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Abstract 

A mathematical model to investigate the roles of long distance truck drivers on HIV transmission 

dynamics was formulated and analyzed to establish the existence of disease free and endemic 

equilibrium points. The results show that, the disease free equilibrium point is asymptotically 

stable when the basic reproduction number is less than unity and unstable otherwise. Furthermore, 

comprehensive analyses on the two steady states (infection free and endemic) have shown that 

they are both globally and asymptotically stable. Sensitivity analysis is performed on the 

reproduction number in order to establish the relative importance of parameters, and it shows that 

the truck drivers have the potential of increasing the rates of transmission of HIV infections, which 

concurs with the numerical simulation results.  
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Introduction  

Human mobility is often associated with 

dissemination of emerging and re-emerging 

infectious diseases. For example, SARS 

epidemic in 2003 and H1N1 were greatly 

disseminated by air travels at the worldwide 

scale in 2009; see Findlater and Bogoch (2018) 

for details. Also, the spread of human 

immunodeficiency virus (HIV) is associated 

with human mobility and high incidences of 

HIV infections were observed in areas with 

reportedly high migration flows and which are 

situated along major transport corridors. Long 

distance truck drivers (who from now are 

referred to as truck drivers) are of particular 

concern to HIV prevention and control 

programmes because they travel frequently, 

often to areas with high levels of HIV 

incidences. For instance, surveys carried out in 

Kenya and Uganda along highways from 1989 

to 2005 showed high rates of HIV infections in 

the truck driving populations (Carswell et al. 

1989). The patterns of sexual behaviours 

increase the likelihood that truck drivers 

experiencing primary HIV infections transmit 

the virus to other people and spouses on 

coming back home (Hudson 1996). 

Some circumstances that seem to increase 

the risks of HIV infections among truck drivers 

are the long separation from spouses and 

family, multiple partners, delays at border 

crossings and lack of access to health services 

(Babinard and Gause 2009). The need for 

entertainment and female companionship 

makes them very likely to use the services of 

commercial sex workers in stop-over towns on 

major transportation routes. These truck stop 

towns have developed an entire infrastructure 

of networks and services meeting the business 

and recreation needs of truck drivers, including 

gas stations, inspection points, lodges, bars and 

brothels and a high concentration of 

commercial sex workers. Also, according to 

IOM (2003), risk factors of migration are felt at 

four sites, namely where they are coming from, 

en-route, where they are going and upon return 
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to their sources. While in en-route, the drivers 

meet many people in desperate need for their 

companionship while paying with sexual 

favours. Moreover, being away from their 

wives they may need to satisfy their sexual 

needs and also overnight accommodation 

which is cheaper. Ultimately they will return to 

their families with HIV infections which they 

would have contracted along the way. 

Furthermore, unmarried truck drivers who are 

generally young and do not have any socially 

accepted steady sexual partners are more likely 

to engage in riskier behaviours, including 

commercial sex workers if exposed to the 

environmental factors associated with trucking 

industry, such as high mobility with 

anonymity, easy availability of female sex 

workers and other women (Pandey et al. 2012). 

Also, married men are believed to have more 

favourable attitudes toward obtaining, 

discussing and using condoms with non-marital 

partners possibly because they attempt to 

protect themselves and their wives by using 

condoms with non-regular sexual partners, 

rather than using it with their wives (Ford and 

Chamrathrithirong 2007). Condom use with 

wife or with intimate partners could send a 

strong signal of infidelity and thus both 

partners have a disincentive to insist on using 

condoms (Dude et al. 2009).  

Much work has been done on HIV 

infections, for instance, Mushayabasa and 

Bhunu (2011) and Oduwole and Shehu (2013), 

modelled HIV dynamics by assuming sexual 

contact as a means of HIV transmission among 

immigrants, prisoners and prostitutes. 

However, little has been done to investigate the 

roles of truck drivers in the spread of 

HIV/AIDS. For example, Kribs-Zaleta et al. 

(2005) revealed that HIV/AIDS has great 

impacts on the transportation sector through the 

loss of truck drivers. This paper intends to 

develop a mathematical model to investigate 

how truck drivers are more at risks of 

contracting HIV infections than their 

counterpart non-truck drivers. In such a model, 

the population of potential truck drivers is 

divided into truck drivers (as an experimental 

group) and the non-truck drivers (as control 

group), and later the groups are compared to 

derive their contributions in the dynamics of 

HIV infections.  

 

Materials and Methods 

In this paper a flow chart (see Figure 1) has 

been used to describe the movements of 

individuals among epidemiological 

compartments depending on their disease 

status. The flow chart was then used to 

formulate a mathematical model for the roles 

of truck drivers on the transmission of HIV in 

the community of truck drivers.  

 

Model formulation  

The total population at any time t denoted 

by 𝑁(𝑡) is divided into the following mutually 

exclusive epidemiological classes: susceptible 

truck drivers (𝑆𝜏(𝑡)), susceptible non-truck 

drivers (𝑆𝑛(𝑡)), truck drivers infected with 

HIV (𝐼𝜏(𝑡)), non-truck drivers infected with 

HIV (𝐼𝑛(𝑡)), and full blown AIDS cases 

(𝐴(𝑡)). We assume that the number of truck 

drivers in the community is increased 

(recruitment) by the new truck driving 

aspirants at a rate  . All recruited individuals 

are assumed to be susceptible to the disease. A 

proportion  of recruited individuals are 

assumed to join the class of truck drivers 𝑆𝜏, 

and the remaining proportion  1  goes to 

the class of non-truck drivers class nS . It is 

assumed that susceptible truck drivers may quit 

driving job and join the non-truck drivers at a 

rate 1  and the infected truck drivers may quit 

the job and join the class of infected non-truck 

drivers at a rate 2 . Here 12   , since 

infected drivers are more likely to quit the job 

than healthy drivers. Susceptible truck drivers 

and non-truck drivers get infected with the 

disease from their female partners at the rates 

 
N

AI 
 



  and 

 
N

AI n
n





 , 

respectively. The parameter   is the effective 
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contact rate (that is, contact that may result into 

HIV infection) and 1  accounts for the 

relative infectiousness of truck drivers with 

AIDS symptoms in comparison to the 

corresponding infected truck drivers with no 

AIDS symptoms. It is assumed that infected 

non-truck drivers (those who were once truck 

drivers and have quit the job due to infections) 

transmit the disease at a reduced rate modified 

by a factor  , where 10   . In other 

words, HIV infected non-truck drivers transmit 

the infections at a slower rate in comparison to 

infected truck drivers because the former are 

less mobile than the latter. Thus, susceptible 

non-truck drivers acquire infections at a 

reduced rate   n  )1(1  , where 

10    is the factor for reducing the risk 

behaviour of HIV transmission per contact of 

contracting the disease. Infected truck drivers 

progress to AIDS at a rate of  , while 

infected non-truck drivers progress to AIDS at 

a reduced rate  n  (that is, infected non-

truck drivers progress to AIDS at slower rate in 

comparison to infected truck drivers). 

Individuals in all the classes suffer from natural 

deaths at a rate  . Additionally, individuals 

with AIDS die of the disease at a rate  . 

Putting together the flow diagram in Figure 1 

and the above descriptions and assumptions on 

the dynamics of the disease the model takes the 

following form of differential equations:  

 
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  (1) 

subject to the following initial conditions: ,0)0( S 0)0( nS , 0)0( I , 0)0( nI  and 

0)0( A .  The forces of infections associated with HIV transmission by truck drivers (at the rate 

 ) and non-truck drivers (at the rate n ) are 
 

N

AI 
 



  and 

 
N

AI n
n





 , 

respectively. 

Descriptions of variables and parameters of model (1) are given in Table 1. 
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Figure 1: Flowchart for HIV dynamics in truck and non-truck drivers. 

 

Table 1: Descriptions of variables and parameters of model (1) 

Symbols Descriptions 

S  Susceptible truck drivers 

nS  Susceptible non-truck drivers 

I  Infected truck drivers with no AIDS symptoms 

nI  Infected non-truck drivers without AIDS symptoms 

A  Infected individuals with AIDS symptoms 

nii ,,    The force of infections for truck and non-truck drivers, respectively 

  Recruitment rate for susceptible individuals 

  Fraction of newly recruited truck drivers 

  Effective contact rate that can lead to transmission of infection 

  Factor for reducing transmission in non-truck drivers 

n  ,  Progression rates to AIDS from infected truck  and non-truck  drivers, 

respectively 
  Factor for reducing the risk behaviour of HIV transmission from non-truck 

drivers per contact. 
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Model Analysis 

First positivity of the solution of the variables of the model needs to be proved: 

 

Positivity of the solution 

Lemma 1: Let 0t . If the initial conditions satisfy 0)0( S , 0)0( nS , 0)0( I ,  

0)0( nI , 0)0( A then for all 0t , )(tS , )(tSn , )(tI ,  )(tI n , )(tA will remain 

positive in
5

R . 

Proof:  It should be proved that for all 0t ,  )(tS , )(tSn , )(tI ,  )(tI n , )(tA will remain 

positive in
5

R .  It is known that all parameters used in the model system (1) are positive. Hence, 

we can place lower bounds on each of the equations given in the model (1). Thus,  
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Through basic differential equations methods, we can resolve the inequalities and produce:  
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Thus, for all 0t , )(),(),(),(),( tAtItItStS nn   will be positive and remain in 
5

R . 

 

Invariant Region 

Model (1) describes the dynamics of HIV/AIDS infections/disease in the populations of truck 

and non-truck drivers through different disease status. All associated parameters and variables of 

the model are assumed to be non-negative for all 0t . Hence, we prove the following lemma: 

Lemma 2:  The closed set   














 

 


 ,max:,,,, 0

5 NNRAIISS nn  is 

positively invariant and attracting with respect to the model (1).
 



Mbare - HIV/AIDS transmission dynamics: modelling the roles of long distance truck drivers 

150 

Proof: Adding all the equations in the model 

(1) gives  ,AN
dt

dN
   where

AIISSN nn   . In the absence 

of the disease we have, ,N
dt

dN
  and 

it follows that 0
dt

dN

 

if



)(tN . The 

standard comparison theorem 

(Lakshmikantham et al. 2015) can be used to 

show that  tt eeNtN 



 


 1)0()( . 

In particular, 



)(tN  if 




)0(N  . 

Thus   is positively invariant. Furthermore, 

if



)0(N , then 

0)( NtN  . Hence, 







 




,max)( 0NtN  for all 0t . 

Therefore, the model is mathematically well 

posed and epidemiologically reasonable since 

all the variables remain non-negative for all 

0t . Hence, it is sufficient to consider the 

dynamics of the model (1) in . 

 

Disease free equilibrium  

When the disease is not present in the 

community (that is 0 AII n  ), the 

solution of the model (1) gives the disease free 

equilibrium points. This is the scenario 

whereby in this study the HIV infections 

become zero and everyone in the population 

under consideration is once again susceptible to 

the disease. The equilibrium points are found 

by equating the derivatives in model (1) to 

zero. Thus, the disease free equilibrium of 

model (1) is given by 
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Local stability of disease free equilibrium 

Local stability of the disease free 

equilibrium is governed by the basic 

reproduction number (see for instance Brauer 

and Catillo-Chavez (2001), Castillo-Chavez et 

al. (2002), and Hethcote (2000)). 

Epidemiologically, the basic reproduction 

number of the disease tells us about the number 

of secondary cases one infected individual 

produces in an entirely susceptible population 

during his/her infectious period. We investigate 

the stability by using the next generation 

operator and the notations as used in the work 

of Van den Driessche and Watmough (2002). 

The matrices F and V for the gain (new 

infections) terms and loss (transfer) terms, 

respectively (noting that 
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giving the basic reproduction number R0 as the spectral radius  1VF  . That is,  
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It should be noted that the 4..,,1,' iA si  

in the above expressions are different from the 

“A” that has been used to represent AIDS 

class. The basic reproduction number R0 is the 

sum of the average number of infections 

generated by typical infectious individuals 

from the truck drivers (R0τ) and non-truck 

drivers (R0ῃ), where 
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Using Theorem 2 of Van den Driessche and 

Watmough (2002), the following result is 

established.  

Theorem 1: The disease free equilibrium Ф of 

the model system (1) is locally asymptotically 

stable if 10 R  and unstable if 10 R .  

Theorem 1 implies that infections of HIV can 

be minimal if 10 R , provided the initial 

sizes of the sub-populations are within the 

domain of attraction of  . To ensure that 

stability of the disease free equilibrium is 

independent of the initial sizes of the sub-

populations, we need to show that it is globally 

asymptotically stable. 

 

Global stability of the disease free equilibrium 

Equilibrium is globally stable if it is stable 

for almost all initial conditions, not just those 

that are close to it (Martcheva 2015). The 

following result follows on the global stability 

of the disease free equilibrium 
0E . 

Theorem 2: If 10 R  the disease-free 

equilibrium, of the model system (1) is globally 

asymptotically stable and unstable if 10 R .   

Proof: By the comparison theorem, the rate of 

change of the variables representing the 

infected components of model system (1) can 
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Using the fact that the eigenvalues of the 

matrix  VF   all have negative real parts, it 

follows that the linearized differential 

inequality system (5), is stable whenever 

10 R  (see, for example Mushayabasa et al. 

(2011) for details). Consequently, from the fact 

that

  
  I

dt

dI
 2 ,    nn

n S
dt

dS
  )1()1(  and 

 A
dt

dA
  , it follows that     0,0,0,, AII n  as t . 

Thus, by comparison theorem according to 

Lakshmikantham et al (2015), 

   0,0,0,, AII n  as t and 

solving system (1) at 0 AII n gives 

1







S and 

  














1

11

1

1






nS  for

10 R . Hence, the disease free equilibrium is 

globally asymptotically stable whenever 

10 R .  

 

Endemic Equilibrium 

Here, the interest is to explore the long term 

persistence and endemic dynamics of HIV 

infections. The endemic stage is facilitated in 

the population by the influx of new susceptible 

individuals. The endemic equilibrium points 

are given by  ****** ,,,, AIISSE nn  , 

where   

  
    

    
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    

*

***

* 21

N
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and 
.1,

,,1,1,,

716

254321


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Substituting 
***** ,,,, AIISS nn  into Equation (6) and simplifying, yields the following 

polynomial     0

*

0

2*

0

*** CBAf                  (7)   

where,  
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One of the solutions of Equation (7) is 0*

1 
and this corresponds to the disease free 

equilibrium point
0E . The other solutions are 

obtained from 

    0

*

0

2** CBAf   .These 

correspond to the endemic equilibrium point 

since the disease is present in the population. 

There are three cases to consider for 0*   in 

Equation (7), depending on the signs of 0B  

and 0C  since 0A  is always positive. That is:  

1. If 00 B  and 00 C  or 

04 00

2

0  CAB , then Equation (7) has 

unique endemic equilibrium point (one 

positive root) and no possibility of 

backward bifurcation.  

2. If 00 B  and 00 C  or 

04 00

2

0  CAB , then Equation (7) 

has two  equilibrium points (two positive 

roots) and there is a possibility of 

backward bifurcation.  

3. Otherwise there is none. 

However, it is important to note that 0C  is 

always positive if 10 R and negative if 

10 R . Hence, the above explanation leads to 

the following theorem: 

Theorem 3: The model system (1) has 

precisely 

(i)  one unique endemic equilibrium if 

00 C  and if and only if 10 R ,  

(ii)  one unique endemic equilibrium if 

00 B  and if and only if 00 C or 

04 00

2

0  CAB , 

(iii) two endemic equilibria if 

0,0 00  CB  and  

04 00

2

0  CAB , 

(iv) Otherwise it has no (biologically 

meaningful) solution. 

 

Bifurcation Analysis 

The stability of the endemic equilibrium 

point can be determined by computing the 

eigenvalues of the Jacobian matrix at the 

endemic equilibrium. However, due to the 

mathematical complexity of this approach for 

model system (1), the Centre manifold theory 

will be used to analyze the stability near the 

disease-free equilibrium point, 
0E  and 

10 R . Let  be a bifurcation parameter and 

10 R be the bifurcation point. Then solving 

for   from Equation (4) yields  

    431212

21

1 AABAAB

BB





        

8)

 

Let 1xS  , 2xSn  , 3xI  , 4xI n  , 

5xA  . Then the model system (1) is 

rewritten as follows  

 

 Txfxfxfxfxf
dt

dx
)(),(),(),(),( 54321  (9) 

such that model system (1) becomes   
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 
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xxxxxxf
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dx
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



 

Thus, the Jacobian matrix of the system (10) at the disease free equilibrium becomes  

 

 















































 n

E JUQP

ILRM

HQP

GLM

J

00

00

00

0

2

1

1

0

  

(11) 

 

where
N

x
M 1

 ,  
 

N

x
L 11 
 ,  

 
N

x
P 21 
 ,  

  
N

x
Q 211  
 , 

  2R ,  nU   ,  
 

N

x
G 12  
 , 

  
N

x
H 221  
 ,   

 
N

x
I 11  
 ,  

  
N

x
J 221  
 . 

It is noted that zero is a simple eigenvalue of matrix (11). Let  54321 ,,,, wwwwww   be the 

right eigenvector associated with the eigenvalue zero. Then we have  
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Solving the system (12) for 5...,,1, iwi  gives the following: 

(13) 

 

 

 

 

 

 
.,

,,,

43
5

532
4

54
3

54311
2

1

543
1




































ww
w

QU

wJwP
w

MR

wIBw
w

HwQwPww
w

GwLwMw
w

n



Tanz. J. Sci. Vol. 47(1) 2021 

155 

To calculate the left eigenvector  54321 ,,,, vvvvvv  and satisfying 1wv , we transpose 

(11) which leads to the following system of equations:   

 

   
 

  0

0

0

0

0

54321

54321

542321

2

2211











vJvIvHvGv

vvUQLvQvLv

vvPvRMPvvM

v

vv

n











            (14) 

From (14) the left eigenvector is  
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
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

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5
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4

54221
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1

22
1

,

,0,

JvIvHvGv
v

UQ

vLvQvLv
v

RM

vvPPvMv
vvv

v
v

n

           (15) 

Now, to prove the local stability of endemic equilibrium point near 10 R , we apply the 

following Theorem as outlined in Castillo-Chavez and Song (2004): 

Theorem 5: Consider the following system of ordinary differential equations with a parameter   

   nnfxf
dt

dx
 :,, and   nCf 2

         (16) 

where 0 is the equilibrium point of the system, that is,     0,0f and   

(A1)    















 0,00,00

j

i

x
x

f
fDW is the linearization matrix of the system around the 

equilibrium 0 with evaluated at 0; 

(A2) Zero is a simple eigenvalue of 0W and all other eigenvalues of 0W
 
have negative real parts;  

(A3) Matrix 0W has a right eigenvector w and a left eigenvector v corresponding to the zero 

eigenvalue. 

Let kf be the 
thk component of f and  

    .0,0,0,0
1,

2

1,,

2


 









n

ik i

k

ik

n

jik ji

k

jik
x

f
wvb

dxx

f
wwva


  (17)   

 

The local dynamics of system (17) around 0 are 

totally governed by the signs of a and b. 

(i) 0,0  ba . When 0 with 

1 ,  0 is locally asymptotically 

stable, and there exists a positive unstable 

equilibrium; when 10   , 0 is 

unstable and there exists a negative and 

locally asymptotically stable equilibrium; 

(ii) 0,0  ba . When 0  with 

1 , 0 is unstable;  when 

10   , 0 is asymptotically stable, 

and there exists a positive unstable 

equilibrium;  

(iii) 0,0  ba . When 0  with 

1 , 0 is unstable;  and there exists 



Mbare - HIV/AIDS transmission dynamics: modelling the roles of long distance truck drivers 

156 

a locally  asymptotically stable negative 

equilibrium;  when 10   , 0 is 

stable, and a positive unstable equilibrium 

appears; 

(iv) 0,0  ba . When  changes from 

negative to positive, 0 changes its stability 

from stable to unstable. Correspondingly, 

a negative unstable equilibrium becomes 

positive and locally asymptotically stable.   

Particularly, if 0a and 0b , then a 

backward bifurcation occurs at .0
Computation of a and b: For the system (18), 

the associated non-zero second order partial 

derivatives (at the disease free equilibrium 

point) for a and b are given by:  
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But the non-zero second order partial derivatives at the disease free equilibrium point are given by 
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Results and Discussion 
Numerical simulations of the model (1) 

were carried out by using the set of parameter 

values given in Table 1. Some parameter 

values were obtained from different literatures 

and others were assumed. The model system 

has been simulated by using MATLAB-ODE 

solvers and the following initial conditions 

(which are just arbitrary numbers) have been 

considered:   ,000,000,60 S

  ,000,000,90 nS

  ,000,3000 I   000,8000 nI

and   .000,500 A The parameter values 

for model (1) are presented in Table 2.
 

 

  



Tanz. J. Sci. Vol. 47(1) 2021 

157 

 

Table 2: Parameter values for model (1) 

 

Figure 2 shows that 
000 RRR  

, 

implying that truck drivers have  significant 

roles in the transmission dynamics of HIV 

infections, since the average number of new 

infections from a typical infectious truck driver 

R0τ (middle curve in Figure 2) is greater than 

the number of infections produced by a non-

truck driver R0n (lower curve in Figure 2). That 

is, the contribution of non-truck drivers in the 

transmission of infections is less than their 

counterparts (truck drivers) because they have 

minimal interactions with potential sex workers 

available on the truck routes.  

 

Figure 2: The comparison of reproduction numbers from truck drivers (R0τ) and non-truck drivers 

(R0ῃ) against the effective contact rate β. 
 

Parameter Value (per year) Source 

  10 Hassan (2013) 

  0.4 Assumed 

1  0.3 Assumed 

2  0.5 Hassan (2013) 

  0.02 Mushayabasa et al. (2011) 

  0.99 Assumed 

  2.6 Hethcote (1999) 

n  0.06 Hethcote (1999) 

  0.333 Bhunu et al. (2009) 

  1.2 Sharom and Gumel (2008) 

  0.99 Hassan (2013) 

  0.4 Elibasha and Gumel (2006) 
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Figure 3: (A) Simulation results showing 

general trends in the dynamics of the disease 

between susceptible truck drivers ( S , dotted 

curve) and non-truck drivers ( nS , dash dotted 

curve). (B) Similarly, for infected truck drivers 

( I , dotted curve) and non-truck drivers ( nI , 

star curve): 2462.10 R .
 

Figure 3 (A) shows that susceptible 

population of truck drivers decreases (dotted 

curve), while susceptible population of non-

truck drivers increases slowly and then 

decreases (dash dotted curve). This may be due 

to the nature of their work which exposes 

susceptible truck drivers to the risk behaviours 

of HIV infections. Also, some of the 

susceptible truck drivers may quit the job and 

join the susceptible non-truck drivers. On the 

other hand, the population of susceptible non-

truck drivers increases up to its equilibrium 

point, then decreases. This could be due to the 

fact that non-truck drivers are not as exposed to 

high risk behaviours as susceptible truck 

drivers. Similarly, Figure 3 (B) shows that 

most of the HIV infected truck drivers (dotted 

curve) progress faster to full blown AIDS than 

the HIV infected non-truck drivers (star curve). 

This is due to fact that the HIV infected truck 

drivers have high probability of contracting the 

disease per contact and even re-infection 

compared to non-truck drivers.  

 

Sensitivity analysis  

Sensitivity analysis is performed in order to 

determine the relative importance of the model 

parameters on the disease transmission and 

prevalence. The analysis is performed by 

calculating the sensitivity indices of the basic 

reproduction number
0R with respect to the 

parameters. The interest is to determine 

parameters that significantly affect the 

reproduction number since these are the 

parameters that should be taken into considered 

when control strategies are to be implemented 

(see Chitnis and Hyman (2008) for details).  

The normalized forward sensitivity index of a 

variable to a parameter is the ratio of the 

relative change in the parameter. Since the 

reproduction is a differentiable function of the 

parameters, the sensitivity indices may 

alternatively be defined using partial 

derivatives. For instance, computation of the 

sensitivity index of 0R  with respect to   

using parameter values in Table 2 is given by 
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that 
0R is an increasing function of  and the 

parameter  has very great influence on the 

spread of HIV infections in the communities. 

The indices of the remaining parameters are 

tabulated in Table 3. Parameters whose 

sensitivity indices have negative signs decrease 

the value of the reproduction number as their 

values increase, whereas those with positive 

signs increase the value of 
0R as they 

increase. The system is most sensitive to 
(the factor for adjusting transmission 

probability per contact from non-truck drivers) 

followed by  (the factor for adjusting the 

risk behaviours of transmission per contact). 

We note that increasing (decreasing)  by 

10% decreases (increases) 
0R by 23.6%. Also, 

increasing (decreasing) the parameter  (rate 

of effective contact that can lead to infection) 

by 10% increases by 10%.  

 

 

 Table 3: Numerical values of sensitivity indices of 
0R

 
Parameter Sensitivity index 

  +1.00 

  -2.23 

  -0.86 

  -2.36 
  -0.19 

1  -0.87 

2  -0.03 

  -0.03 

n  +0.06 

 

Effects of varying some parameters 

When looking at different values of the 

modification factor  (i.e. the factor for 

adjusting transmission probability per contact 

from non-truck drivers), the result suggests that 

an increase of  increases the number of 

susceptible truck drivers as shown in Figure 4 

(A) (dash-dotted curve), because of high 

reduction of transmission probability per 

contact of HIV. This implies that there are few 

people who are exposed to the infections. In 

case of non-truck drivers population, the 

increase of   leads to the increase of 

susceptible non-truck drivers which implies 

that there are very few people who are exposed 

to the infections. This is due to the fact that, 

transmission probability per contact of HIV has 

been highly reduced as shown in Figure 4 (B) 

dash-dotted curve. Similarly, Figure 4 (C) 

shows that as  increases, it has slightly 

decreased the number of the HIV infected truck 

drivers (dotted curve). Figure 4 (D) shows that 

as   increases, the numbers of the HIV 

infected non-truck drivers decrease (dash-

dotted curve). 
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Figure 4: The effect of varying the factor for reducing the risks of HIV transmissions per 

contact ( ) for susceptible truck drivers (A), susceptible non-truck driver (B), 

infected truck drivers (C) and infected non-truck drivers (D), where  = 0.2, 0.5, and 

0.99. 

 

Conclusion 

A mathematical model for investigating the 

roles of long distance truck drivers on the 

transmission dynamics of HIV infection in a 

population was formulated and analysed. The 

analysis of the model has been done to 

investigate the existence and stability of the 

disease free and endemic equilibrium. The next 

generation matrix has been used to calculate 

the basic reproduction number
0R , as well as to 

investigate the local stability of the disease free 

equilibrium. The global stability of the disease 

free equilibrium was investigated by using the 

Centre Manifold Theory and conditions for the 

global stability were derived by using the 

comparison method. Then the disease free 

equilibrium was shown to be locally 

asymptotically stable and globally 

asymptotically stable when the basic 

reproduction number, 0R  is less than one. 

Also by using the Centre Manifold Theory, the 

HIV model of long distance truck drivers is 

shown to have a unique and locally 
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asymptotically stable endemic equilibrium 

when the basic reproduction number 
0R  is 

greater than one. Therefore, it is concluded that 

the model does not exhibit backward 

bifurcation, since a stable disease free 

equilibrium cannot coexist with a stable 

endemic equilibrium when the basic 

reproduction number
0R  is less than unity. By 

analysing the associated basic reproduction 

number
0R , it showed that long distance truck 

drivers increase the rates of transmission of 

HIV infections. 

The basic reproductive numbers of the 

model were computed and compared, which 

enable the assessment of the roles of long 

distance truck drivers in transmission dynamics 

of HIV. The obtained results showed that, the 

overall basic reproduction number R0 was 

greater than that of the long distance truck 

drivers R0τ, which was also greater than that of 

the non-truck drivers R0n. These results clearly 

indicate that long distance truck drivers are at 

higher risks of infections as compared to non-

truck drivers because truck drivers have wider 

sexual networks than non-truck drivers. 

Simulations and sensitivity analysis were 

carried out to illustrate analytical results and 

determine the key factors influencing the 

behaviour of the disease. Results from the 

sensitivity analysis of 0R suggested that more 

efforts should put on reducing effective contact 

rate  , and this can be attained through 

comprehensive healthcare services and HIV 

interventions and prevention programmes like 

condom distribution and voluntary HIV 

counselling and testing. Thus, from the 

simulation part, it can be concluded that, long 

distance truck drivers increase the risks in the 

transmission of HIV. 
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