  

A set of mathematical models of 

population dynamics has been provided to 

explore the relationships between prey and 

predator populations (Han et al. 2021), 

indicating that the mathematical modelling of 

exploited biological resources is an 

interesting field of research (Kar et al. 2010). 

Clark (1979, 1990), for example, interpreted 

the effects of harvesting on fisheries control, 

whereas Hoekstra and Van den Bergh (2005) 

reviewed a prey-predator model with predator 

conservation and harvesting and 

demonstrated a model of optimal harvesting 

solutions controlled by ecological and 

economic parameters. Ji and Wu (2010) 

investigated a prey-predator model with a 

constant rate of harvesting and constant prey 

refuge. Likewise, Krishna et al. (1998), 

Gupta and Chandra (2013) investigated a 

two-species prey-predator model with a 

Michalis-Menten harvesting function, with 

the main goal of maximizing economic 

benefits while maintaining ecological balance 

and preventing predator annihilation. 

Abdulghafour and Naji (2018) investigated 

the role of refuge in the prey-predator model 

and the effects of critical parameters on 

system dynamics. 

Purohit and Chaudhuri (2004) developed 

a two-species bio-economic fishery model 

that employed nonlinear harvesting for both 

species similarly, Haque and Sarwardi (2018) 

investigated a two-species harvesting model 

for both species that used the Holling type-II 

functional response and included prey refuge. 

Hu and Cao (2017) considered a prey-

predator model in which only the predators 

are harvested using Michaelis-Menten 

function. Raw et al. (2020) focused solely on 

the improvement of the nonlinear harvesting 

of fish species in the plankton fish model.  

Biological resources in the prey-predator 

system are most likely to be harvested and 

sold for monetary gain. Many studies have 

shown that harvesting has a significant 

impact on population dynamics. Moreover, 

various types of harvesting functions were 

presented. Das et al. (2009) discussed a prey-

predator fishery bioeconomic model with 

constant harvesting, while Chakraborty et al. 

(2012) investigated the global dynamics and 

bifurcation of the prey-predator relationships 

with continuous harvesting. In analysing the 

economic benefits of harvesting, three types 

of harvesting functions, namely constant 

harvesting, constant-effort harvesting, and 

nonlinear harvesting, have been extensively 

studied by many researchers, such as Tapasi 

et al. (2009), Srinivasu (2001), Gupta and 

Peeyush (2013). These types of harvesting 

are expressed mathematically as follows: 

constant harvesting ( , )H x E c , where 

( , )H x E  is harvesting function, x harvested 

species and c  is constant harvesting while 

constant-effort harvesting ( , )H x E qEx  

where the catch is proportional to the stock 

and effort applied, q which stands for 

coefficient of catchability, E  is the effort 

applied to harvesting and nonlinear 

harvesting 

1 2

( , )
qEx

H x E
l E l x




, where 

1l and 2l are suitable positive constants that 

ensure the harvested species does not become 

extinct. In a comparison of the harvesting 

results, it was observed that the nonlinear 

harvesting function produces more realistic 
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outcomes when compared to other types of 

functions and it satisfied the condition 

1

( , )lim
E

qx
H x E

l

  and  

2

( , )lim
x

qE
H x E

l

 . 

However, the nonlinear function 

demonstrates saturation effects regarding 

both the level of harvesting effort and stock 

abundance. This has been observed in several 

studies, including those by Das et al. (2009) 

and Tapasi et al. (2009), Srinivasu (2001), 

Gupta et al. (2012), Gupta and Chandra 

(2013), Meng et al. (2017). Therefore, this 

study focuses on the nonlinear harvesting 

function when analysing the economic profits 

of harvesting. 

Illegal hunting is a significant off-farm 

activity for rural communities living in the 

Serengeti ecosystem (Kideghesho 2010). This 

activity has long posed a major management 

challenge for conservation officials, as it 

results in the overharvesting of wildlife 

populations (Ndibalema and Songorwa 

2008). The present study offers optimal 

harvesting criteria for wildebeests and lions 

found in the Serengeti ecosystem, which can 

assist conservation authorities in 

implementing necessary control measures to 

ensure that only the allowable numbers of 

these species are harvested. By doing so, the 

study findings will not only promote the 

conservation needs of the species considered 

in the study but also aid in mitigating the 

impact of illegal hunting on the ecosystem. 

 

Materials and Methods 

Mathematical model formulation 
An ecological system of two species 

containing the wildebeest populations as 

prey  X  and the lion populations as the 

predator  Y   is formulated for the Serengeti 

ecosystem. The model includes a prey refuge 

with a functional response Holling Type II 

and a Michalis-Menten harvest function. The 

prey population is assumed to increase 

logistically in the absence of a predator. 

Meanwhile, in the model, the predators are 

expected to die exponentially in the absence 

of prey. It is assumed also that a fixed 

number of prey refugees have entered the 

preserved area to avoid being attacked by 

predators. A predator can, however, attack 

non-refuge prey  1 mX , where m  is the 

proportion of the prey population not exposed 

to predation. The concept of harvesting was 

incorporated into the model to determine the 

biological impact. Mathematically, the model 

is described as follows: 

 

 

 
1 1 1

1 1 2

1
1 ,

1 1

w m XY c E XdX X
rX

dt k a m X l E l X

 
        

 

  
 

 
2 2 2

3 2 4

1

1 1

w m XY c E YdY
Y

dt a m X l E l Y



   

  
, 

                                                                    (1) 

where , 1,2,3,4il i   are positive constants 

are arbitrarily chosen to ensure the harvested 

population does not extinct, 1E  and 2E  

represent harvesting efforts for wildebeests 

and lions, respectively, r is the prey intrinsic 

growth rate, k  is the prey carrying capacity, 

1w  is the per capita predation rate, 2w  is the 

predator biomass gain, a is the predator half-

saturation, 1c  and 2c  are the coefficients of 

harvesting for prey and predator, 

respectively, and  is the lion mortality rate. 

To reduce the complexity analysis of the 

model (1), the model is rescaled by assuming 

the following:  

 

 
3 2 11 1 1 1 1

1 2 3 4 5

1 2 2 4

2 2 1 2
6 7

4

1
, , , , , , ,

1

,

l E wc E l E wky
X kx Y b b b b b

w kl kl ka m a kl

c E w w
b b

kl a

      


 

 

 



Tanz. J. Sci. Vol. 49(2) 2023 

531 

Thus, the rescaled model (1) becomes; 

  4 1

3 2

7 6

3 5

1 ,

.

b y bdx
r x x

dt b x b x

b y bdy
y

dt b x b y


 
    

  

 
    

  

 (2)  

 

To ensure a comprehensive understanding of the animal population represented by model (2), it 

is imperative to conduct a theoretical evaluation of its biological behaviour and the probability 

of a positive solution occurring at time t. Consequently, the following lemma is imposed: 

Lemma 1 The solution of the model system (2) exists under the interval  0,  and 

( ) 0, ( ) 0x t y t    for the time 0t  . 

Proof: Given that  ,f x y  and  ,g x y  are continuous functions and satisfy the local 

Lipschitz  1 2C R  then the solution of model system (2) exists and is unique in  0,  such 

that 0    .  

The solution of the model system (2) for the x  and y  is obtained by using the Hale (1977) 

approach, which was also applied by Lakshmi and Sattwika (2017) and Lakshmi et al. (2020). 

Thus, the solution is given as: 

  4 1

3 20

( )
( ) (0)exp 1 ( ) 0

( ) ( )

t
b y s b

x t x r x s ds
b x s b x s

  
      

   
  

and  

7 6

3 50

( )
( ) (0)exp 0

( ) ( )

t
b y s b

y t y ds
b x s b x s


  

      
   

 . 

This brings the proof to an end.  

 

Lemma 2 The model system (2) has uniformly bounded solutions in 
2

R . 

Proof: The function      t x t y t





   is used to demonstrate the lemma, where   

and   are any positive constant number. 

Thus differentiating  t with respect to t gives  

d dx dy

dt dt dt

 


  . (3) 

Substituting the equations of system (2) into (3) and simplifying gives  

 1
d

r x x y
dt

 



   . 

Thus, for any constant number 0   the results give  

 1
d

r x x y x y
dt

  
  

 

 
      

 
. 
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Then  

     t r rx x y


   


     . 

Using the concept of completing the square and simplifying  t , results into 

     
2 21

4 4
t r

r


   


    . 

Assume any number say 0   then 
d

dt


   , this leads to  

       0 1 max 0 ,t tt e e  
  

 

   
     

 
. 

From  (0) 0, (0) 0; 0 (0) (0)x y x y





    , as t  leads to 

 limsup t





  which is unaffected by the initial conditions. Furthermore, it is observed 

that, all of the system's solutions that begin in 
2R  end up in the 

region   2, :x y R Q







 
     

 
, for some 0Q  , which concludes the proof.  

 

Steady states of the model 
Equilibrium points, in the context of 

ecology, refer to stable states or conditions 

within an ecosystem where the various 

ecological factors and populations reach a 

balance. These points represent a state of 

equilibrium where the rates of change for 

different ecological variables, such as 

population sizes, nutrient cycling, and energy 

flow, are relatively constant over time. 

Equilibrium points are essential in ecology 

because they provide insights into the 

dynamics and stability of ecosystems. 

To calculate the equilibrium points of the 

model (2), its right-hand side is equated to 

zero. That is, 0
dx

dt


 

and 0
dy

dt
 .  

 

 

Model (2) has three equilibrium points;  

(i) Trivial equilibrium points  0 0,0P  always exist       

(ii) Boundary equilibrium point   1 *,0P x  where      

 
2

2 1*

2

1 41
1

2

r b b
x b

r

  
   
 
 

 and exists if  

 
2

2 1

2

1 4
1

r b b
b

r

 
  . 

(iii)  Co-existence equilibrium point  2 * *,P x y     where      
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    

 

* * *

2 1 3*

*

2 4

1x b x r b b x
y

b x b

   



 and 

*x is the positive solution of  

4 3 2

1 2 3 4 5 0A x A x A x A x A      (4) 

where  

 1 4 2A r b w   ,   2 4 2 2 31A r b w b b    ,  

      2

3 3 2 4 2 4 1 2 5 6 3 2 4 2 11 2A rb b b w b b w b b r b rb b w b             , 

         2

4 3 2 2 3 4 2 3 4 1 2 5 3 1 4 6 2 4 5 6 4 5 21 2 2 ,A r b b rb b b w b b b w b b b b b b b b b b b w             

 

   2 2

5 2 4 2 2 3 4 5 6 3 2 1A b b w b b b b b b rb b      . 

Therefore,  2 * *,P x y   uniquely exists in xy  plane provided the following conditions are 

satisfied: 

(i)   * *

2 11r x b x b   .  

(ii) For positive roots of the polynomial (3), the coefficients , 1,...,5iA i   must 

meet the following criteria: 

5

1

1 2 3 4 5

5

1

0; 1,...,5                       

0; 1,..., 4 and 0

0 and 0; 2,...,5

0, 0, 0, 0, 0

0; 1,...4, 0                

0 and 0; 2,3,4,5.

i

i

i

i

i

A i

A i A

A A i

A A A A A

A i A

A A i

 


  

   


    
   


  

 

 

Stability analysis of the model 
The model stability is assessed using the Jacobian matrix around the equilibrium points, 

where the model system (2) is expressed in the form of  ,ijf x y , giving 

     11 12

21 22

,
f f

J x y
f f

 
  
 

, (5) 

where 

 
     

   

3 4 1 2 4
11 122 2

33 2

2 3 4 5 62 4
21 222 2

33 5

1 2 , ,

and .

b b y b b b x
f r x f

b xb x b x

w b b b bw b x
f f

b xb x b y



    

 

   
 

 

 

The behaviour of the system at  0 0,0P   

The variational matrix at the trivial equilibrium point is 
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 

1

20

6

5

0

0

b
r

b
J P

b

b


 
 

 
 

  
 

,  (6) 

With the eigenvalues of 5 62 1
1 2

2 5

and
b brb b

b b


 


   . 

From the nature of the given eigenvalues, it is concluded that  is locally asymptotically 

stable if 
2 1rb b  otherwise, it’s unstable under the condition

2 1rb b .  

The behaviour of the system at  1 *,0P x   

The eigenvalues of the resultant Jacobian matrix for  1 *,0P x  are given as   

     

 

*3 *2 *

2 2 2 2 2 1

1 *2 * 2

2 2

5 6

2

5

2 4 1 2
,

1

2

.

rx b rx rb b x b rb b

x x b b

b b

b






   
 

 











 (7) 

Thus, if the following conditions are met, the equilibrium point  1 *,0P x  will be locally 

asymptotically stable; 

(i) 2

1

4
b  , 

(ii) 2 1rb b , implies that 1

1

c
r

l
  whereby r is the prey intrinsic growth rate, 1c  is the 

prey harvesting coefficient, and 1l  is the positive coefficient for prey harvesting 

effort.  

 

The behaviour of the system at  2 * *,P x y  

The variational matrix  2 * *,P x y  for model (2) leads to the following quadratic 

equation;   
2

1 2 3 0C C C    . (8) 

where  

 
     

*
* 3 4 5 62 4 1 2

1 2 2 2* * * *
3 3 2 5

2 1
b b y b bw b x b b

C x r
b x b x b x b y

      
   

, 



Tanz. J. Sci. Vol. 49(2) 2023 

535 

   
 

 

** *
* * 6 64 1 4 1 2 4

2 2 2 2* * * ** * *
3 2 3 53 2 5

1 ,
b y bb y b b y b w b x

C r x r x
b x b x b x b yb x b x b y



    
             
         
    

 

 

2 * *

4 2 3
3 *

3

b w b x y
C

b x



.  

Both roots of Equation (8) are in the open left half-plane, and the characteristic equation is 

stable if the following conditions are met: 

(i) the coefficients 0iC    for 1, 2,3.i    

(ii) 1 3 0C C   and  

(iii) 
2

2 1 34 0C C C  . 

 

Global stability behaviour of the system 
The Lyapunov method is applied to analyse the global stability of the interior equilibrium 

point of the model (2).  

Thus, the Lyapunov function is defined as;  

  * *

* *
,

x y
V x y x x ln y y ln

x y

  
      

   
 (9) 

The time derivative of (9) is given by: 
* *dV x x dx y y dy

dt x dt y dt

 
  . (10) 

Substituting (2) in (10) and simplifying, results to 

 
 
   

 

 
 

 
 

*
2 4* *1

* *

3 2

*
2 2 4* 6

* *

5 3

            - .

b y y bdV
x x r r x x

dt b x x b x x

w b x xb
y y

b y y b x x


 
       
    
 

 
   
    
 

 

Therefore, the Lyapunov function is globally asymptotically stable for 0
dV

dt
  if the 

following conditions are satisfied:  

(a) 
 
   

 
*

4 *1

* *

3 2

b y y b
r r x x

b x x b x x


   

   
 and  

(b) 
 

 
 

*

2 46

* *

5 3

w b x xb

b y y b x x



 

   
. 

This concludes the proof. 

 

Bionomic equilibria 
The previous section outlined the 

biological equilibrium points for the model 

system (2). This section focuses on the 

economic equilibrium point, which is 

determined when the net income of the 

biomass trade is equal to the inclusive 

collection effort, as outlined by Krishna et al. 
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(1998) and Kar et al. (2006) referred to as 

bionomic equilibrium. In a broader 

perspective, a bionomic equilibrium refers to 

a state of balance or stability in the natural 

environment, specifically within ecosystems. 

It describes the intricate interactions and 

interdependencies among living organisms 

and their surrounding environment, including 

both biotic (living) and abiotic (non-living) 

components. Bionomic equilibria encompass 

the dynamic processes that regulate 

populations, energy flow, nutrient cycling, 

and other ecological factors.  Assuming 

that 
1q  and 

2q are the cost per unit effort for 

the wildebeests and the lions, respectively 

and the price per unit biomass of wildebeests 

is
1p while the price per unit biomass of lion 

is 
2p , it implies that 

 

1 1
1 1 1

1 1 2

p c x
q E

l E kl x

 
   

 
 and 

2 2
2 2 2

3 2 4

p c y
q E

l E kl y

 
   

 
, 

where 1 and 2 are the economic rent or net revenue of wildebeests and lions, respectively. 

At any time, the total revenue is given by 1 2   . 

Thus  

1 1 2 2
1 1 2 2

1 1 2 3 2 4

p c x p c y
q E q E

l E kl x l E kl y

  
      

    
.  (11)  

The economic equilibrium of (2) and (11) with the impact of harvesting is evaluated as  

          4 1 1

3 1 1 2

1 0
b y c E

r x
b x l E kl x

   
 

, (12) 

       
7 2 2

3 3 2 4

0
b x c E

y
b x l E kl y

   
 

, (13)  

1 1 2 2
1 1 2 2

1 1 2 3 2 4

0
p c x p c y

q E q E
l E kl x l E kl y

  
     

    
, (14)  

The following cases are examined to determine the bioeconomic equilibrium: 

Case I: if 1 1
1

1 1 2

p c x
q

l E kl x



,         

That is to say, the cost per unit effort for the wildebeests is higher than income; so, the harvest 

loss would then begin as 1 0E  . Only the lion option is available for harvesting, that is;  

  2 2
2

3 2 4

p c y
q

l E kl y



. 

From Equation (12) when 1 0E  we have  

         4

3

1 0
b y

r x
b x

  


. (15) 

Thus we have  

       2 4
3 31 0

b
x b x b y

r
     . (16) 
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Equation (16) gives the biological curve which meets the y-axis at   *0, y  where 
* 3

4

rb
y

b
 .  

Similarly, the curve meets the x-axis at  *,0x , where 
* 1x   , and 

*

3x b  . However, the 

value of 
* 0x  .  

Therefore, the bionomic equilibrium  ,x y   is determined using Equation (16) together with 

the condition  

1 1 2 2
1 1 2 2

1 1 2 3 2 4

0
p c x p c y

q E q E
l E kl x l E kl y

  
     

    
. (17) 

Equation (17) is referred to as the zero profit line. From Equation (17), we have  

   
 

2

1 1 1 1 2 1 2 2 2 3 2 3 2 1 1 1 1 2 1 2

2 2 2

2 2 4 2 1 2 4 1 2 2 2 2 1 1 4 1 1 2 1 4 2 1 1 4 1 1 2 2 1 2

.
x E c p E l q E l q kl E l E E l q E E l q

y
x k E l l q k E l l q kE c l p kE c l p kE E l l q kE l l q E E c l p




   

 






   

           (18) 

Then Equation (16) becomes  

                    2

3 3 8 9 10 111 0.rx r b x rb b x b b x b         (19) 

where  
2 2

8 2 2 4 2 1 2 4 1 2 2 2 2 1 1 4 1b k E l l q k E l l q kE c l p kE c l p    , 

2

9 1 1 4 1 1 2 1 4 2 1 2 2 1 2b E l l q E E l l q kE E c l p   , 

 10 4 3 2 1 1 1 1 2 1 2 2 2b kb l E E c p E l q E l q 
,  11 4 3 2 1 1 1 1 2 1 2 .b kb l E E E l q E l q  

Equation (19) can be simplified as  
3 2 0,Ax Bx Cx D     (20) 

where 

   

 

8 9 8 3 3 9 3 8 9 4 3 2 1 1 1 1 2 1 2 2 2

4 3 3 1 1 1 1 2 1 2 3 9

, 1 , ,

.

A rb B rb rb b C rb b rb b rb b l E E c p E l q E l q

D b l E E E l q E l q rb b

         

  
 

Therefore, for case I; the bio-economic equilibrium will exist if the following conditions are 

satisfied: 

A> 0, B> 0, C> 0, D > 0

A> 0, B> 0, C > 0, and D < 0

A > 0, B< 0, C< 0, D < 0

A< 0, B< 0, C < 0, and D > 0








    (21) 

Case II: if 2 2
2

3 2 4

p c y
q

l E kl y



,    

That is to say, the cost per unit effort for the lions is higher than the income. So the harvest loss 

would then begin to close 2 0E  . Only the wildebeest option is available for harvesting, that 

implies  1 1 1

1 1 2 1

q l E
x

p c kl q
 


.  

As 2 0E  from Equation (13) we have 
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           3 7 0y b x b x      .   

Thus,                

 
7 1 1 1

3 1 1 1 2 1 1 1

b q l E
y

b p c kq l q l E 
 

 
  and is positive if 1 2

1 1

p kl

c c
 .  

Therefore, bionomic equilibrium exists for any of the above cases. 

 

Optimal harvesting 
Determining an optimal commercial 

wildlife harvest policy, this section presents a 

fundamental problem for identifying the 

optimal compromise between current and 

future harvests. This challenge has been 

highlighted in numerous studies, including 

those by Clark (1990), Jerry and Raissi 

(2001), Song and Chen (2001), Kar and 

Pahari (2007), Das et al. (2008), Chakraborty 

et al. (2011), and Belkhodja and Alli (2014). 

As pointed out by Clark (1990), this type of 

resource conservation problem is extremely 

difficult, not only mathematically, but also 

politically and philosophically. Time plays a 

crucial role in temporal profit issues and is 

essential for the survival of a program or 

business. Although the social legitimacy of 

this concept is highly debatable, time 

reductions constitute a standard practice in 

corporate management, as presented by Clark 

(1979). 

Mathematically, the biological equilibrium is evaluated by setting 0, 0
dx dy

dt dt
  and 

solving the resultant model equations simultaneously whereby the economic equilibrium is 

obtained as the total revenue equals the total cost. The profit function for the exploited predator 

and prey populations is further expressed as;  

 
1 1 2 2

1 1 2 2

1 1 2 3 2 4

p c x p c y
q E q E

l E kl x l E kl y

  
      

    
. (22)  

The main objective is to maximize the present value J of the net income function as 

 

1 1 2 2
1 1 2 2

1 1 2 3 2 40

  .t p c x p c y
J e q E q E dt

l E kl x l E kl y






   

      
     

  (23) 

The symbol   states the discount rate of the net revenue. The goal is to maximize the present 

value J subject to Equation (2) by following Pontryagin’s maximum principle (Grass et al. 

2003). The variables 1E and 2E  are subject to the condition max0 i iE E  for 1, 2i   which 

results from the following Hamiltonian function:  

 

1 1 2 2
1 1 2 2

1 1 2 3 2 4

74 1 1 2 2
1 2

2 1 1 2 5 3 2 4

1 ,

t p c x p c y
H e q E q E

l E kl x l E kl y

b xb y c E c E
r x x y

b x l E kl x b y l E kl y



  


   

       
     

  
        

      

 

 (24) 

 

where the variables 1 , and 2  are the adjoints of the problem. 
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Thus, 

1

0
H

E





 and 

2

0
H

E





are the necessary conditions for the control variables 

1E  and 

2E  to be optimal.  

Thus, 
 

 
 

 
1 1 1 1 1 1 1 1 1 1 1 1

12 2

2 1 1 2 1 12 1 1 2 1 11

.
t

tp c xl E e p c x c x c E xl
q e

kl x l E kl x l Ekl x l E kE l E

H

l x


  


 

     
   





 

(25) 

and  

 

 
 

 
2 2 3 2 2 2 32 2 2

2 22 2

4 3 2 4 3 24 3 2 4 3 22

t
tp c xl E e c E lp c x c

q e y
kl x l E kyl l Ekl x l E kyl l

H

EE








  

             








 (26) 

  

Thus 

   2 2 2 2 2 2

2 1 1 2 1 1 1 2 1 1 1 1

1 2

1 2

2
t

e k x l q kx c l p kxE l l q E l q

c x kl






  

 

 and  

         

    

 

22 2 2 2 2 2

4 2 2 4 2 2 3 4 2 2 3 2 4 3 2

2 2 2

4 3 2 2 4

2
t

e k x l q kx c l p kxE l l q E l q kyl l E

kl x l E y c kl






   

 


 
From the Hamiltonian Equation (24), we also have  

 
   

   

1 1 1 1 2
1 1 12

2 1 1 2 1 1

2 71 4 1 4 1 1 1 1 1 1 2

2 2

2 2 1 1

1

1 52 2 1

1
tp c p c xkl

E e rx r x
kl x l E k

d H

t l x l E

ybb y b yx c E c E xkl

b x kl x l E b yb x kl x l E

x


 

 



 


 

     
   

    


  







  
    (27) 

 
 

   

2 2 2 2 4 1 4
22

4 2 3 24 2 3

7 72 2 2 2 4
2 2 2 2

5 4 2 3

2

3 5 4 2

         .

tp c p c ykl b x
E e

kyl E l b xkyl E l

b x b xc E c E kl
y

b y kyl E l b y k E

y

yl

H

l

d

t



 

 




 

 
     

   

  
               

 
 (28) 

Hence, from the solution of 1  and 2  in connection with the adjoint equations (27) and (28), 

we obtain the solution of the optimal harvesting parameters 1E  and 2E  which optimizes the 

objective function. Due to the complexity of the model, the analysis will be carried out 

numerically.  

 

Numerical Results and Discussions 

Model fitting and parameter estimation  

The model was first solved using literature 

parameters 0.98r   (Mduma 1996),  

1 0.674w  (Fryxell et al. 2007), 
2 0.25w   

(Schaller 1972),  0.01   (Sinclair et al. 

2008), 0.21a  (Sinclair et al. 2008), while 

other parameters were chosen based on their 

ecological importance as 300k  , 0.4m  , 

1 0.4c  , 
2 0.02c  , 

1 0.1E  , 
2 0.001E  , 

1 0.2l  , 2 0.4l  , 
3 0.01l  , and 

4 0.001l  . To validate the accuracy of the 

model, the solution with these parameter 
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values was compared to real data, as shown in 

Figure 1. The data used for the lion 

population were obtained from the Tanzania 

Wildlife Research Institute (TAWIRI) from 

1965 to 2014, and the model was fitted 

through parameter estimation. The parameters 

were estimated using the maximum likelihood 

(ML) method, which aims to maximize the 

likelihood function. In this study, the 

goodness of fit was evaluated using the sum 

of squares of residuals (SSR), defined as  

   
2

1

N
est

i i

i

L f f


   (29) 

The optimal parameters that minimize 

 L  are obtained through equation (29), 

where  
1

N

i i
f


is the set of real data and 

 
1

N
est

i i
f


 is the solution of the ODE at a 

given parameter value. With the  L  , a 

built-in MATLAB optimizer called 

fminsearch was used to obtain the optimal 

parameters. Finally, the estimated parameters 

were generated, as shown in Table 1, and 

used to fit the model, as shown in Figure 2. 
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Figure 1: Comparison of model literature solutions with real data from 1964 to 2014 for the 

lion population in the Serengeti ecosystem. The model solution deviates completely from the 

real data. 
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Figure 2: Model fitting using the maximum likelihood method for real data from 1964 to 

2014 of the lion population in the Serengeti ecosystem. The model solution follows the trend 

of real data. 
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Table 1: Parameter value estimated using MLE for the data from 1964 to 2014 

Parameters Literature values Estimated values 

 r  0.9 0.9989 

k  300 302.4379 

1w  0.674 0.354755208 
a  0.21 0.266733431 
m  0.4 0.4875 

1c  0.4 0.129886245 

1E  0.1 0.221583676 

2l  0.4 0.274548758 

1l  0.2 0.2866 
  0.01 0.0006876 

2w  0.25 0.541796018 

3l  0.01 0.0076 

2E  0.001 0.0005098 

4l  0.001 0.000756646 

2c  0.02 0.00869071 

 

Numerical analysis 

The model was numerically fitted using 

data on the lion population in Tanzania 

gathered by the Tanzania Wildlife Research 

Institute (TAWIRI) from 1965 to 2014. The 

ecological impact of harvesting lions has 

become a subject of scrutiny in the Serengeti 

ecosystem. Although the activity is not 

straightforward, its effects are evaluated next. 

Figure 3 shows the effect of harvesting 

efforts on the lion population. The first 

column shows the balance of the ecosystem 

when the harvesting effort for the wildebeest 

population is less than 50% and the 

harvesting effort for the lion population is 

0.01%. However, increasing the harvesting 

effort for wildebeests to 80% while keeping 

the harvesting effort for lions at 0.01%, will 

help to keep the ecosystem balanced. The 

balance of the ecosystem in these two cases is 

due to the size of the wildebeest population in 

the Serengeti ecosystem, which outnumbers 

all other herbivores, out of the 29 large 

herbivorous species found in the ecosystem 

(Hopcraft 2010). 

The second column indicates a decline in 

the predator population, which does not lead 

to extinction as the prey harvesting effort is 

increased from 0.01% to 80% while 

maintaining a predator harvesting effort of 

50%. The lion population would become 

extinct when its harvesting effort rises to 

80%, even if the wildebeest harvesting effort 

increases at the same rate as described in the 

third column. Moreover, harvesting prey and 

predator populations can be used as controls 

to determine a dynamic framework for 

investigating the optimal utilization of these 

resources. These results concur with those 

reported by Chakraborty et al. (2012). The 

increase or decrease in the populations may 

be attributed to either harvesting or refuge 

aspects; therefore, the effect of prey refuge on 

predators is presented next. 
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Figure 3: Effects of harvesting on wildebeest and lion populations in the Serengeti ecosystem. 

To keep the ecosystem balance, the harvesting effort for lions should be kept at 

the effort of 0.01%. 
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Figure 4: Effects of wildebeests population refuge from lion predation in Serengeti 

ecosystem. To maintain ecological balance, the rate of prey refuge should not 

exceed 90%. 
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Wildebeest migration is the world's largest 

animal migration. Every year, over two 

million animals (wildebeests, zebras, and 

gazelles) migrate clockwise across the 

Serengeti (Tanzania) and Masai Mara 

(Kenya) ecosystems (UNESCO 2020). Figure 

4 depicts the impact of prey refuge, which 

shows that, as the rate of prey refuge 

increases, the density of predator populations 

decreases slightly, which is consistent with 

the findings of Kar (2005), Ma et al. (2013), 

and Tang (2014). As a result, an increase in 

the prey refuge rate by up to 0.90% is 

beneficial for the coexistence of prey and 

predator populations. From an ecological 

standpoint, if the rate of prey refuge 

decreases, the predator can capture more prey 

populations, increasing the predator 

population density. In a particular study, the 

predator population was thought to be 

dependent on the prey population; thus, the 

predator population density decreased at a 

rate above 0.90% of prey refuge. As the rate 

of prey refuge increases, predator populations 

tend to decline, as illustrated in Figure 4.  

 

Conclusion 

This study introduces a Holling Type II 

model of the wildebeest-lion prey-predator 

system in the Serengeti ecosystem. The model 

includes prey refuge and a Michalis-Menten 

harvest function that determines the optimal 

harvesting criteria for wildebeests and lions in 

the ecosystem. A theoretical analysis of the 

model shows that all solutions are bounded 

within a certain range, and the interior point is 

stable under the specified conditions. 

Furthermore, the bionic equilibrium was 

evaluated. To fit the lion population data from 

1965 to 2014 in Serengeti National Park, the 

model was validated using the maximum 

likelihood method, and the results 

demonstrated a good fit.  

This study examined the impact of 

harvesting on the wildebeest and lion 

populations in the Serengeti Ecosystem. The 

lion population was found to have a 

harvesting effort threshold of 0.01%, which 

means that the harvest should not exceed this 

limit to avoid harming the population. By 

increasing the wildebeest harvesting effort to 

80%, while maintaining the lion-harvesting 

effort threshold, the ecosystem could remain 

balanced. The wildebeest population is the 

largest of the 29 large herbivorous species in 

the Serengeti ecosystem, making it a vital 

food source for predators. The effect of prey 

refuge on the predator population was also 

assessed, and it was discovered that a high 

rate of prey refuge tends to reduce the 

predator population, as it is a source of food.  

Therefore, to maintain the sustainable 

coexistence of wildebeests and lions in the 

ecosystem, the harvesting threshold of lion 

populations must be carefully monitored. The 

findings of this study argue that the lion 

population should be given special attention 

in terms of managerial harvesting criteria so 

that the threshold for the wildebeest-lion 

coexistence in the ecosystem is not exceeded. 

A general recommendation for future work is 

to incorporate stochasticity into the model to 

capture more information about conditions 

with high uncertainty in natural systems. 
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